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Abstract. Using techniques of Kimchi and Magidor, we generalize an earlier

result and show that it is relatively consistent for the first n strongly compact

cardinals to be somewhat supercompact yet not fully supercompact.

The class of strongly compact cardinals is, without a doubt, one of the most

peculiar in the entire theory of large cardinals. As is well known, the class of

strongly compact cardinals suffers from a severe identity crisis. Magidor's fun-
damental result of [Ma] shows that it is consistent for the least strongly compact

cardinal to coincide with either the least measurable or the least supercompact
cardinal. The result of [Al] shows that it is consistent for the least strongly

compact cardinal to be somewhat supercompact although not fully supercom-

pact. The result of Kimchi and Magidor [KM] shows that it is consistent for

the class of strongly compact cardinals to coincide with the class of supercom-

pact cardinals (except at limit points where Menas' result [Me] shows that such

a coincidence may not occur) or for the first n for n £ œ strongly compact

cardinals to coincide with the first n measurable cardinals.

The purpose of this paper is to show that matters can be muddled still further.
Specifically, we generalize the result of [Al] using the methods of [KM] and

prove the following

Theorem. Let V \= "K = {kx , ... , k„} with kx < k2 < ■■■ < k„ the first n
supercompact cardinals". For each k g K, let <pK be a formula in the language

of set theory which defines an increasing ~L2 function from the ordinals to the

ordinals which, in addition, has the following properties:

(a) <pK is preserved at and above k when forcing with a cardinal preserving

partial ordering of size k, i.e., for P £ V a cardinal preserving partial ordering,

\P\ = K, a>K,  Vt "0 = <pK(a) "iff Vp \= "Ô = tpK(a) ".
(b) If for any model M of ZFC, M \= "a < ß and ß is q>K(ß) supercom-

pact", then <pK(ot) < ß ■

(c) If for any model M of ZFC, M \= "ô is <pKi(S) supercompact, ô is

(pKj(ô) supercompact, and i < j ", then g>Ki(S) > <pKj(S).

There is then a partial ordering P so that for each k £ K, Vp 1= " k is
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at least cpK(K) supercompact, k is not supercompact, and k is fully strongly

compact"; further, Vp 1= " K consists of the first n strongly compact cardi-
nals".

Restrictions (a) and (b) above on each tpK are made for the same technical
reasons as in [Al]. Note, however, that many X2 functions, e.g., ô >-» S+,

ô h-» The least inaccessible > ô, ô >-> The least measurable > ô, etc., meet

restrictions (a) and (b). Restriction (c) is needed to make the arguments of
[KM] go through and will be explained at the end of the paper.

Our Theorem essentially says that it is possible for the first n strongly com-

pact cardinals to be somewhat supercompact yet not fully supercompact. This

provides an intermediate result to the results of [KM], which tell us that the first

n strongly compact cardinals can be either the first n measurable cardinals or
the first n supercompact cardinals.

Before beginning the proof of our Theorem, we briefly mention some prelim-

inary material. Essentially, our notation is standard, with Va representing the
universe through stage a, and for a < ß ordinals, [a, ß], [a, ß), (a, ß],

and (a, ß) as in standard interval notation. Further, we assume complete fa-

miliarity with the notions of strong compactness, supercompactness, etc. [Al],

[A2], [KM], [L], [Ma], [Me], and [SRK] will provide sufficient details. Finally,
we will assume some familiarity with the techniques and methods of [KM],

although where necessary, appropriate details will be provided.

We turn now to the proof of our Theorem.

Proof of Theorem. We will first define, for each k g K, a partial ordering PK
so that VpK \= "k is at least <pK(ic) supercompact, k is not supercompact,

k is fully strongly compact, and there are no strongly compact cardinals in

the interval [SK, k) ", where ôKl = Ni and ôKi = K¡_x if 2 < i < n. Then

the partial ordering P used to construct our final model will be the product
ordering Ux<i<npK'■

To define PK, we proceed inductively. Pß is the trivial partial ordering,
and if X < k is a limit ordinal, then P* = inverse limit ((P*: a < X)) if A is

singular, and P* = direct limit ((P* : a < X)) if A is regular. To define P*+l,

let ya < k be the least ordinal so that 11-/.» "ya is <pK(ya) supercompact". ya

will exist, since k is supercompact and q>K is £2 • Ù* is tnen a term i°r tne

partial ordering Q« e VP* which adds a non-reflecting stationary set of ordinals

of cofinality 6K to ya ; specifically, Q* is a term for a non-reflecting bounded

non-stationary subset of {/? < ya: cof(/?) = SK}, ordered by q extends p iff

q 2 P and q is an end extension of p, i.e., p = q n sup(p). P*+1 is then

defined as P* * ß£ , and PK - direct limit ((P£ : a < k)) .

Lemma 1. Vp" \= "k is strongly compact and there are no strongly compact

cardinals in the interval [SK , k) ".

Proof of Lemma I. As in [KM], forcing with PK or any of its component partial
orderings will create no new measurable cardinals; in fact, the arguments of

[KM] show that forcing with PK or any of its component partial orderings will

create no new cardinals 5 which are (pK(S) supercompact. Thus, since the

cardinals ô in the field of PK are all forced by some component of PK to
be <pK(ô) supercomponent, each cardinal ô in the field of PK will be (pK(ô)

supercompact in  V.   Thus, the arguments of [KM] show that  Vp" N "/c is
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strongly compact", assuming there are only finitely many cardinals S > k so that

V \= "S is cpK(ô) supercompact". That we can make this assumption follows

from restriction (c) of the Theorem and the definition of P, since restriction
(c) ensures the portion of the forcing P above PK leaves only finitely many

ô > k so that ô is cpK(ô) supercompact. We will comment upon this further in

the proof of Lemma 4 and at the end of the paper. We mention now, however,

that if there are any cardinals ö above the largest cardinal /c„ so that ô is

<pK„(ô) supercompact, then we either have to cut the universe off at the least

such ô or else iterate the forcing PKn above /c„ to destroy all such ô if the

strong compactness of k„ is to be preserved.

To show that VpK t= "There are no strongly compact cardinals in the interval

[SK , k) ", it suffices to show that for unboundedly many y £ [ôK, k) , VpK N

"There is a non-reflecting stationary subset of y of ordinals of cofinality ôK ".

(This is since a theorem of [SRK] states that if ß contains a non-reflecting

stationary subset of ordinals of cofinality a, then there are no strongly compact

cardinals in the interval (a, ß). Here ôK , being a successor cardinal, of course

isn't strongly compact.) To see this, let y be a cardinal in the field of PK , and

let PK = Qy * Qy, where the field of Qy consists of all cardinals < y and the

field of Qy consists of all cardinals > y. By the definition of PK , VQy t= "y
contains a non-reflecting stationary subset of ordinals of cofinality SK ". The

definition of PK ensures that for any a so that PK = P* * Q* and \r-p* "The

field of Q* is a V measurable cardinal > y ", II-/* "Q£ is < oy strategically

closed" where ay is the least (measurable) cardinal in the field of Q7 and < ay
strategically closed for a partial ordering Q means that for any fixed ß < ay, in

the two person game in which the players construct a sequence (qa : a < ß) so

that each qaQ extends qa for a < a0 and player I plays odd stages and player

II plays even and limit stages, player II always has a winning strategy ensuring

that the game can be continued for any a < ß . Since each cardinal a in the

field of Qy is a V measurable cardinal so that a > oy > y, the definition of

Qy ensures that II-Qy "Q7 is < ay directed closed", i.e., that \\-Qy "Forcing with

Qy adds no new subsets of y ". This means that F0»*^ = VpK 1= "y contains

a non-reflecting stationary subset of ordinals of cofinality ôK ". Since there are
unboundedly many such y £ [ÔK, k) in the field of PK , Lemma 1 is proved.   D

Lemma 2.   Vp" \= "k is not supercompact".

Proof of Lemma 2. If VpK 1= "tc is supercompact", let ;' be a supercompact

embedding of VpK into a sufficiently closed inner model M with critial point

k so that M \= "fc is <pk(k) supercompact". By reflection, A = {y < k: y

is <pK(y) supercompact} is unbounded in k. It is also the case that M 1= uk

is a stage in the definition of j(PK) at which a (direct) limit is taken", so

reflection again allows us to assume that for any y £ A, Py = (direct) limit

((PQK: a < y)). By the definition of PK , PyK+1 - P* * Q* is so that 11-/* j " y

contains a non-reflecting stationary subset of ordinals of cofinality öK ", so the

proof of Lemma 1 tells us that this fact is also true in Vp", i.e., that VpK \= "y

is not (pK(y) supercompact"; in fact, Vp" 1= "y isn't weakly compact". This
contradiction proves Lemma 2.   D

Lemma 3.   Vp" P "k is ç>k(k) supercompact".
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Proof of Lemma 3. Since <pK is I,2, we can find a supercompact embedding
j: V -* M with critical point k so that <pk(k)m = <pk(k)v . Further, the

embedding j can be chosen so that M is at least 2I-^K^<K closed. Property

(a) of q>K of the hypotheses of the Theorem shows that <pK(tc) has the same

meaning in either Vp* or MpK as it did in V or M. We can therefore write
(Pk(k) unambiguously.

If VpK 1= "k is tpK(K) supercompact", then we are done, so assume this is

not the case, i.e., Vp*\="k is not <pk(k) supercompact". Work now in M. PK

is an initial segment of j(PK), and by the closure properties of M, MpK \= "k

is not (Pk(k) supercompact". Writing j(PK) as PK *Q, property (b) of tpK of
the hypotheses of the Theorem allows us to conclude that for the least cardinal

oK in the field of Q,MP" \= >k(k:) < oK ".

If G is F-generic over PK and H is M[G]-generie over Q, define an
embedding j*: V[G] -» M[G * H] by J*(íg(*)) = ÍG*HÜ(t)) for any term x
denoting a set in V[G]. Since <pK(ic) < oK , the closure properties of M and
the Kunen-Paris arguments of [KP] show that j* is a well-defined elementary
embedding with criticial point k so that the ultrafilter ^ defined by x G Í¿

iff (j(a): a < ç>k(k)) £ j*(x) is a supercompact ultrafilter over Pk(<Pk(k))V[G]

present in V[G * H]. In M[G], since <pk(k) < aK and oK is inaccessible,

2[M*)]<" < aK ) meaning that Q will be so that forcing with Q over M[G]

adds no new subsets of 2[ç,*(K)'<'c. The closure properties of M ensure that this

property is true as well when forcing with Q over V[G], i.e., that ^ G V[G].

Thus, assuming II-/* "k is not ç>k(k) supercompact" leads to the contradiction

I!-/.« "k is ç>,c(k:) supercompact" as well, meaning it must be the case that II-/« "tc
is ç>k(k) supercompact". This proves Lemma 3.   D

Lemma 4. Fp 1= "If k £ K, then k is strongly compact, at least ç>k(k) super-
compact, but not fully supercompact".

Proof of Lemma 4. For each k g K, write P = QK x QK , where QK =

U{teK : x<k] PX and QK = H{teK : x>*} pX i further, write QK as Q<K x PK

for Q<K = ri{AeA: : x<k} PX ■ It is a fundamental result of both [A2] and [KM]

that we can assume that a preliminary forcing has been done to ensure that

K F "If k is a supercompact cardinal, then k is Laver [L] indestructible".

Thus, since each component partial ordering Px of QK has been defined so

as to be at least /c-directed closed, QK is zc-directed closed, so VQ* N "k is

a supercompact cardinal". As the subsets of k are the same in either V or

VQK, the definition of PK is the same in either V or V®* , so by Lemmas 1-3,
since restriction (c) ensures VQ« \= "There are only finitely many S > k which

are (pK(ô) supercompact", vQ"xpK 1= "k is strongly compact, at least <pK(ic)

supercompact, but not fully supercompact". Since AT is a finite set, the fact

that forcing with PK over either V or V& adds no new bounded subsets to
k ensures that Fß'x/" \= "\Q<K\ < k ", so the Lévy-Solovay results [LS] ensure

that Fe*x/>*xö<« = Vr \= "k is strongly compact, at least tpK(K) supercompact,

but not fully supercompact". This proves Lemma 4.   D

Lemma 5.   Vp \= "K consists of the first n strongly compact cardinals".

Proof of Lemma 5. Assume that Vp t= "y is the z'th strongly compact cardinal

for 1 < i < n and isn't an element of K ". As Lemma 4 tells us each k g K
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remains strongly compact in Vp, it must be the case that y <k„. Thus, if k is

the least element of K > y, then using the same notation as before, y G [ôK, k) .
Writing P = Of x PK x Q<K as in the preceding lemma, the closure properties

of QK already noted and Lemma 1 show that VQKxpK \= "y is not strongly

compact", so the arguments of [LS] show that F0**^*0« = Vp \= "y is not

strongly compact". This proves Lemma 5.   D

Lemmas 1-5 complete the proof of our Theorem.   D

We note that each <pK may imply additional assumptions on k , e.g., if tpK
is the function ô >-* The least inaccessible cardinal > 6 , then there is assumed

to be (if it can't already be shown to exist) an inaccessible cardinal > k . Also,

in general, for the same reasons as in [Al], tpK can't be assumed to be Z3.
Further, as in [A 1], under certain circumstances we can get a precise bound on

the non-supercompactness of some k g K . If, for instance, q>K is the function

S \-* ô+, then the argument of [L] or [KM] allows us to assume without loss

of generality that 2K = k+ and 2K+ = k++ . After applying the arguments of

Lemmas 2-4, k will be k+ supercompact but not k++ supercompact. (Even
if we have no knowledge of the size of power sets of cardinals, for many tpK

the preceding arguments show that k isn't 2^K^<" supercompact.)
We remark that in the initial version of this paper, our Theorem was stated

for a class of strongly compact cardinals and not just for a finite set. Un-

fortunately, as was pointed out by the referee, there is a gap in the original
Kimchi-Magidor proof so that it is now only known how, from the existence of

n £ œ supercompact cardinals, to force and obtain the consistency of the co-

incidence of the first n strongly compact cardinals with the first n measurable

cardinals. To outline the original Kimchi-Magidor argument and highlight the

problem, let K = {kx , ... , k„} be as in the statement of our Theorem, and for
each k £ K, let AK ç k - {S £ K: ô < k} be a set of measurable cardinals. Let

PK be defined as before, only this time adding non-reflecting stationary sets to
the elements of AK , and again let P = E[i<i<« PKi •

To show Vp N "k is strongly compact for k g K ", as in Lemma 4, it will
suffice to show Vp" N "/c is strongly compact". To do this, let j: V —> M

be an elementary embedding witnessing k is X strongly compact. If G is

F-generic over PK, then as usual, we'd like to find H ç j(PK), H G V[G]
so that G * H is Aí-generic over j(PK) and so that j extends to a strongly
compact embedding / : V[G] —> M[G * H]. If A is sufficiently large, then
if j is a A supercompact embedding and Ki+X, ... , k„ g j(AK) (as would

certainly be the case in the original Kimchi-Magidor situation, i.e., when all

ground model measurable cardinals are being destroyed), by elementariness, we

would necessarily have M[G*H]\= "kí+x ,... ,k„ are no longer measurable as
they contain non-reflecting stationary sets". By the closure properties of M,

this would also have to be true in V[G * H'] for H' some "initial segment"

of H, and we'd actually have to extend V by G* H' and have f be so that
/ : V[G*H'] -» M[G*H]. This would mean that Ki+X, ... , k„ could no longer
be strongly compact in V[G * H'].

To avoid this difficulty, Kimchi and Magidor construct a strongly compact

embedding j: V -> M so that M 1= "/c,+i, ... , tc„ are non-measurable". They
do this inductively as follows. Let A be sufficiently large, and let j, : V -* Mi+X

be an embedding witnessing the A supercompactness of k so that Ki+X, ... , k„
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G Ji(AK). If %+x g Af/+i is a normal measure over k;+1 so that A//+2 —

transitive collapse (M^/%+x) 1= "k,+i is non-measurable" (^/+i exists since

7/(4*) G Af,+i is a set of measurable cardinals), then let ji+x : Mi+X -* Mi+2 be

the associated elementary embedding. Note that as j¡+x(k¡) = k¡ for i + 2 <

I < n, Mi+2 1= "k/+i is non-measurable and Jí+x(k¡) = k¡ is measurable for

i + 2 < I < n". We can thus inductively for i + 2 < I < n find a normal measure

% £ Mi so that AÍ/+I =transitive collapse (M*1 /%) 1= "rc,+i, ... , k¡ are non-

measurable and Km, ... ,K„ are measurable". This is since the associated

elementary embedding j¡: M¡ -* M¡+x is so that j¡(Km) = Km for / + 1 <

m < I as k¡ is the critical point of j), inductively, M¡ \= "k,+i , ... ,k¡_x

are non-measurable", and % has been chosen so that M¡+x 1= "/c/ is non-

measurable"; also, as above, j¡(Km) = Km for / + 1 < m < n, and we can

inductively assume M¡ \= "/C/+i, ... ,k„ are measurable". If we now define

j = )n ° Jn-x o • • • o ji+x ° ji and M = Mn+X, then it can be verified that

j : V —► M is an elementary embedding witnessing the A strong compactness

of K. By construction, M 1= "k;+i , ... , k„ are non-measurable", so there is

therefore no problem (as the forcing creates no new measurable cardinals) if G

is F-generic over PK in finding H ç j(PK), H £ V[G] so that j extends to
/ : V[G] -» M [G * H], which is a strongly compact embedding.

Unfortunately, however, the above iteration breaks down at stage w, as we

have to consider new œ sequences, and our control over j(PK) may be lost. To

this point in time, no way is yet known around this difficulty, and the Kimchi-

Magidor method is applicable only in situations dealing with a finite number

of cardinals. In particular, in our situation, we of course do not destroy all

measurable cardinals, only those cardinals ô forced to be (pK(à) supercompact,

which as we have previously observed, are those cardinals ô actually (pK(ô)

supercompact in F. The argument we use to show k remains strongly compact
is then essentially the same as the one just given. The only real difference is

that in order to preserve the strong comapctness and <Pk(k¡) supercompactness

of k¡ for I = i + 1, ... , n, we choose for i + 1 < / < n the measures %
to be supercompact measures over the appropriate version of PKl(g>K(K¡)) with

corresponding elementary embeddings j¡: M¡ -» M¡+x so that M¡+x \= "Km

for i + 1 < m < I isn't (pK(Km) supercompact and Km for / + 1 < m < n is

<P>c(Km) supercompact" and then define j as before. Unfortunately, this doesn't

eliminate the difficulty at stage co, and we can still only handle a finite number

of cardinals.
The above paragraph illustrates why restriction (c) of the statement of the

Theorem is necessary, i.e., why we must have ç>Ki(ô) > tpKj(S) if *' < j and ô

is both <pKj(S) and <pKj(d) supercompact in F. If, e.g., tpKi were the function

ô i-> ô+, <pK¡+¡ were the function ô i-> S++, and F 1= "2*'+i = kf^ ", then

in VQk¡ (we use the notation of Lemma 4) we would have unboundedly many

cardinals 8 in the interval (k¡,k¡+x) which were ô+ supercompact. As was

just noted, when forcing with PKi, we can only currently preserve the S+ su-

percompactness of finitely many such ô if k¡ is to remain strongly compact. If

we destroy the ö+ supercompactness of all but finitely many of these ô, then

K/+i will no longer be k¡^ supercompact, although the strong compactness of

k¡ will be able to be preserved. Of course, if <pKi were the function ô h-> ô++ ,

tpK¡+¡ were the function ô >-» S+ , and F 1= "2K'>< = »ctt ", then in VQk> , there
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would be no cardinals ô which were ô+ or ô++ supercompact in the interval

(k, , k,+i) , thereby eliminating this difficulty.
In conclusion, as the referee has pointed out, there is an interesting com-

parison the reader can make between the result of this paper and the result of

[KM]. Although the arguments we give in general follow the proof of the result

that from n £ œ supercompact cardinals, it is possible to force and obtain the

coincidence of the first n strongly compact cardinals with the first n measur-
able cardinals, the forcing notion itself is similar to the one used in the proof

of the result that from a class of supercompact cardinals, it is possible to force

and obtain the coincidence of the classes of strongly compact and supercompact

cardinals (except at limit points).
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