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(Communicated by Roe Goodman)

Abstract. We consider Lie algebras of the form g ® R where g is a simple

complex Lie algebra and R = C[s, s~l, (s - 1)_1, (s - a)-1] for a £ C -

{0, 1} . After showing that R is isomorphic to a quadratic extension of the

ring C[t, t~[] of Laurent polynomials, we prove that g ® R is a quasi-graded

Lie algebra with a triangular decomposition. We determine the universal central

extension of 0 ® R and show that the cocycles defining it are closely related to

ultraspherical (Gegenbauer) polynomials.

Introduction

Let g be a simple finite-dimensional complex Lie algebra. By the loop algebra
of g we mean the infinite-dimensional complex Lie algebra 3* = q <8> C[t, t~x]

with commutation relations [x ® /, y <g> g] — [xy] ® fg, where x, y e g

and f, g £ C[t, t~x]. The universal central extension 3? of the loop algebra

has a 1-dimensional kernel Ceo; we call 3* an untwisted affine Kac-Moody

Lie algebra. Since the canonical central element co of 3? acts by nonzero

scalar multiplication on many interesting representations (e.g. the integrable

irreducible highest weight modules), the central extension is essential for the

representation theory. The structure and representation theory of affine Kac-
Moody Lie algebras has been studied in great detail by mathematicians and

physicists during the last 25 years; two comprehensive expositions of this subject
are [Kac] and [MP].

The Laurent polynomial ring C[í, i_1] is the ring of rational functions on the
Riemann sphere C u {00} with poles allowed only in {00, 0} . This geometric
point of view suggests a natural generalization of the loop algebra construction.

Instead of the sphere with two punctures, one can consider any complex alge-

braic curve £ of genus g with a fixed subset P of « distinct points. We let

R denote the ring of meromorphic functions on Z with poles allowed only in
P, and we form the Lie algebra 3/ = g ® R. Using a result from [Kas], we can

then determine the universal central extension 3? of this Lie algebra (with a
view towards its representation theory).
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In the case of genus 0, the Lie algebras obtained by this procedure (called «-

point affine Lie algebras) were introduced in [B]. The case of genus 1, with two

specified points, has been considered in [Shl,Sh2]. These papers were inspired

by the fundamental work [KN] of Krichever and Novikov, which studied the

Lie algebras of vector fields on Riemann surfaces of arbitrary genus with poles

allowed only at two specified points, and by the work [Sc] which studied the

«-point generalization of these Lie algebras.
The «-point affine Lie algebras have recently appeared in the work of Kazh-

dan and Lusztig [KLul,2], inspired by conformai field theory, on tensor struc-

tures on categories of modules over affine Kac-Moody Lie algebras.

For helpful comments on an earlier version of this paper I thank the members

of the Lie Theory Seminar at the University of Saskatchewan, Roe Goodman,

and the referee.

1. The 4-point ring

Let a\, ... , Ü4 be any four distinct points on the Riemann sphere C U {oo}

with coordinate s, and let R be the ring of rational functions with poles al-
lowed only in {ax, ... , 04}. Thus R is a subring of the field C(s) of ra-
tional functions; since the automorphism group PGL2(C) of C(s) is (simply)

3-transitive, we may assume that <Zi = co, a2 = 0 and a3 = 1. Writing a4 = a,
we define the 4-point ring to be R = Ra = C[s, s~l, (s - l)~x, (s - a)~x] with

a £ C - {0, 1}. We also consider the ring S = Sb = C[t, t~x, u] where

u2 = t2 - 2bt + 1 with b £ C - {±1} .

Proposition 1.1. We have Ra-Sb where b = (a + l)/(a - 1) e C - {±1}.
Conversely we have Sb ~Ra where a = (b+ l)/(b - 1) £ C - {0, 1} .

Proof. Since C[s] is a subring of Ra , inverting 5- 1 and 5-a is equivalent to
inverting (s—l)(s-a). Since s~l £ Ra , inverting (s-l)(s-a) is equivalent to

inverting s~x(s- l)(s-a). Hence Ra = C[s, s~x, ij"1], where t\ = s - (a +1 ) +

as~x ; we also set «1=5- as~] . Since a ^ 0, we have C[s, s~x] = C[ii, U\],

and so Ra = C[ii, if1, ux]. We easily check that u\ = t2 + 2(a+l)ti + (a-l)2,

and so we set t = -t\/(a - 1), u = -u\/(a - 1) to obtain u2 = t2 - 2bt + 1

where b = (a + I)/(a - 1). This shows that the correspondence

t =-7(s - (a+ 1) + as~l),    u--7(s-as~l)
a- I a-I

is an isomorphism between Sb and Ra .

For the converse, we can solve for a in terms of b, and s, s~x in terms of

t,u. The same result may be obtained as follows. Completing the square in

u2 = t2 - 2bt + 1 and rearranging gives (u2 - (t - b)2)/(l - b2) = 1. We now

set

s=j—^(u + t-b),    s~{ = j—^(u-t + b);

we will show that this correspondence is an isomorphism between Ra and
Sb. Since C[i, u] = C[s, s~l], we have Sb = C[t, r1, u] = C[s, s~x , rx] =
C[s, s~x, (st)~x]. Solving for t in terms of 5 and s~x we get

st = {(l-b)(s-l)(s-(b+l)/(b-l)).

Therefore Sb = Ra with a = (b + l)/(b - 1).   □
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This result shows that the 4-point ring is a quadratic extension of the ring of
Laurent polynomials. The geometric reason for this isomorphism is as follows.

Starting with the sphere with two punctures we can blow up each puncture

to two points, thereby obtaining the sphere with four punctures. This gives
a surjective map from the sphere with four punctures to the sphere with two

punctures. Now looking instead at the rings of functions, we conclude that the

ring of functions on the sphere with four punctures is a module of rank 2 over

the subring C[t, t~x] of functions on the sphere with two punctures.
Since PGL2(C) is 3-transitive, an automorphism of Ra is uniquely deter-

mined by the permutation it induces on the set {oo, 0, 1, a} . Thus the auto-

morphism group of Ra is always isomorphic to a subgroup of the symmetric

group on four letters.

Proposition 1.2. For any a ££-{0, 1}, the ring Ra has a 4-group of automor-

phisms {1, p, q, pq} given by

s-a a(s-l) a
l(s)=s,    P(s) = —-j-,     q(s)=    s_a   ,    pq(s) = -.

As permutations of the set {oo, 0, 1, a} we have p = (ool)(0a), q = (ooa)(01),

pq = (oo0)(la). 7« terms of t and u these automorphisms take the forms

p(t) = r1, p(u) = r1«,   q(t) = r1, q(u) = -rlu,

pq(t) = t, pq(u) = -u.

Proof. The first two assertions are easy calculations. For the third, we use the

equation p(s~x) = (s - l)/(s - a) together with the formulas for t, u in terms

of s, s~x in the previous proposition.   D

It seems appropriate to mention at this point (although we will not need the

result) that the above four automorphisms give the full automorphism group of

Ra except in the cases ae{-l, |,2} - here we obtain a group isomorphic to

the dihedral group of order 8 - and a £ {j ± j\/-3} - here we obtain a group
isomorphic to the alternating group of order 12. This result can be obtained

by determining, for each permutation n of {oo,0, 1, a}, the values of a for

which an element of PGL2(C) exists having the same action as n on the four

points.

2. The quasi-grading and triangular decomposition of g <g> R

From now on we identify R = Ra with Sb, so R has a basis consisting

of t', t'u for / £ Z. There is a Z/2-grading on R = R° @ Rx defined by
R° = C[t, r1], Rx = C[f, t~x]u ; here Rl is the (-l)'-eigenspace of pq.

We write 3* for q®R , and call this the (untwisted) 4-point loop algebra. The

Z/2-grading on R induces the structure of a Z/2-graded Lie algebra on 3* by

setting 3?° = q®R° , 3?x = g ® i?1 . The advantage of realizing the 4-point ring

R as a Z/2-graded extension of C[i, t~x] is that this allows us to display 3?

as a quasi-graded Lie algebra with a triangular decomposition, which is linearly
isomorphic to the direct sum of the ordinary loop algebra g ® C[i, t~x] and a
copy of its adjoint representation g®C[f, t~l]u.

We recall the definition of a quasi-graded algebra from [KN]. Let 7 be a

subgroup of the additive group Q, and let si be an algebra. For each / e /
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let s/i be a subspace of s/ , and assume that s/ = 0¡6/^/. Let / e 7, / > 0.
If we have

x £s/i,y £s/j    =>    xy £     @    sfk,

\k-U+j)\<l

then we call s/ an l-quasi-graded algebra. If / = 0, then we recover the
usual definition of a graded algebra. If x £ sf¡, x ^ 0, then (by a slight

abuse of terminology) we say that x is homogeneous of degree /' and we write

deg x = i.
By a weak triangular decomposition of the Lie algebra 3? we mean a triple

(%? ,3?+, a) where

(1) %? and 3?+ are subalgebras of 3?,
(2) MT is Abelian and [X&+] ç 3?+ ,
(3) a is an anti-automorphism of 3? of order 2 which fixes %? pointwise,

and
(4) 3? is the direct sum of the subspaces %?, 3?+ and a (3?+).

We write S?_ = o(3?+) so we have J? = 3?_©¿T©5?+ . From (2) and (3) it follows

that [%3?J] ç 3?- . For the definition of a (strict) triangular decomposition see

[MP].

Theorem 2.1. The 4-point loop algebra 3? is a l-quasi-graded Lie algebra with

a weak triangular decomposition.

Proof. We make R into a l-quasi-graded (commutative associative) algebra by

taking 7 = jZ and setting deg t' = i, deg t'u = i + \. We then make 3* into

a l-quasi-graded Lie algebra with the same 7 by setting deg (x ® t') = i and

deg (x ® t'u) = i' + \ for any x e g, x ^ 0.
Let g = g_ © h © g+ be the usual triangular decomposition: h is a Cartan

subalgebra, and g+ (resp. g_ ) is the sum of the positive (resp. negative) root

spaces with respect to t). We decompose R as the direct sum of the three
subspaces C, R+ = C(l + u) © C[t, u]t and R- = p(R+) = C(l + rxu) ©
C[r_1, u]rx . Note that (1 + u)2 = 2(1 + u) - 2bt + t2 , so R+ and R- are

in fact subrings. Combining these decompositions we set %" = h <g> C, 3?+ =
(g+®C)©(g®7?+) and 3?- = (g_®C)©(g<g>.R_). Letting e denote the negative of

the Chevalley involution of g, we define an anti-automorphism o of 3? — g ® R

by o = e®p . Then (%? ,S?+,o) is a weak triangular decomposition of 3?.   D

This triangular decomposition of 3? is inhomogeneous with respect to the
Z/2-grading of 3* since it involves the elements 1 + u and l+t~xu . Note also

that ^+ (resp. 3?- ) is not the sum of the homogeneous subspaces of 3? with

positive (resp. negative) degree.

We can also write 3* as the sum of the two subalgebras g <8> C[t, u] and g ®

C[i_1, t~xu] which intersect in the subalgebra g®C. The proof of Proposition
1.1 shows that C[t, u] ~ C[s, s~x] ; applying p we see that C[i_1, t~xu] ~

C[si, if1] for si = (s - a)l(s - 1).

3. The universal central extension of g <g> R

By Kassel's theorem [Kas], we know that for any commutative associative

C-algebra R, the universal central extension of g ® R is linearly isomorphic

to (g ® R) © QxR/dR, where QxR/dR is the space of Kahler differentials of R
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modulo exact differentials. Remarkably the kernel QR/dR of the extension

does not depend on the Lie algebra g, so determining the central extension is

essentially a problem in commutative algebra.

We define 0.^/dR as the cyclic homology group HCi(R), following [KL].
Let F = Tí ® R be the left 7<-module with action f(g®h) = fg®h for
f, g ,h £ R. Let K be the submodule generated by the elements 1 ® fg -

f ® g - g ® /• Let Qjj = F/K be the quotient module; this is the module of
differentials of R. We denote the element f®g+K of ÇlR by fdg. We define
a map d : R —y ÇlR by d(f) — df = I ® f + K. The elements of the subspace
dR = d(R) are exact differentials. We denote the coset of fdg modulo dR

by fdg. The commutation relations for (q® R)® ClxR/dR are

[x®f,y®g] = [xy] ®fg + (x, y)Jdg,    [x ® f, co] = 0,

where x, y e g, f, g £ R, and co £ ClxR/dR ; here (x, y) denotes the Killing

form on g.

In our case we have R = Sb and 3? = g ® R. We set # = 3? © QxR/dR.

To make the commutation relations for 3? explicit we need to compute a basis

for £lxR/dR and the skew-symmetric mapping Rx R -> QR/dR given by the

composition

RxR-*R®R^(R® R)/K = Qjj -> Q.R/dR.

All of these objects have a Z/2-grading induced by that on R. As usual we will

call elements of degree 0 even and elements of degree 1 odd.

The elements t'®tj, t'®tJu, t'u®V and t'u® t'u form a basis of R®R.

Lemma 3.1.  ÇlR is spanned by the differentials t'dt, t'udt and t'du for ¡eZ.

Proof. We have to show that any basis element of R ® R is congruent modulo

K to an element in the span of t' ® t, t' ®u, and t'u®t.

Clearly f®g = 0 (mod K ) is equivalent to fdg = 0 in QR/dR. One easily
shows by induction that d(tj) = jV~xdt and that d(tju) = jtj~xudt + t'du.

Since K isa submodule of R®R,we can multiply each of the above equations

by t' or t'u. This shows that any basis element of R®R is equal to an element

in the span of t'dt, t'du, t'udt and t'udu.
To complete the proof, we use the fact that udu = \d(u2). Since u2 =

t2 - 2bt + 1, we find that udu = tdt - bdt. We now multiply this equation by
t' to get the result.   D

Lemma 3.2. ÇllR is spanned by the differentials t'dt, t'udt for i £ Z, together
with du and tdu.

Proof. We know that \ud(u2) = u2du. Since u2 = t2 - 2bt + 1, we find that

tudt - budt - t2du + Ibtdu -du-0.

We multiply this equation by t' to get

(3.2.1) ti+ludt - bt'udt - ti+2du + 2bti+idu - t'du = 0.

For i > 0 this shows that ti+2du is equal to a linear combination of t'+xdu,

t'du and elements of the form Vudt. For / < -1 it shows that t'du is equal
to a linear combination of ti+xdu, t'+2du and elements of the form t'udt.

From this we easily show by induction that any element of the form t'du is
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equal to a linear combination of du, tdu and elements of the form t'udt.

Now Lemma 3.1 completes the proof.   □

Theorem 3.3. A basis of QR/dR is {t~xdt, t~2udt, t~xudt} .

Proof. The  Z/2-grading of Qjj   and  dR  gives  ÇlxR/dR =  (ClxR)°/d(R°) ©
(CixR)x/d(Rx).

We first consider the even subspace. We have d(t') = it' ldt for all /eZ.

From this we immediately see that t'~xdt = 0 (mod dR ) for i' ̂  0. Therefore

(QxR)0/d(R0) is spanned by T^It.

Next we consider the odd subspace. We have d(t'u) = it'~xudt + t'du, and

so t'du = -it'~xudt (mod dR). The odd subspace of ClxR is spanned by t'udt

together with du and tdu. Clearly du = 0 (mod dR ) and tdu = -udt (mod
dR). Thus we only need to consider the elements t'udt. We will show that

modulo dR all these elements are congruent to a linear combination of r2udt
and t~xudt.

First suppose that i < -3. Then t'udt = -j^t'+xdu (mod dR). By

formula (3.2.1) we know that t'+xdu is a linear combination of t'+2du, tMdu,

t'+xudt and ti+2udt. Modulo dR we have t'+2du = -(i + 2)t'+xudt and
t'+3du = -(i + 3)t'+2udt. Hence t'udt is congruent to a linear combination

t'+xudt and t'+2udt. From this we see by induction that t'udt for / < -3 is

congruent modulo dR to a linear combination of t~2udt and t~ludt.

Next suppose that i > 0. As before t'udt = -^ti+xdu (mod dR ), and us-

ing (3.2.1) again we know that t'+xdu is a linear combination of t'~xdu, t'du,

t'~xudt and t'udt. Since the coefficient of t'udt in this linear combination is

1, we can solve for t'udt, showing that it is congruent to a linear combination

of t'~xdu, t'du and t'~xudt. Since t'~ldu = -(/- l)t'~2udt (mod dR)

and t'du = -it'~xudt (mod dR ) we conclude that t'udt is congruent to a lin-
ear combination of t'~xudt and t'~2udt. As before we see by induction that

t'udt for /' > 0 is congruent modulo dR to a linear combination of t~2udt
and t~xudt.

We know by a result of [B] that dim ClR/dR = 3 , and so these three spanning

elements are linearly independent. Other references for this dimension calcu-

lation, which includes the computation of higher homology groups, are [CHG,

LL].   □

We define coo = t~xdt, co- = t~2udt, and co+ = t~xudt. We then easily

check that

P(coo) = -wq,     p(co-) = -co+,      p(co+) = -co-,

q(co0) = -co0,      q(co-) = co+, q(co+) = <y_,

pq(coo) = (o0,      pq(co-) =-co-,    pq(co+) = -co+.

To make the commutation relations for 3* precise we need to compute fdg
for any basis elements f, g £ R. We deal separately with the two cases

fg even and fg odd. Note that fdg is always the linear combination of

{coo, CO+, co-} which gives the congruence class of fdg modulo dR.

Proposition 3.4 (The even case). For i, j € Z we have

'd(t') = {
jcoo   for i' + 7 = 0,

0       fori + j¿0.
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For i, j £l+\ we have

( (j+h)co0   fori + j = -l,

tl-tud(tJ-iu) = {
-2jbcoo     for i + j = 0,

(j- j)oJo   fori + j= 1,

10 for \i + j\> 2.
Proof. The first equation follows from the relation t'd(t') = jt'+'~xdt. The

relation

t'-iud^'-lu) = (j + \)ti+'dt - 2jbti+'~ldt + (j - \)ti+'-2dt

implies the second congruence.   D

The odd case is more complicated. By skew-symmetry we only need to con-

sider the elements t'~hu ®t' for ¡€Z + |, j £ Z. We recall the definition of

the ultraspherical (Gegenbauer) polynomials Pk'\x). These may be defined in
two ways [Sz]: either by the generating function

¿ PiX)(x)w" = (1 - 2xw + w2)

n=0

-A

or by the initial values P¿ '(x)
formula

1  and P{x\x) = 2kx and the recursion

npW(x) = 2(n+X- l)xP(nx\(x) -(n + 2k- 2)P^2(x).

We only need the case k = -\ , so we write Pk(b) = P^_1/2)(è). We also define

n (h\ -   Pk+2{b)
Qk(b) -- b2_l ■

If b = ±1, then (1 - 2bt + t2)x>2 = ±(1 ± t), so b2 - 1 divides Pk+2(b)
for k > 0; hence Qk(b) is a polynomial. The first eight polynomials in this
sequence are

I
2 ' \b, Q2 = i(5b2-l),        Qi = i(7b3-3b),

04 = M2lb4 - 14b2 + 1),        05 = Ts(33è5 - 30¿>3 + 56),

ge = nit429*6 - 495b* + 135¿2 - 5).

07 = Tjg(715è7 - 1001e5 + 385è3 - 35b).

t'-iud(t') = <

Proposition 3.5 (The odd case). For ¡eZ+|, j £ Z, we have

' JQi+j-$(b)(bco+ + CO-)     fori + j>\,

jco± fori + j = ±\,

( jQ-l-j-¡(b)(co++ bco-)   for i + j< -§.

Proof. We know that t'-l^ud(t') = jtiJr'~ludt. The cases i + j = ±\ then

follow from the definition of co± . The case i + j <-\ follows from the case

i+l > j by applying the automorphism p . Thus it suffices to consider the case

i + j > \ . For this we need only to determine the congruence class of tkudt
(mod dR ) for k £ Z, k > 0.
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We start by making explicit the recursion in the proof of Theorem 3.3. Ex-
panding d(tk+xu) we find that

(3.5.1) (k+l)tkudt = -tk+ldu   (moddR).

Rewriting formula (3.2.1) we get

tk+1du = tkudt - btk~xudt + 2btkdu - tk~xdu.

Combining these two results gives

(k + 2)tkudt = btk~ludt - 2btkdu + tk~ldu   (moddR).

Using formula (3.5.1) again we find

(k + 2)tkudt = btk~ludt + 2kbtk~ludt - (k - l)tk~2udt   (moddR).

Therefore

(k + 2)tkudt = (2k + l)btk~xudt - (k - l)tk~2udt.

For 0 < k < 1 this gives

udt = Ubco+ + CO-),        tudt = jb(bco+ +co-).

From this it follows that for all Ac > 0 we have tkudt = fk(b)(bco+ + co-),
where fk(b) is a polynomial in b . We have the recursion formula

fo = \,        fx = \b,        (k + 2)fk = (2k+l)bfk-i-(k-l)fk-2.

Setting gk(b) = -(b2 - l)fk(b) and writing « = k + 2 we have the equivalent
formula

g2 = -\(b2-l),       g, = -\b(b2-l),       ngn = 2(n~l)bgn-i-(n-3)g„-2.

Therefore, by the formula for Pw(x) given above, we see that gn(b) =

Ptm(b) and so fk(b) = Qk(b).   D

We can now give explicit commutation relations for 3/ .

Theorem 3.6. The 4-point affine Lie algebra 3? has a Z/2-grading in which

S?0 = Q®C[t, rx]®Cco0,        &x =9®C[t, rx]u®Cco+®Cco-.

A spanning subset of 3? consists of the elements x ® t' and x ® t'~^u where

xeg, i £ Z, j £ 1+ \, together with the central elements co0, co+, and

co- . The even subalgebra 3?° is an untwisted affine Kac-Moody Lie algebra

with commutation relations

[x®t',y® t'] = [xy] ® ti+J + ôi+j<0(x, y)jco0.

The commutator of two elements of S?x lies in 3?° :

[x® t'~^u,-y® t'~^u]

-2jbco0 for i + j = 0,

-- [xy] ® (ti+J     - 2bti+J (x,y){ \(j - i)co0 for \i + j\ = I,

0 for\i + j\>2.
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= [xy]®t'+'~¿u + (x,y)<

The odd subspace 3?x is a ^-module with relations

[x®t'-?u,y®tj]

' jQi+j_i(b)(bco+ + co-)     for i + j>\,

jco± fori + j = ±\,

t jQ-i-j-l(b)(co+ + bco-)   for i + j< -\.

Proof. Since the Z/2-grading on R induces a Z/2-grading on both 3? and

ÇlR/dR, the 4-point affine Lie algebra 3? also has a Z/2-grading. The other
assertions are clear.   D

Note that 3? is not a l-quasi-graded Lie algebra; to get a l-quasi-graded Lie

algebra we must factor out the central ideal spanned by the odd central elements

co- and ca+ . The reason for this is that the construction of QR/dR respects

the grading on the subring C[t, t~x] of R but not the 1-quasi-grading of R.

Thus it makes sense to set deg coo = 0, but there is no reasonable choice of

values for deg co± .
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