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Abstract. The Hardy-Littlewood theorem on fractional integration for Fourier

series says that if I„g ~ Z)«^o \n\~a Ê(n)em . then la is bounded from LP to

Lq , where 1 < p < q < oo , \ = \~a ■ We shall establish an analogue of this

theorem for the Laguerre function system {(p. "^+|))t¿g(x)e~5,x%}gl0 .

1

The well-known theorem of Hardy and Littlewood on fractional integration

for Fourier series is stated as follows (cf. [Z, Chapter XII]): For 0 < a < 1
and a function g(t) on (0, 2n), let I„g ~ Y,n¿o \n\~"g(n)elat, where g(n)

is the «th Fourier coefficient defined by g(n) = ja J0n g(t)e~intdt. Then, for

g£Lp(0,2n), \\Iag\\q < C\\g\\p , \ = \--o, Kp,q<oo, where LP(0,2n)
is the Lebesgue space of all measurable functions g(t) on (0, 2n) such that

u\\P = {2iiC\g(t)\t'dt}><™-
The aim of this paper is to establish an analogue of this theorem for La-

guerre series by a method transferring boundedness of multiplier operators from
Fourier series to Laguerre series.

An earlier result of this kind was obtained for ultraspherical series by Muck-
enhoupt and Stein [MS, §15] by showing the theorem [MS, Theorem 13] on
fractional integration for ultraspherical convolution structure which was first

proved by O'Neil [O] in the case of ordinary convolution on a group. They

also observed that the same result holds for Hankel transforms. Bavinck [B]

proved the Hardy-Littlewood theorem on fractional integration for Jacobi se-

ries by using convolution structure. From his result, Gasper and Trebels [GT]
derived (p, ^-multiplier criterions for Jacobi series. For the harmonic analysis

for Hermite and Laguerre expansions, readers may refer to Thangavelu [T].
Let L%(x), a > -I, be the Laguerre polynomial of degree « and of order
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a defined by

exx~a f d \"

and let

^M - Vn^n^^*'
Then the Laguerre function system {=2^a}£L0 is complete orthonormal on the

interval (0, oo) with respect to the ordinary Lebesgue measure dx. This or-

thonormal system leads us to the formal expansion of a function f(x) on
(0,oo):

OO

/-E^c/ww,
n=0

where a%(f) is the «th Laguerre coefficient of order a of f(x) defined by

/•OO

<(/)= /    f(x)5?na(x)dx.
Jo

We remark that \aan(f)\ < \\f\\p\\&°\\p., } + jr = 1, and 11.2*%. < oo if a > 0

and 1 <p < oo or if -1 < a < 0 and (1 + f)_1 <p < oo.
For 0 < a < 1, let 1% be the operator defined by

n=l

for a function /(x) on (0, oo). We denote by LP(0, oo) the Lebesgue space of

all measurable functions f(x) on (0, oo) suchthat ||/||p = {/0°° \f(x)\p dx}p <

oo. We remark that the 1/(0, oo)-norm and the 1/(0, 27r)-norm will be de-

noted by the same notation. Our theorem is as follows:

Theorem. Let 0 < a < 1 and a > -1. If a > 0, then

(1.1) l|/CTa/ll9<C||/||p,        /6L'(0,oo),

for i = 1 — <7 and I < p, q < oo, where C is a constant independent of f. If

-1 <a<0, then (1.1) holds for ± = }-<* a«d (1 + f )_1 < /?, ^ < —| -

In our proof, we shall use no convolution structure associated with the sys-

tem {-S^a}£L0 . Our idea is to prove a transferring theorem (Proposition below)
which transfers boundedness of multiplier operators from Fourier series to La-

guerre series. We shall derive our theorem from the Hardy-Littlewood theorem
for Fourier series and a multiplier criterion for Laguerre series by using the
transferring theorem and the Stein complex interpolation theorem.

Let A = {An}^0 be a bounded sequence. We define a multiplier operator
F£ for Laguerre series of order a by

oo

^aV-E^c/ww-
n=0



THE HARDY-LITTLEWOOD THEOREM ON FRACTIONAL INTEGRATION 2167

Let 1 <p,q<oo. We call A a (p, ^-multiplier for Laguerre series of order a

if ll^/H, < C\\f\\p for / e 1/(0, oo). Also let T = {yn}?=-oo be a bounded
sequence. We define a multiplier operator Fr for Fourier series

oo

—oo

We call F a (p, q)-multiplier for Fourier series if ||/r,^||i < C||g||p for g £
LP(0, 2n). Then we shall obtain the following proposition.

Proposition. Let Y — {yn}™oo oea bounded sequence, and define F+ — {y„}£L0 ■

(1) Let a > 0. Suppose 1 < p < 2 < q < oo. If T is a (p, q)-multiplier
for Fourier series, then T+ is a (p, q)-multiplier for Laguerre series of

order a.

(2) Let -1 < a < 0. If (1 + f)~x <p <2<q < +f, then the assertion of
(1) remains true.

The proof of the proposition will be given in the next section. In the rest of

this section, we shall show that the proposition implies the theorem.

Let a > -1 and 0 < a < 1. Also let p and q be a pair of real numbers

such that 1 = i - a, 1 < p, q < oo, when a > 0, and £ = £ - a, (1 + \)~x <

p,q<-\, when -1 < a < 0. We can choose 0 < t < 1, 1 < p0, qo, Pi, q\ <

oo, 0 < a0 < 1  so that i = i- + ^-A = f + ifi,f = ^ - oo, where

1 < Po < 2 < qo < oo, 1 < p\ = ¿ft < oo when a > 0, and (1 + §)_1 < Po <

2 < tfo < -\, (I + f)"1 < Pi = #i < -^ when -1 < a < 0. We extend
the parameter a of the operator /£ to the complex number z = o + iO.

Then we shall show the (Lp°, L?°)-boundedness of J£ fe and the (LPi, L«1)-

boundedness of I"e . Hence we get the (Lp, L?)-boundedness of 1% by using

the complex interpolation theorem.

We first note that if a > 0, then Iazf £L2(0, oo) for / € L2(0, oo). Let /

and « be in L2(0, oo). Then,

/    IaJ(x)h(x)dx  = £     <(/X(„)

oo     i

«=1

This implies that the family {/"} is admissible on the strip {z £ C : 0 < o <

Oo} . By applying the multiplier criterion [K, Corollary] (see also [D, Corollary],
[T, Theorem 6.3.4], [ST, Corollary 4.4]) for Laguerre series to the multiplier

{n~'e}"n=x, we have

(1.2) PS/II,, < Qll/lU
for -oo < 6 < oo, where Q> is independent of / and admissible growth with

respect to 6. Similarly, using the semigroup property Ig    = IfeI%0, we have

(1.3) ll'cWIU < c¿||/-/il
for -oo < 6 < oo, where C'e has the same property to Ce . The proposition

derives the inequality

(1.4) \\IaaJ\\% < CII/IU



2168 YUICHI KANJIN AND ENJI SATO

from the Hardy-Littlewood theorem on fractional integration for Fourier series.
Thus, it follows from (1.3) and (1.4) that

(1-5) \K+wfho < WIL
for -oo < 6 < oo, where C'¿ has the same property to Cg . By the complex

interpolation theorem (cf. [SW]), we see that (1.3) and (1.5) lead to

\\Iaaf\\q<C\\f\\p    forf£Lp(0,œ).

Therefore, the proposition implies the theorem.

2

In this section, we shall prove the proposition. We use the following trans-
plantation theorem:

Theorem A [K]. Let a, ß > -1 and y - min{a, ß} . If y > 0, then

(2.1) \\T!f\\P<C\\f\\p

for I < p < oo, where C is a constant independent of f, and

oo

^/~5>j?(./W(*).
n=0

"-2>       ^i/> —// -1 < y < 0, then (2.1) holds for (1 + \)~x <p<-

We note that Theorem A leads to

(2.2) lltf/lb,-,,,,,,
since TÍ T%f — f. By virtue of this equivalence, to prove the proposition it is

enough to show that

(2.3) \\Flf\\9 < C\\f\\p

for 1 < p < 2 < q < oo if T is a (p, q)-multiplier for Fourier series. For,

combining (2.2), (2.3) and the identity F$Tp = T$F°f, we have \\F£j\\q <

C\\T§F^f\\, = CPft75711« < C||r¿"/llp+< C\\f\\p, where K p < 2+< q <
oo if a > 0, and (1 + §)-' <p<2<q<~l if -1 < a < 0. Here
and below, C denotes a positive constant which may differ at each different
occurrence. In order to prove (2.3), we need the following lemma which is a

type of transplantation theorem.

Lemma. (1) For a function g(t) on (0, 2n), let Ug(x) be a function on (0, oo)

defined by the series
oo

ug-Ylm-zfw-
n=0

If g£ L«(0, 2?r) and 2 < q < oo, then Ug £ L<>(0, oo) and

(2-4) l|£/*ll,<CH*||,.

(2) For a function f(x) on (0,oo), let V f(t) be a function defined by the
series

f//~i>27>im.
n=0
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If f£ Li>(0,oo) and l<p<2, then Vf£U(0,2n) and

(2.5) r/llp<C||/|U,

We easily see that the lemma implies the proposition. Indeed, we have

11^/11, = \\UFTVf\\q < C\\FTVf\\q < C\\Vf\\p < C\\f\\p.

The first and third inequalities are obtained by (2.4) and (2.5), respectively. The
second inequality follows from the assumption that T is a (p, #)-multiplier for

Fourier series.
We are now in a position to prove the lemma. Let C^°(0, 2n) be the space

of infinitely differentiable functions with compact support in (0, 2n). For

g £ C¡?°(0, 2n), the sequence {£(«)} decrease rapidly at infinity. By pointwise

and norm estimates for £?„°(x) (cf. [T, Lemmas 1.5.3 and 1.5.4]), we see that

for g £ Cc°°(0, 2n) the series ]T^Lo ë(n)-&n°(x) converges uniformly and in
L^O, oo) for every 1 < p < oo. First we shall show that

(2.6) Ug(x) = ¿ / *g(tyï«*h-^Ldt,       g £ C~(0, 27t).
4n Jo sin j

By the representation [S, (5.4.1)] of Laguerre polynomials in terms of Bessel

functions, we have

°° i        yoo

Ug(x)^eiYjg(n)-       e-yy"Jo(2J5cy)dy.
n=o        n- Jo

Since the sequence {£(«)} decreases rapidly at infinity, we can invert the order
of summation and integration. Thus, we have

/•oo oo   vn

Ug(x) = e$       e-yJo(2s/ïy) £ ^g(n) dy
J° n% "■

= —eU    e-yj0(2^xy)J2       g{t)^—Ldtdy.
2n     Jo f^Jo n\

Inverting the order of Y^=o anc* Jo2* > we bave

1 /»OO      flit

Ug(x) =2¿eíJ    j    Jo(2V^y)g(t)exp(-(l-e-it)y)dtdy.

We claim that /0°° /0 " = /0 " /0°° . Indeed, we denote by Hx(y, t) the integrand
in the double integral. Since there exists a constant e > 0 such that supp g c
[e, 2n - e], it follows that

\Hx(y, t)\ < \Jo(2Jxy)\\g(t)\exp(-(l-cose)y).

This inequality leads to our claim. Hence, we have

i i»2?r too

Ug{x)=2¿eÍJ    8{t)J    M2Vxy)exv>(-(l-e-il)y)dydt.
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It follows from the formula [W, 13.3(1)] that the inner integral has the form

J0(2^xy)exp(-(l-e-it)y)dy
jJo

o / U2\

exp f -(1 -e~")-z- ) Jo(uV2x)udu

exp ( —-37]    for0<i<27t,
1 - e~"       V   1

Simple calculation shows (2.6).

We shall prove the boundedness of the operator U from Lq(0, 2n) to

L«(0, 00) for 2 < q < 00. Let g £ Q°(0, 2n). By using (2.6) and by

changing the variable u = \ cot 5 , we have

1

dx
/«OO /.¿7Í _'i

II ̂11? = *-«/    /  gitywí-jdt
JO      \J0 Sln 2

/•OO I    /.oo

= n-"       \       {g(2cot-l2u)eicot~'2u(4u2 + l)-i}eixudu
Jo      \J-00

9

dx.

By the well-known inequality ¡^ \h(x)\" dx < C/!^, |A(m)|«|k|«-2</m, 2 <
i < 00, for Fourier transforms (cf. [Ti, Theorem 79]), we have

/oo
IS^cot-1 2u)\«(4u2 + l)-i\u\i-2du

-OO

/OO

|^(2cot"1 2m)|*(4m2 + l)-1 ûfw < CH^III,
-00

which shows (2.4) for g £ Cc°°(0, 2n). The standard density argument leads

to (1) of the lemma.
We now come to the proof of (2) of the lemma. Let Q°(0, 00) be the space

of infinitely differentiable functions with compact support in (0, 00). Since the

sequence {a°,(f)} decreases rapidly at infinity (cf. [K, Lemma 1]), it follows

that
i»oo 1        /»2tt

J    f(x)Ug(x)dx = —J    Vf(t)g(-t)dt

for / £ Cc°°(0, 00) and g £ Cc°°(0, 2tt) . By a duality argument, we have (2.5)
for / £ C%°(0, 00). The density argument concludes the proof of (2) of the

lemma.

Remark. The following identity dual to (2.6) can be proved in a very similar

way or by a duality argument:

if,—ii      poo

Vf(t) = ^-r /   f(x)e~^ «*Ux,    f£ C?(0, 00).
2 sin 5 Jo

Note. After submitting this paper, we received a preprint by Gasper, Stem-
pak, and Trebels entitled Fractional integration for Laguerre expansions, which

proves the weighted fractional integration theorem using Laguerre convolution.

Also, we received a letter from Thangavelu which informed us of a proof of the

fractional integration theorem using special Hermite expansions.
We wish to thank Professors G. Gasper, K. Stempak, and W. Trebels for

sending their preprint, and Professor S. Thangavelu for sending his letter.



THE HARDY-LITTLEWOOD THEOREM ON FRACTIONAL INTEGRATION 2171

REFERENCES

[B]      H. Bavinck, A special class of Jacobi series and some applications, J. Math. Anal. Appl. 37

(1972), 767-797.

[D]     J. Dlugosz, LP-multipliers for the Laguerre expansions, Colloq. Math. 54 (1987), 287-293.

[GT]   G. Gasper and W. Trebels, Jacobi and Hankel multipliers of type (p, q),  1 < p < q < oo ,

Math. Ann. 237 (1978), 243-251.

[K]     Y. Kanjin, A transplantation theorem for Laguerre series, Tôhoku Math. J. 43 (1991),

537-555.

[MS]   B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate har-

monic functions, Trans. Amer. Math. Soc. 118 (1965), 17-92.

[O]      R. O'Neil, Convolution operators and L{p, q) spaces, Duke Math. J. 30 (1963), 129-142.

[S]      G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., Amer. Math. Soc, Prov-

idence, RI, 1975.

[ST]    K. Stempak and W. Trebels, On weighted transplantation and multipliers for Laguerre ex-

pansions, Math. Ann. 300 (1994), 203-219.

[SW]   E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton

Univ. Press, Princeton, NJ, 1971.

[T]      S. Thangavelu, Lectures on Hermite and Laguerre expansions, Math. Notes, no. 42, Princeton

Univ. Press, Princeton, NJ, 1993.

[Ti]     E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Chelsea, New York, 1986.

[W]     G. N. Watson, A treaties on the theory of Bessel functions, Cambridge Univ. Press, London,

1966.

[Z]      A. Zygmund, Trigonometric series, 2nd ed., Cambridge Univ. Press, London and New York,

1968.

Department of Mathematics, College of Liberal Arts, Kanazawa University, Kana-

zawa, 920-11, Japan
E-mail address : kanj inflicewsl. ipc. kanazawa-u .ac.jp

Department of Mathematics, Faculty of Science, Yamagata University, Yamagata,

990, Japan


