PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 123, Number 7, July 1995

ON THE DETERMINANT AND THE HOLONOMY
OF EQUIVARIANT ELLIPTIC OPERATORS

KENJI TSUBOI

(Communicated by Ronald Stern)

ABSTRACT. Let M be a closed oriented smooth manifold, G a compact Lie
group consisting of diffeomorphisms of M, P — Z a principal G-bundle with
a connection and D a G-equivariant elliptic operator. Then a locally constant
family of elliptic operators and its determinant line bundle over Z are naturally
defined by D . Moreover the holonomy of the determinant line bundle is defined
by the connection in P . In this note, we give an explicit formula to calculate
the holonomy (Theorem 1.4) and give a proof of the Witten holonomy formula
(Theorem 1.7) in the special case above.

1. MAIN RESULTS

Let M be a closed oriented smooth manifold, G a compact Lie group con-
sisting of diffeomorphisms of M, P — Z a principal G-bundle over a smooth
manifold Z with a connection and D a G-equivariant elliptic operator. Then,
for any g € G, the index of D evaluated at g, Index(D, g), is defined by

Index(D ) g) = 1:r(glker D) - tr(glcokerD)

and can be calculated by the well-known fixed point formula (cf. [1], [2] or
[5]). On the other hand, the determinant of D evaluated at g, det(D, g), is
defined by

det(D, g) = det(&ler p)/ det(glcoker ) -

Then the next proposition is an immediate consequence of the elementary result
of Lemma 1 in Appendix.

Proposition 1.1. Let g € G be any element of finite order p. Then the next
equality holds:

27i i3 1 ‘
det(D R g) = exp T kz—:l lTe—Z—m-i(/_p{Indcx(D) - Index(D 4 )}

where Index(D) = Index(D, 1) is the numerical index of D .
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Remark 1.2. The homomorphism det(D, -): G — S! defined by det(D, g) is
determined by its restriction to the dense subset of G which consists of all
elements of finite order.

Now we assume that M is a 2n-dimensional closed Riemannian manifold
with a Spin‘-structure and a connection in the associated S!-bundle of the
Spin‘¢-structure. We assume that G acts on M as isometries and that the ac-
tion of G preserves the Spin‘-structure and the S!-connection. Let E be a
hermitian vector bundle (or virtual vector bundle) over M with a unitary con-
nection. We assume that the action of G lifts to a connection-preserving unitary
action on E. Then we can define the G-equivariant Spin‘-Dirac operator D
on M

D:T(S*®E)—-T(S"®E)

(for the definition of the half spinor bundles S*, see [7, pp. 106-108]) and a
line bundle det(D) over Z by

det(D) = P xg ((A"ker D)* ® (A°coker D))

where r, s denote the dimensions of the finite-dimensional (complex) G-
modules ker D, cokerD. Note that the G-equivariant elliptic operator D
naturally defines a locally constant elliptic family P x; D parametrized by Z
and the determinant line bundle defined by this elliptic family is isomorphic
to det(D) above (see [6, pp. 133-134]). The connection in P naturally de-
fines a connection in det(D) and we can regard det(D) as a line bundle with
a connection. On the other hand, for any g € G, by considering the mapping
torus

(1.3) M, =Mx[0,1]/ ~ where (m,0)~ (g(m), 1),

we can also define a locally constant family of Dirac operators parametrized
by S!. Here the horizontal subspaces of the fibration M, — S! is given by
the [0,1]-directed vectors. Then we can define as in [7] the determinant line
bundle L(g) over S!'. Note that, if a horizontal lift # of an oriented loop
y in Z connects any fixed base point b in P with b-g~!, it is not difficult
to see that L(g) is isomorphic to the restriction of det(D) to the loop y as a
line bundle with a connection. Now it can be seen that the holonomy of L(g)
around S!, which we denote by hol(D, g), is equal to det(D, g) and hence
the next theorem follows immediately from Proposition 1.1.

Theorm 1.4. Let g € G be any element of finite order p. Then we have

. p—1
(1.5) hol(D,g):exp%zl L (Index(D) — Index(D, g*)},
k=1

—_ e—zﬂik/p

and hence hol(D, g) is calculated explicitly by using the Atiyah-Bott-Singer
fixed point formula.

Now the tangent bundle of M, splits as the direct sum of the tangent bundle
of M and the trivial real line bundle defined by [0,1]-directed vectors. Hence
the Riemannian metric and the Spin‘-structure on M, are naturally defined by
those on M together with the standard metric and the trivial Spin¢-structure
on [0,1]. Moreover the associated S'-bundle of the Spin‘-structure over M,
and its connection are naturally defined by the S!-bundle over M and the
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standard globally flat connection in the [0,1]-directed trivial real line bundle.
Let S; be the spinor bundle with respect to the above Spin‘-structure on M,
and E; the hermitian vector bundle (or virtual vector bundle) over M, with a
unitary connection defined by the mapping torus construction (1.3). Then the
Spin¢-Dirac operator

Ag:T(Sg @ Eg) = I'(Sg ® Eg)
is defined and |
(g = i(”g + dimker 4g)

is defined by the eta invariant n, of Ag. Note that, using the same argument
as in [4], we can see that £, modulo integer is continuous in g.

Now we assume that g € G has a finite order p. Let X = M x D?,
Y = 0X = M x S! be the product Riemannian Spin‘-manifolds with the
Spin‘-structures induced from the Spin¢-structure on M and the trivial Spin¢-
structures on D?, S'. We give the metric p?ds? on S! where ds? is the
standard metric on S! and a rotationally symmetric Riemannian metric on D?
which is the product metric near 8D? = S!. The Levi-Civita connection of this
metric defines the connection in the associated S!-bundles over D?, S!. Then
we can define the actions of Z, =(g) on X andon X =Y as follows:

g-(m, re’®)=(g(m), re’®+2milv)

for (m,re’y e X =M xD? ; 0<r< £, 0< 6 < 2n. Note that Z,
acts freely on Y and Y/Z, is equal to M,. Let gx: X = M xD* - M,
qy: Y = M x S' - M be projections, and let Ex, Ey denote the hermitian
vector bundles (or virtual vector bundles) gyE = E x D?, g}E = E x S' on
X, Y provided with naturally induced unitary connections. Let

B: r(S}@Ex) — F(S; ®Ex),

A:T(Sy® Ey) - I'(Sy ® Ey)
be the Z,-equivariant Spin‘-Dirac operators on X, Y where S} , Sy are
the spinor bundles over X, Y with respect to the Spin¢-structures on X,
Y respectively. Then it is clear that the spinor bundle S, is equal to the
spinor bundle with respect to the Spin‘-structure on M, induced from the Z,-
invariant Spin-structure on Y . Moreover it is also clear that E, is equal to

the quotient Ey/Z, and that the Spin°-Dirac operator 4, on M, is equal to
the quotient A4/Z,. Here we have the following:

Proposition 1.6. Let g € G be any element of finite order p. Then we have

the right-hand side of (1.5) = (—1)"dex(D)g=2ics

Proof. For any h € Z,, let ny(h) denote the eta invariant of 4 evaluated at
h (cf. [4]). Then it follows from the same arguments as in [8] that

1 ‘ 11 l
$e = 5(77g +dimker 4;) = ) Z <§'7Y(gk) + Etr(gk'kerA)) .
k=1

On the other hand, it follows from Theorem 1.2 in [8] that

1 1
FMr(g") + §tr(g" lker 4) + Index(B, g*)
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is equal to the integral
/ ch(Ex) exp ﬂfﬂj(x)
X

if k = p, and is equal to the summation of certain characteristic numbers

2A[N]
> A[N]

NCQ(X)

if k # p, where Index(B, gk) is the g*-index (i.e., the index evaluated at g*)
of B with the global boundary condition considered in Theorem (3.10) in [3],
ch(Ey) is the Chern character form of Ey, c;(S, X) is the first Chern form of
the associated S'-bundle of the Spin‘-structure on X with respect to the S'-
connection, A(X) is the total A-form of TX and Q(X) is the fixed point set
of the gk-action (k # p) on X consisting of closed connected submanifolds
N . Now it is easy to see that the fixed point set Q(X) coincides with the fixed
point set Q(M) of the gk-action on M = M x {0} ¢ M x D? = X and the
normal bundles »(N, X) of N in X is isomorphic to the direct sum of the
normal bundles v(N, M) of N in M and the trivial bundles N x R?. Here
g acts on N x R? via the 2m/p -rotation of the fiber R?. Hence, considering
the fixed point formula (cf. [5]), we can see that the quantity 3 y-qx) 2% [N]
is related to the index of the operator D on M as follows:

E A[N] = zm 37, Index(D, g).
NCQX

On the other hand, it is clear that
(S, X) =gy ci(S, M) + gpci(D?)

where ¢,(S, M) is the first Chern form of the associated S!-bundle of the
Spin‘-structure on M with respect to the S!-connection, gp: X = M x D* —
D? is the projection and c;(D?) is the first Chern form of D? with respect
to the S!-connection which is rotationally symmetric and is product near the
boundary. Moreover, since

ch(Ex) = gy ch(E), A(X)=qy A(M)

ci(D?) / a) _1
/Dze"p 2 e 2 T2

/X ch(Ex) exp 9—62’—)()2(X)= % /M ch(E) exp MA(M) %Index(D).

and

it follows that

Hence we can deduce the following equality.
12= 1 1 5
z T—o=zyy ndex(D, ¢ ky + —Index(D - ;;Index( g).
Now it follows from Lemma 2 in Appendix that

P
! > Index(B, g¥) =0 mod.z
Pia
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and from Lemma 3 in Appendix that

1 1 154 1
Elndex(D) = ilndex(D) - ]_7 ; l_e_wlndex(D) .

Thus we can conclude that
=2mi&, _ ( l)lndex(D) 2ni nt 1 Index(D Index(D k
e = (- CXDTEI—ZW{ n CX( )— n CX( 4 )}.

This completes the proof.

Since both hol(D, g)(= det(D, g)) and e2"% are continuous in g, it
follows from Remark 1.2, Theorem 1.4 and Proposition 1.6 that

Theorem 1.7 (cf. [7]). The next equality holds:
hOl(D , g) — (_l)lndex(D)e—Zm'.{g

forany g€ G.

2. AN EXAMPLE
Let M be the non-singular hypersurface of degree p > 2 in CP"*! defined
by

4+ +- 420 =0

where [z : z; : --- : Zp41] is the homogeneous coordinate of CP”+!. Then
the action

glzoizy:: zau]=[e"Pzo: 2y oot Zpy]

defines an action of Z, = (g) on M and the fixed point set of this action is
the non-singular hypersurface of degree p in CP"” = {zo = 0} Cc CP**! defined
by

2zl +- 420, =0.

Let D be the Dolbeault operator on M which is a Z,-equivariant elliptic
operator. Then it follows from the Atiyah-Bott-Singer fixed point formula (see,
for example, [9]) that Index(D) is equal to the x"-coefficient of

(=) (557) ecum

multiplied by p and that Index (D, g¥) is equal to the x"~!-coefficient of

X mlp—empx 1
(1 - e—x) ( 24 ) [ e—xe-2niklp © Clixl

multiplied by p.

Now, for example, consider the case of n =2, 3. Then we can obtain Tables
1 and 2 only from direct computations using Theorem 1.4 and the fixed point
formula above.
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TABLE 1
n=2
p 3 4 6 7 8 10 11 12 13 14 15 16
loghoy 0 4+ 0o 2 o §$ 0o 0o o # o L o U
TABLE 2
n=3
p 3 4 5 6 7 8 9 10 11 12 13 14 15 16

loghof 0 0 %2 0 0 0 0 & o o o0 o 4 o

where log(hol) denotes 5.-loghol(D, g) mod.Z .
Remark 2.1. If ¢;(M) > 0 (namely, p < n + 1), it follows from the Ko-

daira vanishing theorem that coker D = {0} and that ker D is equal to the
1-dimensional space of constant functions on M on which Z, acts trivially.
Therefore it immediately follows that hol(D, g) = det(D, g) = 1 and hence
that log(hol) = 0. This can also be proved from direct calculations similar as

above using the Atiyah-Bott-Singer fixed point formula.

APPENDIX

- Lemma 1. Let A bean (N x N)-matrix which satisfies A’ = E for some positive
integer p where E denotes the unit matrix. Then the next equality holds:

det(A) 2mi i 1 R
et( )_exD—p_;T—e"T"/P{ —tr(4%)}.

Proof. Let e?"%i/P (1 < j < N) be the eigenvalues of 4 where A;’s are integers
such that 1 <4; < p. Then the equality of the lemma is equivalent to the next
equality:

p—1 1 N

_ 2midsk
l|+"'+lN—Zl—_mZ(l—em’/p) mOd.p.

k=1 j=1
Therefore it suffices to show that

p-! 1 — e2mikd/p

M) 1= e—2iklp
o L menmm

=2 mod.p

for any integer A such that 1 < A < p. Here the left-hand side of (1) is equal
to — Y01 Yo e2mkv/p and hence (1) follows from the equality

14

p—1
Zezniuk/p =-1 mod.p
k=1

for any integer v. O
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Lemma 2. Let V be any finite-dimensional Z,-module and g € Z,. Then we
have

14
> tr(gkly) =0 modp.
k=1

Proof. This lemma follows from the equality

p
Y o*¥=0 modp
k=1

for any complex number o such that o =1. 0O

Lemma 3. The next equality holds:

11 1 ”z‘:‘ 1
5 ) p p 1 — e-2nikjp *
Proof. This lemma follows from the equality
-1

”Z 1 _p-1 a
_ p—2nik :
= 1 — e 2miklp 2
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