
proceedings of the
american mathematical society
Volume 123, Number 7, July 1995

ON THE DETERMINANT AND THE HOLONOMY
OF EQUrVARIANT ELLIPTIC OPERATORS
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(Communicated by Ronald Stern)

Abstract. Let M be a closed oriented smooth manifold, G a compact Lie

group consisting of diffeomorphisms of M, P —> Z a principal G-bundle with

a connection and D a G-equivariant elliptic operator. Then a locally constant

family of elliptic operators and its determinant line bundle over Z are naturally

defined by D . Moreover the holonomy of the determinant line bundle is defined

by the connection in P . In this note, we give an explicit formula to calculate

the holonomy (Theorem 1.4) and give a proof of the Witten holonomy formula

(Theorem 1.7) in the special case above.

1. Main results

Let M be a closed oriented smooth manifold, G a compact Lie group con-
sisting of diffeomorphisms of M, P —► Z a principal G-bundle over a smooth

manifold Z with a connection and D a G-equivariant elliptic operator. Then,

for any g £ G, the index of D evaluated at g,  lndex(D, g), is defined by

Index(T), g) = tr(g|ker D) - tr(s|C0kerO)

and can be calculated by the well-known fixed point formula (cf. [1], [2] or

[5]). On the other hand, the determinant of D evaluated at g, det(D, g), is

defined by

det(£>, g) = det(s|ker0)/det(g|cokerD).

Then the next proposition is an immediate consequence of the elementary result

of Lemma 1 in Appendix.

Proposition 1.1. Let g £ G be any element of finite order p. Then the next

equality holds:

det(D,g) = cxp^j-Yl i_e-2*,*/PiIndex(D) - ™™(D> #*)}
k=l

where Index(D) = Index(TJ), 1 ) is the numerical index of D.
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Remark 1.2. The homomorphism det(D, •): G —► Sx defined by det(D, g) is
determined by its restriction to the dense subset of G which consists of all
elements of finite order.

Now we assume that M is a 2«-dimensional closed Riemannian manifold

with a Spinc-structure and a connection in the associated Sx-bundle of the

Spinc-structure. We assume that G acts on M as isometries and that the ac-
tion of G preserves the Spinc-structure and the S '-connection. Let Tí1 be a

hermitian vector bundle (or virtual vector bundle) over M with a unitary con-

nection. We assume that the action of G lifts to a connection-preserving unitary

action on E. Then we can define the G-equivariant Spinc-Dirac operator D
on M

D:T(S+®E)-+r(S-®E)

(for the definition of the half spinor bundles S* , see [7, pp. 106-108]) and a
line bundle det(D) over Z by

det(D) = PxG ((A'ker D)* ® (A^cokerZ)))

where r, s denote the dimensions of the finite-dimensional (complex) G-

modules kerT), cokerT). Note that the G-equivariant elliptic operator D
naturally defines a locally constant elliptic family P xG D parametrized by Z
and the determinant line bundle defined by this elliptic family is isomorphic

to det(7J>) above (see [6, pp. 133-134]). The connection in P naturally de-

fines a connection in det(D) and we can regard det(D) as a line bundle with

a connection. On the other hand, for any g £ G, by considering the mapping

torus

(1.3) Mg = M x[0, l]/~       where   (m, 0) ~ (g(m), 1) ,

we can also define a locally constant family of Dirac operators parametrized
by S' . Here the horizontal subspaces of the fibration Mg —» Sl is given by

the [0,1 ]-directed vectors. Then we can define as in [7] the determinant line

bundle L(g) over Sx. Note that, if a horizontal lift y of an oriented loop
y in Z connects any fixed base point b in P with b • g~x, it is not difficult

to see that L(g) is isomorphic to the restriction of det(D) to the loop y as a
line bundle with a connection. Now it can be seen that the holonomy of L(g)

around Sx, which we denote by hol(7J>, g), is equal to det(D, g) and hence

the next theorem follows immediately from Proposition 1.1.

Theorm 1.4. Let g £ G be any element of finite order p. Then we have

(1.5)       hol(7J», g) = exp^ ¿ \ 2{\ndex(D) - Index(T), gk)},

p   k=\

and hence hol(D, g) is calculated explicitly by using the Atiyah-Bott-Singer

fixed point formula.

Now the tangent bundle of Mg splits as the direct sum of the tangent bundle

of M and the trivial real line bundle defined by [0,l]-directed vectors. Hence
the Riemannian metric and the Spinc-structure on Mg are naturally defined by

those on M together with the standard metric and the trivial Spinc-structure

on [0,1]. Moreover the associated S '-bundle of the Spinc-structure over Mg

and its connection are naturally defined by the S '-bundle over M and the
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standard globally flat connection in the [0,l]-directed trivial real line bundle.
Let Sg be the spinor bundle with respect to the above Spinc-structure on Mg

and Eg the hermitian vector bundle (or virtual vector bundle) over Mg with a

unitary connection defined by the mapping torus construction (1.3). Then the

Spinc-Dirac operator

Ag:T(Sg®Eg)-^T(Sg®Eg)

is defined and

ig=2^s + dimkeTAs^

is defined by the eta invariant ng of Ag . Note that, using the same argument
as in [4], we can see that e¡g modulo integer is continuous in g.

Now we assume that g £ G has a finite order p.   Let X = M x D2,

Y = dX = MxSx be the product Riemannian Spinc-manifolds with the

Spinc-structures induced from the Spinc-structure on M and the trivial Spine-

structures on D2, Sx. We give the metric p2ds2 on Sx where ds2 is the

standard metric on Sx and a rotationally symmetric Riemannian metric on D2
which is the product metric near dD2 = Sx. The Levi-Civita connection of this
metric defines the connection in the associated Sx-bundles over D2, Sx. Then

we can define the actions of Zp = (g)   on X and on dX = Y as follows:

g ■ (m , reie) = (g(m) , rew+2ni'p)

for (m,rew) £ X = M x D2 ; 0 < r < £, 0 < 0 < 2tt . Note that Zp

acts freely on Y and Y/Zp is equal to Mg. Let qx: X = M x D2 -» M,

qY: Y = M x Sx -» M be projections, and let Ex , EY denote the hermitian

vector bundles (or virtual vector bundles) qxE = E x D2 , qYE — E xSx on

X, Y provided with naturally induced unitary connections. Let

B : Y(SX ® Ex) - HS" ® Ex),

A : Y(SY ® EY) -» T(SY ® EY)

be the Zp-equivariant Spinc-Dirac operators on X, Y where Sx , Sy are
the spinor bundles over X,   Y  with respect to the  Spinc-structures on  X,

Y respectively. Then it is clear that the spinor bundle Sg is equal to the

spinor bundle with respect to the Spinc-structure on Mg induced from the Zp-

invariant Spinc-structure on Y. Moreover it is also clear that Eg is equal to

the quotient EY/ZP and that the Spinc-Dirac operator Ag on Mg is equal to

the quotient A/Zp . Here we have the following:

Proposition 1.6. Let g £ G be any element of finite order p. Then we have

the right-hand side of (1.5) - (_i)i«i«(B)e-2*i{, _

Proof. For any h £ Zp , let nY(h) denote the eta invariant of A evaluated at
h (cf. [4]). Then it follows from the same arguments as in [8] that

1 1   p   ( 1 1 \
f* = 2('fc + dimkeiA) = 'E   2^' + 2tr^*'ker'1^) •

P k=\ ^ '

On the other hand, it follows from Theorem 1.2 in [8] that

\rjY(gk) + itr(g*|te/1) + Index(7i, gk)
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is equal to the integral

Lch(Ex)expCx{S'X)Â(X)
x ¿

if k = p, and is equal to the summation of certain characteristic numbers

2t[/V]

£  a [An
NcO(X)

if k t¿ p, where Index(5, gk) is the gk-index (i.e., the index evaluated at gk )

of B with the global boundary condition considered in Theorem (3.10) in [3],

ch(Ex) is the Chern character form of Ex , cx(S, X) is the first Chern form of

the associated S'-bundle of the Spinc-structure on X with respect to the Sx-

connection, A(X) is the total ,4-form of TX and Cl(X) is the fixed point set

of the gk -action ( k ^ p ) on X consisting of closed connected submanifolds

N. Now it is easy to see that the fixed point set il(X) coincides with the fixed

point set Q(M) of the g*-action on M = M x {0} c M x D2 = X and the
normal bundles v(N, X) of N in X is isomorphic to the direct sum of the

normal bundles v(N, M) of N in M and the trivial bundles N xR2. Here

g acts on N xR2 via the 2%/p -rotation of the fiber R2 . Hence, considering

the fixed point formula (cf. [5]), we can see that the quantity Y.ncci(x) a f^l

is related to the index of the operator D on M as follows:

£ *W = T37WIndex^^-
NcSl(X)

On the other hand, it is clear that

cx(S, X) = q*xcx(S, M) + q*Dcx(D2)

where cx(S, M) is the first Chern form of the associated S '-bundle of the

Spinc-structure on M with respect to the S '-connection, qo'- X = M x D2 —►

D2 is the projection and cx(D2) is the first Chern form of D2 with respect

to the S'-connection which is rotationally symmetric and is product near the

boundary. Moreover, since

ch(Ex) = qx ch(E) ,     Â(X) = qx Â(M)

and

it follows that

j ch(Ex) exp Cx{S¿X)A(X) =l-j ch(E) exp Cx{S^M)Â(M) = ^lndex(D).

Hence we can deduce the following equality.

p-\

Í* = \ £ ^eLk/p^i» ' **) + ¿Index(T)) -W Index(7i, gk).
y k=l y y k=l

Now it follows from Lemma 2 in Appendix that

1   p
-£lndex(5,^) = 0   mod.;

p k=\
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and from Lemma 3 in Appendix that

^lndex(D) = l-lndex(D) - I g _-l_^index(7)).
k=\

Thus we can conclude that

e-l*it, = (_ ! jindexiz» exp 2|£ £ ___1__{Index(JD) - Index(T),**)}.

/c=l

This completes the proof.

Since both hol(D, g)(= det(D, g)) and e~2ni^ are continuous in g, it

follows from Remark 1.2, Theorem 1.4 and Proposition 1.6 that

Theorem 1.7 (cf. [7]). The next equality holds:

hol(D, g) = (_l)lndex(o)e-2îriis

for any g e G.

2. An example

Let M be the non-singular hypersurface of degree p > 2 in CP"+1 defined
by

zp + zp + -.. + zpn+i=0

where [zq : z\ : ■•• : z„+i] is the homogeneous coordinate of CP"+1. Then

the action

g-[z0 : zi : ••• : z„+i] = [e2,I,'/pzo : zi : ■•■ : zn+x]

defines an action of Zp = (g) on M and the fixed point set of this action is

the non-singular hypersurface of degree p in CP" = {zo = 0} c CP"+1 defined
by

z' + zp2 + ... + zpn+l=0.

Let D be the Dolbeault operator on M which is a Zp-equivariant elliptic
operator. Then it follows from the Atiyah-Bott-Singer fixed point formula (see,

for example, [9]) that Index(D) is equal to the x"-coefficient of

multiplied by p and that Index (D, gk) is equal to the x"~x-coefficient of

/    x     \n+l il -e~px\ 1

(j^ j      {-Jx-) X-e-*e-2«*lP   E C[[X]]

multiplied by p.
Now, for example, consider the case of n = 2, 3. Then we can obtain Tables

1 and 2 only from direct computations using Theorem 1.4 and the fixed point

formula above.
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Table 1

n = 2

p 3  4  5  6  7  8  9  10  11  12  13  14  15  16

log(hol)    0  I  0  |  0  §  0  0  O^O^OJI

Table 2
« = 3 I

p 3     4     5     6     7     8     9     10     11      12     13     14     15     16

log(hol) OOfOOOO^O       0       0       0|§0

where log(hol) denotes ^ log hol(D, g) mod. Z .

Remark 2.1. If Ci(Af) > 0 (namely, p < n + 1 ), it follows from the Ko-
daira vanishing theorem that cokerD = {0} and that ker D is equal to the

1 -dimensional space of constant functions on M on which Zp acts trivially.

Therefore it immediately follows that hol(D, g) = det(D, g) - 1 and hence

that log(hol) = 0. This can also be proved from direct calculations similar as

above using the Atiyah-Bott-Singer fixed point formula.

Appendix

Lemma 1. Let A bean (N x N)-matrix which satisfies Ap - E for some positive

integer p where E denotes the unit matrix. Then the next equality holds:

det(A) = exp 2-f '¿    _   \lniklp {N - tr(Ak)}.
k=\

Proof. Let e2niX>lp ( 1 < j < N) be the eigenvalues of A where Xj 's are integers

such that 1 < Xj < p . Then the equality of the lemma is equivalent to the next
equality:

Xi + • ■ ■ + XN = £ ^tt/, £ ( 1 - eW)    mod.p.
k=\ j=\

Therefore it suffices to show that

P-±   j _ e2nikklp

(!) LX_e-2nik/P   =X     m0Ú-P
k=\

for any integer X such that 1 < X < p . Here the left-hand side of ( 1 ) is equal

to - YfkZi Yt=x e2nikvlp and hence (1) follows from the equality

p-i
^e2nivklp = -1    mod.p

A:=l

for any integer v .   D
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Lemma 2. Let V be any finite-dimensional Zp-module and g £ Zp . Then we

have
p

£tr(gfc|i/) = 0   mod.p.

fe=i

Proof. This lemma follows from the equality

p
£ ak = 0   mod.p

k=\

for any complex number a such that ap = 1.   D

Lemma 3. The next equality holds:

11        1 "y, 1
2p     2    p ¿^ 1 - e-2niklP

Proof. This lemma follows from the equality

'-' 1 0-1

£r . p-2nik/p 2
k=\ '
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