REAL RANK OF TENSOR PRODUCTS OF C^* -ALGEBRAS

KAZUNORI KODAKA AND HIROYUKI OSAKA

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. We study the real rank of tensor products of C^* -algebras. From the dimension theory: $\dim(X \times Y) \leq \dim X + \dim Y$, it is naturally hoped that $RR(A \otimes B) \leq RR(A) + RR(B)$. We then prove that it is false generally. Moreover, we point out that (FS)-property for C^* -algebras is not stable under taking tensor products.

1. Introduction

The concept of the non-commutative real rank for a C^* -algebra A (= RR(A)) was defined recently by Brown and Pedersen [4]. An important part of the motivation for introducing it is to have an analogue for C^* -algebras of the dimension for topological spaces: if X is a locally compact Hausdorff space, the dimension X (= dim X) can be defined as a property of the algebras C(X) of continuous functions on X [10]. Thus dim $X \le n$ if for any real-valued functions $f_1, f_2, \ldots, f_{n+1}$ and any non-negative real number ϵ there exist other real-valued functions $g_1, g_2, \ldots, g_{n+1}$ such that $||f_i - g_i|| < \epsilon$ and $\sum C(X)g_i = C(X)$.

Since Gelfand's representation theory identifies commutative C^* -algebras with algebras $C_0(X)$ of continuous functions, vanishing at infinity, on locally compact Hausdorff spaces, it is natural to define the following concept: let A be a unital C^* -algebra and A_{sa} be the set of all selfadjoint elements in A. RR(A) is the least integer n such that $\{(a_0, a_1, \ldots, a_n) \in A_{sa}^{n+1} : \sum_{k=0}^n Aa_k = A\}$ is dense in A_{sa}^{n+1} . If A is non-unital, its real rank is defined by $RR(\tilde{A})$, where \tilde{A} is the C^* -algebra obtained by adding a unit to A. From this definition it is obvious that $\dim X = RR(C(X))$ for a compact Hausdorff space X.

Brown and Pedersen [4], Zhang [13, 14], and the second author [8, 9], however, studied that the real rank does not always have the parallel properties of the dimension theory: let X be a locally compact Hausdorff space and Y be a closed subset of X. Then $\dim X \leq \max\{\dim Y, \dim X \setminus Y\}$ and $\dim X = \dim \beta X$, where βX means the Stone-Čech compactification of X. For example, let D be an irreducible matrix such that $\det(I-D)=0$ and O_D be the Cuntz - Krieger algebra corresponding to D. Zhang [14] stated that $RR(O_D) = RR(M(O_D \otimes \mathbf{K})/O_D \otimes \mathbf{K}) = 0$ but $RR(M(O_D \otimes \mathbf{K})) \neq 0$, where

Received by the editors November 19, 1993.

1991 Mathematics Subject Classification. Primary 46L05.

K is the algebra of compact operators on some separable infinite-dimensional Hilbert space and M(A) means the multiplier algebra of A.

In this note, we treat the tensor products of C^* -algebras. From the dimension theory $\dim(X\times Y)\leq \dim X+\dim Y$ it is natural to conjecture that $RR(A\otimes B)\leq RR(A)+RR(B)$. We prove, however, it is false generally. That is, let A be a unital C^* -algebra with non-trivial K_1 -group of $A(=K_1(A))$, then $RR(A\otimes B(H))\neq 0$, where B(H) denotes the algebra of all bounded operators on some separable infinite-dimensional Hilbert space H. Therefore, if B is one of the Bunce-Dedens algebras, we know $RR(B\otimes B(H))\neq 0$, and this is a counterexample because it is known that RR(B)=0, $K_1(B)=\mathbb{Z}$ [1][2], and RR(B(H))=0 [4]. Throughout this note tensor products of C^* -algebras mean the minimal tensor products.

We refer the reader to [3][4][6][8][9][11][13][14] for results about the real rank.

2. RESULT

We recall that C^* -algebra A is exact if

$$0 \to A \otimes \mathbf{K} \to A \otimes B(H) \to A \otimes B(H)/\mathbf{K} \to 0$$

is an exact sequence [5].

Proposition. Let A be a unital exact C^* -algebra with $K_1(A) \neq 0$. Then

$$RR(A \otimes B(H)) \neq 0.$$

Proof. By the six-term exact sequence from K-Theory [1],

Since $K_1(A \otimes B(H)) = 0$ (see [7, Theorem 2.5]), π_* is not surjective. For, if π_* is surjective, $\operatorname{Ker} \partial = K_0(A \otimes B(H)/\mathbb{K})$, and $\partial = 0$. Since $\operatorname{Ker} \iota_* = \operatorname{Im} \partial$, we know ι_* is injective, and $K_1(A \otimes B(H)) \neq 0$. This is a contradiction.

Hence, we know there is a projection in $A \otimes B(H)/\mathbb{K} \otimes \mathbb{K}$ which cannot be lifted to a projection in $A \otimes B(H) \otimes \mathbb{K}$.

Consider the following C^* -exact sequence:

$$0 \to A \otimes \mathbb{K} \otimes \mathbb{K} \to A \otimes B(H) \otimes \mathbb{K} \to A \otimes B(H)/\mathbb{K} \otimes \mathbb{K} \to 0.$$

Even if $RR(A \otimes \mathbf{K}) = RR(A \otimes B(H)/\mathbf{K}) = 0$, by [4, Theorem 3.14] (cf. [13, Proposition 2.3]) and the above argument, $RR(A \otimes B(H) \otimes \mathbf{K}) \neq 0$ and $RR(A \otimes B(H)) \neq 0$ (cf. [4, Corollary 3.3]). Otherwise, it is trivially $RR(A \otimes B(H)) \neq 0$, and the proof is completed. \square

The next result means that the real rank of tensor products of C^* -algebras with real rank zero is not always zero.

Corollary. Let B be one of the Bunce-Deddens algebras. We have, then,

$$RR(B \otimes B(H)) \neq 0$$
.

Proof. Since the Bunce-Deddens algebras are nuclear, they are exact [5]. By [1][2], we know RR(B) = 0 and $K_1(B) = \mathbb{Z}$. \square

3. Remarks

(1) Using the idea in Proposition we can produce another example which does not satisfy the conjecture described in the introduction.

Let B be one of the Bunce-Deddens algebras and O_n be the Cuntz algebra. By the Künneth Theorem [12, Theorem 2.14], we know $K_1(B \otimes O_n) = \mathbb{Z}/(n-1)\mathbb{Z}$. As in the same argument $RR(B \otimes M(O_n \otimes \mathbb{K})) \neq 0$. On the other hand, O_n is a purely infinite simple C^* -algebra and $K_1(O_n) = 0$. We know $RR(M(O_n \otimes \mathbb{K})) = 0$ by Zhang [14, Examples 2.7(i)].

(2) As Brown and Pedersen pointed out in [4], a C*-algebra has real rank zero if and only if it has the (FS)-property, that is, the set of its all selfadjoint elements has a dense set of elements with finite spectrum. Therefore, Corollary means that (FS)-property is not stable under taking tensor products.

REFERENCES

- 1. B. Blackadar, K-theory for operator algebras, Springer-Verlag, New York, 1986.
- B. Blackadar and A. Kumjian, Skew products of relations and structure of simple C*-algebras, Math. Z. 189 (1985), 55-63.
- 3. B. Blackadar, A. Kumjian, and M. Rørdam, Approximately central matrix units and the structure of non-commutative tori, K-Theory 6 (1992), 267-284.
- L. G. Brown and G. K. Pedersen, C*-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149.
- 5. E. Kirchberg, The fubini theorem for exact C*-algebras, J. Operator Theory 10 (1983), 3-8.
- 6. H. Lin, Generalized Weyl-von Neumann Theorems, Internat. J. Math. 2 (1991), 725-739.
- J. A. Mingo, K-theory and multipliers of stable C*-algebras, Trans. Amer. Math. Soc. 299 (1987), 397-411.
- 8. H. Osaka, Counter examples of Brown-Pedersen's conjecture in "C*-algebras of real rank zero", Proc. Amer. Math. Soc. 118 (1993), 495-497.
- 9. ____, Real rank of crossed products by connected compact groups, preprint.
- 10. A. R. Pears, *Dimension theory of general topology*, Cambridge Univ. Press, London and New York, 1975.
- 11. I. Putnam, The invertible elements are dense in the irrational rotation C*-algebras, J. Reine Angew. Math. 410 (1990), 160-166.
- C. Schochet, Topological methods for C*-algebras II: Geometric resolutions and the Künneth formula, Pacific J. Math. 98 (1982), 443-458.
- 13. S. Zhang, C*-algebras with real rank zero and internal structure of their corona and multiplier algebras III, Canad. J. Math. 62 (1990), 159-190.
- 14. _____, Certain C*-algebras with real rank zero and their corona algebras and multiplier algebras. Part I, Pacific J. Math. 155 (1992), 169-197.

Department of Mathematics, College of Science, Ryukyu University, Okinawa 903-01 Japan

E-mail address, K. Kodaka: b985562@sci.u-ryukyu.ac.jp E-mail address, H. Osaka: osaka@sci.u-ryukyu.ac.jp