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REAL RANK OF TENSOR PRODUCTS OF C'-ALGEBRAS

KAZUNORI KODAKA AND HIROYUKI OSAKA

(Communicated by Palle E. T. Jorgensen)

Abstract. We study the real rank of tensor products of C*-algebras. From

the dimension theory: dim(X x Y) < dim X + dim Y , it is naturally hoped

that RR(A ® B) < RR(A) + RR{B). We then prove that it is false generally.

Moreover, we point out that (FS)-property for C*-algebras is not stable under

taking tensor products.

1. Introduction

The concept of the non-commutative real rank for a C* -algebra A (=

RR(A)) was defined recently by Brown and Pedersen [4]. An important part

of the motivation for introducing it is to have an analogue for C* -algebras

of the dimension for topological spaces: if X is a locally compact Hausdorff

space, the dimension X ( = dim X ) can be defined as a property of the algebras

C(X) of continuous functions on X [10]. Thus dimX < n if for any real-

valued functions fx, fi,..., fn+x and any non-negative real number e there

exist other real-valued functions gx, g2, ... , gn+i such that ||/ -g¡\\ < e and

ZC(X)gi = c(x).
Since Gelfand's representation theory identifies commutative C* -algebras

with algebras Cq(X) of continuous functions, vanishing at infinity, on locally

compact Hausdorff spaces, it is natural to define the following concept: let A be

aunital C*-algebra and Asa be the set of all selfadjoint elements in A. RR(A)

is the least integer n such that {(a0, ax, ... , an) £ A^x : YH=oAak = ¿} is

dense in A"+x. If A is non-unital, its real rank is defined by RR(Ä), where

Ä is the C* -algebra obtained by adding a unit to A. From this definition it is

obvious that dimA' = RR(C(X)) for a compact Hausdorff space X.

Brown and Pedersen [4], Zhang [13, 14], and the second author [8, 9], how-

ever, studied that the real rank does not always have the parallel properties

of the dimension theory: let X be a locally compact Hausdorff space and
Y be a closed subset of X. Then dim AT < max{dimT, dimAr\7} and

dimX = dim)3X, where ßX means the Stone-Cech compactification of X.

For example, let D be an irreducible matrix such that det(/ - D) - 0 and

Od be the Cuntz - Krieger algebra corresponding to D. Zhang [14] stated that

RR(0D) = RR(M(0D ® K)/0D ® K) = 0 but RR(M(0D ® K)) # 0, where
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K is the algebra of compact operators on some separable infinite-dimensional

Hubert space and M (A) means the multiplier algebra of A .

In this note, we treat the tensor products of C* -algebras. From the di-

mension theory dim(X x Y) < dimX + dim Y it is natural to conjecture that

RR(A®B) < RR(A) + RR(B). We prove, however, it is false generally. That is,
let A be a unital C*-algebra with non-trivial Kx-group of A(= KX(A)), then

RR(A ® B(H)) ± 0, where B(H) denotes the algebra of all bounded operators

on some separable infinite-dimensional Hubert space H. Therefore, if B is
one of the Bunce-Dedens algebras, we know RR(B ® B(H)) ¿ 0, and this is a

counterexample because it is known that RR(B) = 0, KX(B) - Z [1][2], and

RR(B(H)) — 0 [4]. Throughout this note tensor products of C*-algebras mean

the minimal tensor products.

We refer the reader to [3][4][6][8][9][11][13][14] for results about the real
rank.

2. Result

We recall that C*-algebra A is exact if

0^A®K^A® B(H) -^A® B(H)/K -> 0

is an exact sequence [5].

Proposition. Let A be a unital exact C*-algebra with KX(A) ̂  0. Then

RR(A ® B(H)) ¿ 0.

Proof. By the six-term exact sequence from ^-Theory [1],

K0(A ® K)       -► Ko(A ® B(H)) —^ K0(A ® B(H)/K)

} I»
KX(A®B(H)/K) <- KX(A®B(H)) <-^—       KX(A®¥)

Since KX(A®B(H)) = 0 (see [7, Theorem 2.5]), n„ is not surjective. For, if

7î» is surjective, Kerô = Ko(A ® B(H)/K), and d = 0. Since Keri» = Im 9 ,
we know i» is injective, and Kx (A ® B(H)) ^ 0. This ia a contradiction.

Hence, we know there is a projection in A ® B(H)/K ® K which cannot be
lifted to a projection in A ® B(H) ® K.

Consider the following C* -exact sequence:

0-^A®K®K^A® B(H) ®K^A® B(H)/K ® K -+ 0.

Even if RR(A ® K) = RR(A ® B(H)/K) = 0, by [4, Theorem 3.14] (cf.
[13, Proposition 2.3]) and the above argument, RR(A ® B(H) ® K) ¿ 0 and
RR(A ® B(H)) ¿ 0 (cf. [4, Corollary 3.3]). Otherwise, it is trivially
RR(A®B(H))^0, and the proof is completed.   G

The next result means that the real rank of tensor products of C*-algebras

with real rank zero is not always zero.
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Corollary. Let B be one of the Bunce-Deddens algebras. We have, then,

RR(B ® B(H)) £ 0.

Proof. Since the Bunce-Deddens algebras are nuclear, they are exact [5].  By

[1][2], we know RR(B) = 0 and KX(B) = Z.   D

3. Remarks

(1) Using the idea in Proposition we can produce another example which

does not satisfy the conjecture described in the introduction.
Let B be one of the Bunce-Deddens algebras and On be the Cuntz algebra. By

the Kiinneth Theorem [12, Theorem 2.14], we know Kx(B®0„) = Z/(n - 1)Z.
As in the same argument RR(B ®M(On ®K)) ^ 0. On the other hand, On is a

purely infinite simple C*-algebra and Kx(On) = 0. We know RR(M(On®K)) =
0 by Zhang [14, Examples 2.7(i)].

(2) As Brown and Pedersen pointed out in [4], a C*-algebra has real rank

zero if and only if it has the (FS)-property, that is, the set of its all selfadjoint

elements has a dense set of elements with finite spectrum. Therefore, Corollary

means that (FS)-property is not stable under taking tensor products.
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