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A MEASURE WITH A LARGE SET OF TANGENT MEASURES

TOBY O’NEIL

(Communicated by Andrew M. Bruckner)

ABSTRACT. There exists a Borel regular, finite, non-zero measure u on R?
such that for u-a.e. x the set of tangent measures of u at x consists of all
non-zero, Borel regular, locally finite measures on R .

INTRODUCTION

Tangent measures were introduced in [1] in order to investigate the local
behaviour of measures. The main advantage of tangent measures is that they
often possess more regularity than the original measure and thus a wider range
of analytical techniques may be used upon them. The object of this note is to
show that in general this does not necessarily hold.

Let .# be the set of all Borel regular, locally finite, measures on R?. A
sequence (u;) of measuresin .# convergesto u in A& if [ fdu, — [ fdu as
k — oo for all continuous functions f with bounded support. This is equivalent
to requiring that [ gdu, — [gdu as k — oo for all nonnegative functions g
with Lipschitz constant less than or equal to 1 and bounded support.

A together with this notion of convergence is metrisable and the resulting
space is both complete and separable. For further information about these
results see either [1] or [2].

For ue€.#, x € R? and r > 0 define for E c R¢

Uy f(E):=pu(x+rE):=u({x+re:ecE}).

Suppose that u € .# and x € RY. A measure v € # is said to be a tangent
measure of u at x if v is not the zero measure (denoted by 0) and there exist
sequences 7, \, 0 and ¢, > 0 such that

Ckﬂx’rk -V ask—)m.

The set of all tangent measures to x4 at x will be denoted by Tan(u, x).
Tan(u, x) has the following properties:
1. cv € Tan(u, x) whenever v € Tan(u, x) and ¢ > 0.
2. vy,, € Tan(u, x) whenever v € Tan(u, x) and r > 0.
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3. Tan(u, x) is a closed set with respect to the space of all non-zero, Borel
regular, locally finite measures.
As a direct consequence we have:

Lemma 1. If #° C Tan(u, x), then U, ;,or%,s C Tan(u, x) where r4y s :=

(rve.s:veNY. "
Lemma 2. If #/ C Tan(u, x) and A is dense in # , then Tan(u, x) =
A\{0}.

CONSTRUCTION OF THE MEASURE

Theorem 3. There exists a non-zero measure u € # such that for u-a.e. x,
Tan(u, x) = .#\{0}.
Proof. First let us define for x € R? the Dirac measure at x as follows

1 ifxekE,

0 otherwise.
Additionally let Qt denote the positive rationals and Q¢ denote the rational
d-tuples, that is, d-tuples whose coordinates are all rational numbers. We have
that
n—1
S = {a060+z:a,-6x,.: ne{2,3,...},q eqQt, x; GQd, |x;| <1 for

i=1

n—1

ie{0,...,n—1} and Za;=landi#j=>xi¢xj}
i=0

is a countable set, and if v € ., then it is a probability measure with support

in B(0, 1) (the closed ball with centre the origin and radius 1). Moreover

U p%,q
p,9€Q*
is a countable set which is dense in .# . Thus by Lemmas 1 and 2 it suffices to
construct a measure z such that Tan(u, x) D% for u-ae. x.
Let (u)72, be a sequence of elements of < such that every element of &
occurs infinitely many times in this sequence. Thus each y; is of the form
nk—l
i = a(k, 0)do + z alk, D)oxk i
i=1
where the a(k, i), x(k, i) fulfill the appropriate conditions of % (in partic-
ular x(k, 0) =0). For each y; define
O = og;’f}‘g"n-:{lx(k’ )= x(k, j)l: i #j}
From this define an increasing sequence of real numbers (r;) by setting r; = 8
and choosing 7, > 8%*2ry /oy .
Let X:=[];2,{0, ..., ny — 1}, and let P be the probability measure on Z
obtained by setting

j
P(nl;) =[] ok, n,
k=1
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where n|; == (m, ..., n;) x [I;2;;1{0, ..., m — 1}. Define n: £ — B(0, 1)
by

a(n) =y ()~ x(k, my).
k=1

Notice that 7 is a well-defined 1-1 map. Set u := myP, that is, for E c R4
define

u(E) := Pl (E)].
I claim that u is our required measure. The Borel regularity of u follows from
the continuity of the mapping n with respect to the product topology on X.

Lemma 4. For a given v € &#, let (v;)2, be a strictly increasing sequence such
that p,, =v forall i. Let

Vo={neZ:nu=0io0}.
Then P(V,)=1 and so u[n(V,)]=1.
Proof. We have that for all i

Pty = 0) = a(v(i), 0) = a > 0;

therefore ) P(7,(;) = 0) = oo and so, by the Borel-Cantelli lemma and inde-
pendence, the lemma follows. O

Let V'=[,csV,. Then as & is countable P(V)=1 and so u[n(V)]=1.
For x € n(Z) define x; := x(i, [x~'(x)];) and so x = 332, x;/r;. Let X €
n(V), and let 7 be the associated element of V. Fix v € ., and define
(v:)2, as in the lemma (so p,;) = v). Then, as 7 € V, there is an infinite set
N c U2 {vi} such that forall k€ N, X, =0 and y; =v.

We wish to show that v € Tan(u, X). So we need to find sequences ¢; > 0
and s; \, 0 such that cjuz ;, - v as j — co.

Let s; = 1/ry(;) where k(j) is the jth element of N andso s; \, 0.

Define

ci=lu{xen®@):x;=x;fori=1,...,k@j)-1}]""

By the equivalence from the introduction, ¢, — ¢ iff [gd¢, — [ gd¢ where
Lip(g) <1 and spt(g) is bounded and g is nonnegative. So fix such a g and
suppose spt(g) C B(0, R) for some R>0.

Choose J € N such that 28%/) > R. For j > J we have (letting k :=
k(7))

[ edteuss)=¢ [ gl - ) duo
R4 R4

> x,~—3c',~
=¢; r du(x).
,/ﬂ)g<k§ o ) u(x)

Let us consider r; Y 02, ﬁ:it in more detail. There are two possible cases:
1
Casel. x;=X; for i=1,...,k —1. Then since

) — ) —

Xi — Xj _ Xi— Xj
Iy E =X — X+ I, E _r<
i

i=1 ! i=k+1
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and as
o0
Xi—X 2
rk E : - S _8—k9
. ri 7
i=k+1
we have (as X, = 0)
X —X 2
xk—rkz lr : < 78_’(
i=1

Case 2. There exists u € {1,...,k—1} such that x; =X; for i=1,...,u-1
but x, # X, . Thus .

i=1 i=u+l
and both
o0 p—
Y T < gestt and RS>
imail ri ry ry ry
therefore
o0 J—
Xi— Xj 27 rk 27 k
r —8“ > R.
"; o |2285,%” 28

Thus in Case 2, g[ri(x —X)] =0 and so
o) [ 8Urex = PNdx) = 5 [ glrx~Pdutx)

where X = {x € n(Z): x; = X; fori = 1,...,k — 1}. Notice that ¢; =
[u(X)]~!. As Lip(g) < 1, we have by Case 1 that for x € X

2 _
|8lrc(x = %) - g(xi)l < 58 k.
Thus integrating over X and multiplying by c; gives

\IIN

) [ o 8trelx ~PN0) ~ 2o [ () duo) <
but by independence,
[ g dute) =u(x) [ g dute) = wx) [ gtx)avx)
X (%) R?
and so the theorem follows. 0O
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