A MEASURE WITH A LARGE SET OF TANGENT MEASURES

TOBY O'NEIL
(Communicated by Andrew M. Bruckner)

Abstract

There exists a Borel regular, finite, non-zero measure μ on \mathbb{R}^{d} such that for μ-a.e. x the set of tangent measures of μ at x consists of all non-zero, Borel regular, locally finite measures on \mathbb{R}^{d}.

Introduction

Tangent measures were introduced in [1] in order to investigate the local behaviour of measures. The main advantage of tangent measures is that they often possess more regularity than the original measure and thus a wider range of analytical techniques may be used upon them. The object of this note is to show that in general this does not necessarily hold.

Let \mathscr{M} be the set of all Borel regular, locally finite, measures on \mathbb{R}^{d}. A sequence $\left(\mu_{k}\right)$ of measures in \mathscr{M} converges to μ in \mathscr{M} if $\int f d \mu_{k} \rightarrow \int f d \mu$ as $k \rightarrow \infty$ for all continuous functions f with bounded support. This is equivalent to requiring that $\int g d \mu_{k} \rightarrow \int g d \mu$ as $k \rightarrow \infty$ for all nonnegative functions g with Lipschitz constant less than or equal to 1 and bounded support.
\mathscr{M} together with this notion of convergence is metrisable and the resulting space is both complete and separable. For further information about these results see either [1] or [2].

For $\mu \in \mathscr{M}, x \in \mathbb{R}^{d}$ and $r>0$ define for $E \subset \mathbb{R}^{d}$

$$
\mu_{x, r}(E):=\mu(x+r E):=\mu(\{x+r e: e \in E\}) .
$$

Suppose that $\mu \in \mathscr{M}$ and $x \in \mathbb{R}^{d}$. A measure $\nu \in \mathscr{M}$ is said to be a tangent measure of μ at x if ν is not the zero measure (denoted by 0) and there exist sequences $r_{k} \searrow 0$ and $c_{k}>0$ such that

$$
c_{k} \mu_{x, r_{k}} \rightarrow \nu \quad \text { as } k \rightarrow \infty
$$

The set of all tangent measures to μ at x will be denoted by $\operatorname{Tan}(\mu, x)$.
$\operatorname{Tan}(\mu, x)$ has the following properties:

1. $c \nu \in \operatorname{Tan}(\mu, x)$ whenever $\nu \in \operatorname{Tan}(\mu, x)$ and $c>0$.
2. $\nu_{0, r} \in \operatorname{Tan}(\mu, x)$ whenever $\nu \in \operatorname{Tan}(\mu, x)$ and $r>0$.

[^0]3. $\operatorname{Tan}(\mu, x)$ is a closed set with respect to the space of all non-zero, Borel regular, locally finite measures.

As a direct consequence we have:
Lemma 1. If $\mathscr{N} \subset \operatorname{Tan}(\mu, x)$, then $\bigcup_{r, s>0} r \mathscr{N}_{0, s} \subset \operatorname{Tan}(\mu, x)$ where $r \mathscr{N}_{0, s}:=$ $\left\{r \nu_{0, s}: \nu \in \mathscr{N}\right\}$.
Lemma 2. If $\mathscr{N} \subset \operatorname{Tan}(\mu, x)$ and \mathscr{N} is dense in \mathscr{M}, then $\operatorname{Tan}(\mu, x)=$ $\mathscr{M} \backslash\{\mathbf{0}\}$.

Construction of the measure

Theorem 3. There exists a non-zero measure $\mu \in \mathscr{M}$ such that for μ-a.e. x, $\operatorname{Tan}(\mu, \boldsymbol{x})=\mathscr{M} \backslash\{\mathbf{0}\}$.
Proof. First let us define for $x \in \mathbb{R}^{d}$ the Dirac measure at x as follows

$$
\delta_{x}(E):= \begin{cases}1 & \text { if } x \in E \\ 0 & \text { otherwise }\end{cases}
$$

Additionally let \mathbb{Q}^{+}denote the positive rationals and \mathbb{Q}^{d} denote the rational d-tuples, that is, d-tuples whose coordinates are all rational numbers. We have that

$$
\begin{aligned}
\mathscr{S}=\left\{\alpha_{0} \delta_{0}+\right. & \sum_{i=1}^{n-1} \alpha_{i} \delta_{x_{i}}: n \in\{2,3, \ldots\}, \alpha_{i} \in \mathbb{Q}^{+}, x_{i} \in \mathbb{Q}^{d},\left|x_{i}\right| \leq 1 \text { for } \\
& \left.i \in\{0, \ldots, n-1\} \text { and } \sum_{i=0}^{n-1} \alpha_{i}=1 \text { and } i \neq j \Rightarrow x_{i} \neq x_{j}\right\}
\end{aligned}
$$

is a countable set, and if $\nu \in \mathscr{S}$, then it is a probability measure with support in $B(0,1)$ (the closed ball with centre the origin and radius 1). Moreover

$$
\bigcup_{p, q \in \mathbf{Q}^{+}} p \mathscr{S}_{0, q}
$$

is a countable set which is dense in \mathscr{M}. Thus by Lemmas 1 and 2 it suffices to construct a measure μ such that $\operatorname{Tan}(\mu, x) \supset \mathscr{S}$ for μ-a.e. x.

Let $\left(\mu_{k}\right)_{k=1}^{\infty}$ be a sequence of elements of \mathscr{S} such that every element of \mathscr{S} occurs infinitely many times in this sequence. Thus each μ_{k} is of the form

$$
\mu_{k}=\alpha(k, 0) \delta_{0}+\sum_{i=1}^{n_{k}-1} \alpha(k, i) \delta_{x(k, i)}
$$

where the $\alpha(k, i), x(k, i)$ fulfill the appropriate conditions of \mathscr{S} (in particular $x(k, 0)=0)$. For each μ_{k} define

$$
\sigma_{k}=\min _{0 \leq i, j \leq n-1}\{|x(k, i)-x(k, j)|: i \neq j\}
$$

From this define an increasing sequence of real numbers $\left(r_{k}\right)$ by setting $r_{1}=8$ and choosing $r_{k+1}>8^{k+2} r_{k} / \sigma_{k}$.

Let $\Sigma:=\prod_{k=1}^{\infty}\left\{0, \ldots, n_{k}-1\right\}$, and let P be the probability measure on Σ obtained by setting

$$
P\left(\left.\eta\right|_{j}\right):=\prod_{k=1}^{j} \alpha_{k, \eta_{k}}
$$

where $\left.\eta\right|_{j}:=\left(\eta_{1}, \ldots, \eta_{j}\right) \times \prod_{k=j+1}^{\infty}\left\{0, \ldots, n_{k}-1\right\}$. Define $\pi: \Sigma \rightarrow B(0,1)$ by

$$
\pi(\eta):=\sum_{k=1}^{\infty}\left(r_{k}\right)^{-1} x\left(k, \eta_{k}\right)
$$

Notice that π is a well-defined $1-1$ map. Set $\mu:=\pi_{\#} P$, that is, for $E \subset \mathbb{R}^{d}$ define

$$
\mu(E):=P\left[\pi^{-1}(E)\right] .
$$

I claim that μ is our required measure. The Borel regularity of μ follows from the continuity of the mapping π with respect to the product topology on Σ.
Lemma 4. For a given $\nu \in \mathscr{S}$, let $\left(v_{i}\right)_{i=1}^{\infty}$ be a strictly increasing sequence such that $\mu_{v_{i}}=\nu$ for all i. Let

$$
V_{\nu}=\left\{\eta \in \Sigma: \eta_{\nu(i)}=0 \text { i.o. }\right\} .
$$

Then $P\left(V_{\nu}\right)=1$ and so $\mu\left[\pi\left(V_{\nu}\right)\right]=1$.
Proof. We have that for all i

$$
P\left(\eta_{\nu(i)}=0\right)=\alpha(v(i), 0)=\alpha>0
$$

therefore $\sum P\left(\eta_{\nu(i)}=0\right)=\infty$ and so, by the Borel-Cantelli lemma and independence, the lemma follows.

Let $V=\bigcap_{\nu \in S} V_{\nu}$. Then as \mathscr{S} is countable $P(V)=1$ and so $\mu[\pi(V)]=1$. For $x \in \pi(\Sigma)$ define $x_{i}:=x\left(i,\left[\pi^{-1}(x)\right]_{i}\right)$ and so $x=\sum_{i=1}^{\infty} x_{i} / r_{i}$. Let $\bar{x} \in$ $\pi(V)$, and let $\bar{\eta}$ be the associated element of V. Fix $\nu \in \mathscr{S}$, and define $\left(v_{i}\right)_{i=1}^{\infty}$ as in the lemma (so $\mu_{v(i)}=\nu$). Then, as $\bar{\eta} \in V$, there is an infinite set $N \subset \bigcup_{i=1}^{\infty}\left\{v_{i}\right\}$ such that for all $k \in N, \bar{x}_{k}=0$ and $\mu_{k}=\nu$.

We wish to show that $\nu \in \operatorname{Tan}(\mu, \bar{x})$. So we need to find sequences $c_{j}>0$ and $s_{j} \searrow 0$ such that $c_{j} \mu_{\bar{x}, s_{j}} \rightarrow \nu$ as $j \rightarrow \infty$.

Let $s_{j}=1 / r_{k(j)}$ where $k(j)$ is the j th element of N and so $s_{j} \searrow 0$.
Define

$$
c_{j}=\left[\mu\left\{x \in \pi(\Sigma): x_{i}=\bar{x}_{i} \text { for } i=1, \ldots, k(j)-1\right\}\right]^{-1}
$$

By the equivalence from the introduction, $\phi_{k} \rightarrow \phi$ iff $\int g d \phi_{k} \rightarrow \int g d \phi$ where $\operatorname{Lip}(g) \leq 1$ and $\operatorname{spt}(g)$ is bounded and g is nonnegative. So fix such a g and suppose $\operatorname{spt}(g) \subset B(0, R)$ for some $R \geq 0$.

Choose $J \in \mathbf{N}$ such that $\frac{27}{28} 8^{k(J)}>R$. For $j \geq J$ we have (letting $k:=$ $k(j)$)

$$
\begin{aligned}
\int_{\mathbf{R}^{d}} g d\left(c_{j} \mu_{\bar{x}, s_{j}}\right) & =c_{j} \int_{\mathbf{R}^{d}} g\left(r_{k(j)}(x-\bar{x})\right) d \mu(x) \\
& =c_{j} \int_{\pi(\Sigma)} g\left(r_{k} \sum_{k=1}^{\infty} \frac{x_{i}-\bar{x}_{i}}{r_{i}}\right) d \mu(x)
\end{aligned}
$$

Let us consider $r_{k} \sum_{i=1}^{\infty} \frac{x_{i}-\bar{x}_{i}}{r_{i}}$ in more detail. There are two possible cases:
Case 1. $x_{i}=\bar{x}_{i}$ for $i=1, \ldots, k-1$. Then since

$$
r_{k} \sum_{i=1}^{\infty} \frac{x_{i}-\bar{x}_{i}}{r_{i}}=x_{k}-\bar{x}_{k}+r_{k} \sum_{i=k+1}^{\infty} \frac{x_{i}-\bar{x}_{i}}{r_{i}}
$$

and as

$$
\left|r_{k} \sum_{i=k+1}^{\infty} \frac{x_{i}-\bar{x}_{i}}{r_{i}}\right| \leq \frac{2}{7} 8^{-k}
$$

we have (as $\bar{x}_{k}=0$)

$$
\left|x_{k}-r_{k} \sum_{i=1}^{\infty} \frac{x_{i}-\bar{x}_{i}}{r_{i}}\right| \leq \frac{2}{7} 8^{-k}
$$

Case 2. There exists $u \in\{1, \ldots, k-1\}$ such that $x_{i}=\bar{x}_{i}$ for $i=1, \ldots, u-1$ but $x_{u} \neq \bar{x}_{u}$. Thus

$$
\sum_{i=1}^{\infty} \frac{x_{i}-\bar{x}_{i}}{r_{i}}=\frac{x_{u}-\bar{x}_{u}}{r_{u}}+\sum_{i=u+1}^{\infty} \frac{x_{i}-\bar{x}_{i}}{r_{i}}
$$

and both

$$
\left|\sum_{i=u+1}^{\infty} \frac{x_{i}-\bar{x}_{i}}{r_{i}}\right| \leq \frac{\sigma_{u}}{7 r_{u}} 8^{-k} \text { and } \quad\left|\frac{x_{u}-\bar{x}_{u}}{r_{u}}\right| \geq \frac{\sigma_{u}}{r_{u}}
$$

therefore

$$
\left|r_{k} \sum_{i=1}^{\infty} \frac{x_{i}-\bar{x}_{i}}{r_{i}}\right| \geq \frac{27}{28} \frac{r_{k}}{r_{u}} \sigma_{u}>\frac{27}{28} 8^{k}>R
$$

Thus in Case 2, $g\left[r_{k}(x-\bar{x})\right]=0$ and so

$$
c_{j} \int_{\pi(\Sigma)} g\left[r_{k}(x-\bar{x})\right] d \mu(x)=c_{j} \int_{X} g\left[r_{k}(x-\bar{x})\right] d \mu(x)
$$

where $X=\left\{x \in \pi(\Sigma): x_{i}=\bar{x}_{i}\right.$ for $\left.i=1, \ldots, k-1\right\}$. Notice that $c_{j}=$ $[\mu(X)]^{-1}$. As $\operatorname{Lip}(g) \leq 1$, we have by Case 1 that for $x \in X$

$$
\left|g\left[r_{k}(x-\bar{x})\right]-g\left(x_{k}\right)\right| \leq \frac{2}{7} 8^{-k}
$$

Thus integrating over X and multiplying by c_{j} gives

$$
\left|c_{j} \int_{\pi(\Sigma)} g\left[r_{k}(x-\bar{x})\right] d \mu(x)-\frac{1}{\mu(X)} \int_{X} g\left(x_{k}\right) d \mu(x)\right| \leq \frac{2}{7} 8^{-k},
$$

but by independence,

$$
\int_{X} g\left(x_{k}\right) d \mu(x)=\mu(X) \int_{\pi(\Sigma)} g\left(x_{k}\right) d \mu(x)=\mu(X) \int_{\mathbf{R}^{d}} g(x) d \nu(x)
$$

and so the theorem follows.

References

1. D. Preiss, Geometry of measures in $\mathbb{R}^{\boldsymbol{n}}$, Ann. of Math. (2) 125 (1987), 537-643.
2. P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Univ. Press, London and New York, 1995.

Department of Mathematics, University College London, Gower Street, London, WCIE 6BT, England

Current address: Mathematical Institute, North Haugh, St. Andrews, Fife, KY16 9SS, United Kingdom

E-mail address: tco@st-and.ac.uk

[^0]: Received by the editors November 19, 1993.
 1991 Mathematics Subject Classification. Primary 28A75.
 Research supported by SERC Studentship 91001561 and completed while the author was a student of D. Preiss.

