A MEASURE WITH A LARGE SET OF TANGENT MEASURES

TOBY O'NEIL

(Communicated by Andrew M. Bruckner)

ABSTRACT. There exists a Borel regular, finite, non-zero measure μ on \mathbb{R}^d such that for μ -a.e. x the set of tangent measures of μ at x consists of all non-zero, Borel regular, locally finite measures on \mathbb{R}^d .

Introduction

Tangent measures were introduced in [1] in order to investigate the local behaviour of measures. The main advantage of tangent measures is that they often possess more regularity than the original measure and thus a wider range of analytical techniques may be used upon them. The object of this note is to show that in general this does not necessarily hold.

Let \mathscr{M} be the set of all Borel regular, locally finite, measures on \mathbb{R}^d . A sequence (μ_k) of measures in \mathscr{M} converges to μ in \mathscr{M} if $\int f \, d\mu_k \to \int f \, d\mu$ as $k \to \infty$ for all continuous functions f with bounded support. This is equivalent to requiring that $\int g \, d\mu_k \to \int g \, d\mu$ as $k \to \infty$ for all nonnegative functions g with Lipschitz constant less than or equal to 1 and bounded support.

 \mathcal{M} together with this notion of convergence is metrisable and the resulting space is both complete and separable. For further information about these results see either [1] or [2].

For $\mu \in \mathcal{M}$, $x \in \mathbb{R}^d$ and r > 0 define for $E \subset \mathbb{R}^d$

$$\mu_{x,r}(E) := \mu(x + rE) := \mu(\{x + re : e \in E\}).$$

Suppose that $\mu \in \mathcal{M}$ and $x \in \mathbb{R}^d$. A measure $\nu \in \mathcal{M}$ is said to be a tangent measure of μ at x if ν is not the zero measure (denoted by $\mathbf{0}$) and there exist sequences $r_k \searrow 0$ and $c_k > 0$ such that

$$c_k \mu_{x,r_k} \to \nu$$
 as $k \to \infty$.

The set of all tangent measures to μ at x will be denoted by $Tan(\mu, x)$.

 $Tan(\mu, x)$ has the following properties:

- 1. $c\nu \in \text{Tan}(\mu, x)$ whenever $\nu \in \text{Tan}(\mu, x)$ and c > 0.
- 2. $\nu_{0,r} \in \text{Tan}(\mu, x)$ whenever $\nu \in \text{Tan}(\mu, x)$ and r > 0.

Received by the editors November 19, 1993.

1991 Mathematics Subject Classification. Primary 28A75.

Research supported by SERC Studentship 91001561 and completed while the author was a student of D. Preiss.

2218 **TOBY O'NEIL**

3. $Tan(\mu, x)$ is a closed set with respect to the space of all non-zero, Borel regular, locally finite measures.

As a direct consequence we have:

Lemma 1. If $\mathcal{N} \subset \operatorname{Tan}(\mu, x)$, then $\bigcup_{r,s>0} r\mathcal{N}_{0,s} \subset \operatorname{Tan}(\mu, x)$ where $r\mathcal{N}_{0,s} :=$ $\{r\nu_{0,s}\colon \nu\in\mathscr{N}\}$.

Lemma 2. If $\mathcal{N} \subset \operatorname{Tan}(\mu, x)$ and \mathcal{N} is dense in \mathcal{M} , then $\operatorname{Tan}(\mu, x) =$ $\mathcal{M}\setminus\{\mathbf{0}\}$.

CONSTRUCTION OF THE MEASURE

Theorem 3. There exists a non-zero measure $\mu \in \mathcal{M}$ such that for μ -a.e. x, $\operatorname{Tan}(\mu, x) = \mathscr{M} \setminus \{\mathbf{0}\}.$

Proof. First let us define for $x \in \mathbb{R}^d$ the Dirac measure at x as follows

$$\delta_x(E) := \begin{cases} 1 & \text{if } x \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Additionally let \mathbb{Q}^+ denote the positive rationals and \mathbb{Q}^d denote the rational d-tuples, that is, d-tuples whose coordinates are all rational numbers. We have that

$$\mathcal{S} = \left\{ \alpha_0 \delta_0 + \sum_{i=1}^{n-1} \alpha_i \delta_{x_i} \colon n \in \{2, 3, \dots\}, \ \alpha_i \in \mathbb{Q}^+, \ x_i \in \mathbb{Q}^d, \ |x_i| \le 1 \text{ for} \right.$$

$$i \in \{0, \dots, n-1\} \quad \text{and} \quad \sum_{i=0}^{n-1} \alpha_i = 1 \text{ and } i \ne j \Rightarrow x_i \ne x_j \right\}$$

is a countable set, and if $\nu \in \mathcal{S}$, then it is a probability measure with support in B(0, 1) (the closed ball with centre the origin and radius 1). Moreover

$$\bigcup_{p,q\in\mathbf{Q}^+}p\mathcal{S}_{0,q}$$

is a countable set which is dense in \mathcal{M} . Thus by Lemmas 1 and 2 it suffices to construct a measure μ such that $Tan(\mu, x) \supset \mathcal{S}$ for μ -a.e. x.

Let $(\mu_k)_{k=1}^{\infty}$ be a sequence of elements of $\mathscr S$ such that every element of $\mathscr S$ occurs infinitely many times in this sequence. Thus each μ_k is of the form

$$\mu_k = \alpha(k, 0)\delta_0 + \sum_{i=1}^{n_k-1} \alpha(k, i)\delta_{x(k, i)}$$

where the $\alpha(k, i)$, x(k, i) fulfill the appropriate conditions of $\mathcal S$ (in particular x(k, 0) = 0). For each μ_k define

$$\sigma_k = \min_{0 \le i, j \le n-1} \{ |x(k, i) - x(k, j)| \colon i \ne j \}.$$

From this define an increasing sequence of real numbers (r_k) by setting $r_1 = 8$

and choosing $r_{k+1} > 8^{k+2} r_k / \sigma_k$. Let $\Sigma := \prod_{k=1}^{\infty} \{0, \ldots, n_k - 1\}$, and let P be the probability measure on Σ obtained by setting

$$P(\eta|_j) := \prod_{k=1}^j \alpha_{k,\eta_k}$$

where $\eta|_j := (\eta_1, \ldots, \eta_j) \times \prod_{k=j+1}^{\infty} \{0, \ldots, n_k - 1\}$. Define $\pi: \Sigma \to B(0, 1)$ by

$$\pi(\eta) := \sum_{k=1}^{\infty} (r_k)^{-1} x(k, \eta_k).$$

Notice that π is a well-defined 1-1 map. Set $\mu := \pi_\# P$, that is, for $E \subset \mathbb{R}^d$ define

$$\mu(E) := P[\pi^{-1}(E)].$$

I claim that μ is our required measure. The Borel regularity of μ follows from the continuity of the mapping π with respect to the product topology on Σ .

Lemma 4. For a given $\nu \in \mathcal{S}$, let $(v_i)_{i=1}^{\infty}$ be a strictly increasing sequence such that $\mu_{v_i} = \nu$ for all i. Let

$$V_{\nu} = \{ \eta \in \Sigma : \eta_{\nu(i)} = 0 \ i.o. \}.$$

Then $P(V_{\nu}) = 1$ and so $\mu[\pi(V_{\nu})] = 1$.

Proof. We have that for all i

$$P(\eta_{\nu(i)} = 0) = \alpha(v(i), 0) = \alpha > 0;$$

therefore $\sum P(\eta_{\nu(i)}=0)=\infty$ and so, by the Borel-Cantelli lemma and independence, the lemma follows. \Box

Let $V=\bigcap_{\nu\in S}V_{\nu}$. Then as $\mathscr S$ is countable P(V)=1 and so $\mu[\pi(V)]=1$. For $x\in\pi(\Sigma)$ define $x_i:=x(i\,,\,[\pi^{-1}(x)]_i)$ and so $x=\sum_{i=1}^\infty x_i/r_i$. Let $\overline x\in\pi(V)$, and let $\overline \eta$ be the associated element of V. Fix $\nu\in\mathscr S$, and define $(v_i)_{i=1}^\infty$ as in the lemma (so $\mu_{v(i)}=\nu$). Then, as $\overline \eta\in V$, there is an infinite set $N\subset\bigcup_{i=1}^\infty\{v_i\}$ such that for all $k\in N$, $\overline x_k=0$ and $\mu_k=\nu$.

We wish to show that $\nu \in \text{Tan}(\mu, \overline{x})$. So we need to find sequences $c_j > 0$ and $s_j \searrow 0$ such that $c_j \mu_{\overline{x}, s_j} \to \nu$ as $j \to \infty$.

Let $s_j = 1/r_{k(j)}$ where k(j) is the jth element of N and so $s_j \setminus 0$. Define

$$c_j = [\mu\{x \in \pi(\Sigma): x_i = \overline{x}_i \text{ for } i = 1, ..., k(j) - 1\}]^{-1}.$$

By the equivalence from the introduction, $\phi_k \to \phi$ iff $\int g \, d\phi_k \to \int g \, d\phi$ where $\text{Lip}(g) \le 1$ and spt(g) is bounded and g is nonnegative. So fix such a g and suppose $\text{spt}(g) \subset B(0, R)$ for some $R \ge 0$.

Choose $J \in \mathbb{N}$ such that $\frac{27}{28}8^{k(J)} > R$. For $j \ge J$ we have (letting k := k(j))

$$\int_{\mathbf{R}^d} g \, d(c_j \mu_{\overline{x}, s_j}) = c_j \int_{\mathbf{R}^d} g(r_{k(j)}(x - \overline{x})) \, d\mu(x)$$

$$= c_j \int_{\pi(\Sigma)} g\left(r_k \sum_{k=1}^{\infty} \frac{x_i - \overline{x}_i}{r_i}\right) \, d\mu(x).$$

Let us consider $r_k \sum_{i=1}^{\infty} \frac{x_i - \overline{x}_i}{r_i}$ in more detail. There are two possible cases: Case 1. $x_i = \overline{x}_i$ for i = 1, ..., k - 1. Then since

$$r_k \sum_{i=1}^{\infty} \frac{x_i - \overline{x}_i}{r_i} = x_k - \overline{x}_k + r_k \sum_{i=k+1}^{\infty} \frac{x_i - \overline{x}_i}{r_i}$$

and as

$$\left| r_k \sum_{i=k+1}^{\infty} \frac{x_i - \overline{x}_i}{r_i} \right| \leq \frac{2}{7} 8^{-k} ,$$

we have (as $\overline{x}_k = 0$)

$$\left|x_k - r_k \sum_{i=1}^{\infty} \frac{x_i - \overline{x}_i}{r_i}\right| \le \frac{2}{7} 8^{-k}.$$

Case 2. There exists $u \in \{1, ..., k-1\}$ such that $x_i = \overline{x}_i$ for i = 1, ..., u-1 but $x_u \neq \overline{x}_u$. Thus

$$\sum_{i=1}^{\infty} \frac{x_i - \overline{x}_i}{r_i} = \frac{x_u - \overline{x}_u}{r_u} + \sum_{i=u+1}^{\infty} \frac{x_i - \overline{x}_i}{r_i}$$

and both

$$\left| \sum_{i=u+1}^{\infty} \frac{x_i - \overline{x}_i}{r_i} \right| \le \frac{\sigma_u}{7r_u} 8^{-k} \quad \text{and} \quad \left| \frac{x_u - \overline{x}_u}{r_u} \right| \ge \frac{\sigma_u}{r_u};$$

therefore

$$\left|r_k\sum_{i=1}^{\infty}\frac{x_i-\overline{x}_i}{r_i}\right|\geq \frac{27}{28}\frac{r_k}{r_u}\sigma_u>\frac{27}{28}8^k>R.$$

Thus in Case 2, $g[r_k(x-\overline{x})] = 0$ and so

$$c_j \int_{\pi(\Sigma)} g[r_k(x-\overline{x})] d\mu(x) = c_j \int_X g[r_k(x-\overline{x})] d\mu(x)$$

where $X = \{x \in \pi(\Sigma) : x_i = \overline{x}_i \text{ for } i = 1, ..., k-1\}$. Notice that $c_j = [\mu(X)]^{-1}$. As $\text{Lip}(g) \le 1$, we have by Case 1 that for $x \in X$

$$|g[r_k(x-\overline{x})]-g(x_k)|\leq \frac{2}{7}8^{-k}.$$

Thus integrating over X and multiplying by c_i gives

$$\left|c_j\int_{\pi(\Sigma)}g[r_k(x-\overline{x})]d\mu(x)-\frac{1}{\mu(X)}\int_Xg(x_k)d\mu(x)\right|\leq \frac{2}{7}8^{-k},$$

but by independence,

$$\int_{X} g(x_{k}) d\mu(x) = \mu(X) \int_{\pi(\Sigma)} g(x_{k}) d\mu(x) = \mu(X) \int_{\mathbb{R}^{d}} g(x) d\nu(x)$$

and so the theorem follows. \Box

REFERENCES

- 1. D. Preiss, Geometry of measures in \mathbb{R}^n , Ann. of Math. (2) 125 (1987), 537-643.
- P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Univ. Press, London and New York, 1995.

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE LONDON, GOWER STREET, LONDON, WC1E 6BT, ENGLAND

Current address: Mathematical Institute, North Haugh, St. Andrews, Fife, KY16 9SS, United Kingdom

E-mail address: tco@st-and.ac.uk