ON THE FINITE IMAGES OF SOME ONE-RELATOR GROUPS

D. MOLDAVANSKI AND N. SIBYAKOVA

(Communicated by Ronald Solomon)

ABSTRACT. It is shown that the group $G = \langle a, b; a^{-1}ba = b^k \rangle$ $(k \neq 0)$ is determined in the class of all residually finite one-relator groups by the set of its finite images.

Let $\mathscr{F}(G)$ denote the set of all finite homomorphic images of a group G. Also let $G_k(m)$ be the group with presentation

$$\langle a, b : a^{-1}ba = b^k, b^m = 1 \rangle$$

where the integers $k \neq 0$ and m > 0 are coprime.

G. Baumslag has noted in [1] that there exist integers k, l, m (e.g. m=25, k=6, l=11) such that the groups $G_k(m)$ and $G_l(m)$ are not isomorphic but $\mathscr{F}(G_k(m))=\mathscr{F}(G_l(m))$. In fact, the situation is entirely described by the following statement: $\mathscr{F}(G_k(m))=\mathscr{F}(G_l(m))$ if and only if the cosets $k+m\mathbb{Z}$ and $l+m\mathbb{Z}$ generate the same cyclic subgroups of the group \mathbb{Z}_m^* , the multiplicative group of integers relatively prime to m in the ring \mathbb{Z}_m of integers modulo m. Moreover, $G_k(m)\simeq G_l(m)$ if and only if $k+m\mathbb{Z}=(l+m\mathbb{Z})^{\pm 1}$.

The "if" part of the first assertion as well as the second assertion was proved in [1], and the "only if" part of the first assertion was proved in [2].

Any group $G_k(m)$ is a factor group of the one-relator group

$$G_k = \langle a, b; a^{-1}ba = b^k \rangle \qquad (k \neq 0),$$

and by contrast with the above result we have

Theorem 1. $\mathscr{F}(G_k) = \mathscr{F}(G_l)$ if and only if k = l.

Proof. For any integers r > 0 and s > 0 satisfying the condition $k^r \equiv 1 \pmod{s}$ we define $G_k(r, s)$ to be the group with presentation

$$\langle a, b; a^{-1}ba = b^k, a^r = 1, b^s = 1 \rangle$$
.

It is well known that $G_k(r,s)$ is a finite metacyclic group of order rs. Any element of $G_k(r,s)$ is uniquely representable in the form $a^{\alpha}b^{\beta}$ where $0 \le \alpha < r$, $0 \le \beta < s$. We notice also that the commutator subgroup of the group $G_k(r,s)$ is the cyclic subgroup generated by the element b^{k-1} .

Received by the editors May 5, 1993 and, in revised form, November 22, 1993.

1991 Mathematics Subject Classification. Primary 20F05; Secondary 20E26.

The work of the first author was supported by a grant of the High School Committee of Russia.

Let φ be a homomorphism of the group G_k into some finite group, and let r and s be the respective orders of the elements $a\varphi$ and $b\varphi$. The relation $a^{-\alpha}ba^{\alpha}=b^{k^{\alpha}}$ which holds in the group G_k for all $\alpha \geq 0$ shows that the integers r and s satisfy the condition $k^r \equiv 1 \pmod{s}$. This implies that any homomorphism of the group G_k into a finite group passes through some group $G_k(r,s)$.

In particular we see that if $k \neq 1$, then the group G_k has a non-abelian finite image. Therefore if $\mathscr{F}(G_k) = \mathscr{F}(G_l)$, then k = 1 if and only if l = 1, and we can assume in what follows that the numbers k and l are not equal to 1.

Now we prove two lemmas.

Lemma 1. If $\mathscr{F}(G_k) \subseteq \mathscr{F}(G_l)$, then for every prime p and for any integer $t \ge 0$ $p^t|k-1$ implies $p^t|l-1$.

(Here and everywhere below the notation r|s will mean that the integer r divides the integer s. (r, s) denotes the greatest common divisor of r and s.)

To prove this assertion let us write the integers k and l in the form

$$k = 1 + p^r u, \qquad l = 1 + p^s v,$$

where $r \ge 0$, $s \ge 0$, and (u, p) = (v, p) = 1. If r > 0, then $k^p \equiv 1 \pmod{p^{r+1}}$ and we may consider the group $G_k(p, p^{r+1})$. This group must be an image of the group G_l and, therefore, of some group $G_l(p^m, p^n)$. Since the group $G_k(p, p^{r+1})$ is non-abelian, n > s. Hence the commutator subgroup of $G_l(p^m, p^n)$, generated by the element $b^{p^s v}$, has the order $p^s = (p^s v, p^n)$. Since the order of the commutator subgroup of the group $G_k(p, p^{r+1})$ is equal to p^r , we must have $s \ge r$.

Lemma 2. Let $\mathcal{F}(G_k) \subseteq \mathcal{F}(G_l)$. Then every prime divisor of l divides k.

Proof. Suppose that there is a prime number p such that p|l and $p\nmid k$. Since $p\nmid l-1$, by Lemma 1, $p\nmid k-1$. Therefore the group $G_k(p-1,p)$ is not abelian and its commutator subgroup is of order p. Any epimorphism φ of G_l onto $G_k(p-1,p)$ passes through some group $G_l(r,s)$ where s is the order of $b\varphi$, and therefore (s,l)=1. Consequently, the commutator subgroup of $G_k(p-1,p)$ is generated by the element $(b^{l-1})\varphi$. Hence the element $(b\varphi)^{l-1}$ is of order p, but this is impossible since p|l and (s,l)=1.

Suppose now that for some integers k and l the equality $\mathscr{F}(G_k) = \mathscr{F}(G_l)$ holds. It follows from Lemma 1 that the integers k-1 and l-1 are distinguished at most by sign. Therefore if $k \neq l$ one must have k+l=2. Let $k=2^rk_1$ and $l=2^sl_1$ where $r\geq 0$, $s\geq 0$, and k_1 and l_1 are odd. Lemma 2 implies that the integers k and l have the same prime divisors, and therefore, since k+l=2, k_1 , $l_1=\pm 1$. If we assume, without loss of generality, that $r\leq s$, then the equality $2^r(k_1+2^{s-r}l_1)=2$ implies r=0 or r=1. If r=0, then s=r because the integer $k_1+2^{s-r}l_1$ must be even. Hence $k_1=l_1=1$, and so k=l. Let r=1. Then $k_1+2^{s-1}l_1=1$ and therefore $k_1=-1$, $l_1=1$, and s=2. Thus in this case k=-2, l=4. Consequently, it remains to show that $\mathscr{F}(G_{-2})\neq \mathscr{F}(G_4)$.

To do this, we shall show that if the elements f and g of the group $G_4(2, 5)$ satisfy the condition $f^{-1}gf = g^{-2}$, then g = 1.

Let these elements be written in the form

$$f = a^{\alpha}b^{\beta}$$
, $g = a^{\gamma}b^{\delta}$ $(0 \le \alpha, \gamma < 2, 0 \le \beta, \delta < 5)$.

By factorization of the group $G_4(2,5)$ by the subgroup generated by the element b the equality $f^{-1}gf=g^{-2}$ becomes $a^{3\gamma}=1$, and we must have $\gamma=0$. Therefore $f^{-1}gf=b^{-\beta}a^{-\alpha}b^{\delta}a^{\alpha}b^{\beta}=b^{\delta 4^{\alpha}}$ and $g^{-2}=b^{-2\delta}$. Thus

$$\delta(4^{\alpha}+2) \equiv 0 \pmod{5},$$

and it follows that $\delta = 0$. The proof of Theorem 1 is completed.

It is worthwhile to make some additional remarks. At first, what can one say about a one-relator group G such that $\mathscr{F}(G) = \mathscr{F}(G_k)$? In the general case the answer is unknown, but the question can be easily answered when G is residually finite.

Corollary. If G is a residually finite one-relator group and if for some integer k, $\mathcal{F}(G) = \mathcal{F}(G_k)$, then $G \simeq G_k$.

To prove this, it is enough to notice that the group G_k and therefore all groups in $\mathscr{F}(G_k)$ are metabelian. Consequently, G is metabelian since G is a subdirect product of the family $\mathscr{F}(G) = \mathscr{F}(G_k)$. Since G is not cyclic, by [3], G is isomorphic to some group G_l . From Theorem 1 it follows that l = k.

Following [4], we denote by σG the sequence whose *n*th term, $\sigma_n G$, is the number of subgroups of index *n* of a group G. It turns out that for any finitely generated groups G and H, $\mathcal{F}(G) = \mathcal{F}(H)$ implies $\sigma G = \sigma H$.

Indeed, if N is a normal subgroup of G, then for any number $n \ge 1$ we have $\sigma_n G \ge \sigma_n(G/N)$, equality holding if and only if all subgroups of index n of G contain N. Since the group G is finitely generated, it contains only a finite number of subgroups of index n, and therefore their intersection U_n is a subgroup of finite index of G. Consequently the quotient group G/U_n is isomorphic to some H/N, and therefore

$$\sigma_n H \geq \sigma_n (H/N) = \sigma_n (G/U_n) = \sigma_n G$$
.

The next result and Theorem 1 show in particular that the converse of the above statement is false.

Theorem 2. For any integer $n \ge 1$, $\sigma_n(G_k)$ is the sum of all positive divisors of n that are coprime with k, and $\sigma_n(G_k(m))$ is the sum of all positive common divisors of m and n.

We give a sketch of the proof of Theorem 2. Let H(p, q, r) be the subgroup of G_k generated by two elements a^pb^r and b^q , where p>0, q>0, and q is coprime with k. The following assertions can be easily verified and produce the required proof:

- (1) Every subgroup of finite index of G_k coincides with some H(p, q, r).
- (2) $[G_k: H(p, q, r)] = pq$.
- (3) $H(p_1, q_1, r_1) = H(p_2, q_2, r_2)$ if and only if $p_1 = p_2, q_1 = q_2$, and $r_1 \equiv r_2 \pmod{q_1}$.
- (4) The subgroup H(p, q, r) contains the normal closure in G_k of the element b^m if and only if q divides m.

It can also be shown that the subgroup H(p, q, r) of the group G_k is isomorphic to the group G_l , where $l = k^p$. Thus Theorem 1 shows the existence

of two groups, G and H, having isomorphic normal subgroups A and B of finite index such that $G/A \simeq H/B$ and $\mathscr{F}(G) \neq \mathscr{F}(H)$.

Finally, we want to mention the question of the existence of an infinite family of one-relator groups which are not isomorphic in pairs and have the same finite images. One example of such a family is prompted by a note of G. Baumslag [5]. Let H_m be the group with presentation

$$\langle a, b; a^{-m}b^{-1}a^{m}ba^{-m}ba^{m} = b^{2} \rangle$$
 $(m > 0)$.

It is shown in [5] that $\mathscr{F}(H_1)$ coincides with $\mathscr{F}(\mathbb{Z})$, the set of all finite cyclic groups, and the same arguments show the validity of the equality $\mathscr{F}(H_m) = \mathscr{F}(\mathbb{Z})$ for any m > 0. The normal closure N_m of the element b in H_m is the unique invariant subgroup of H_m whose quotient is infinite cyclic. The group N_m is the free product of m freely indecomposable groups. Therefore the groups H_m and H_n are not isomorphic if $m \neq n$. Nevertheless the groups H_m are not residually finite. The problem of the existence of an analogous family of residually finite one-relator groups is still open.

ACKNOWLEDGMENT

The authors are very grateful to the referee for pointing to [2] and for comments which have promoted the simplification of the original proof of Theorem 1.

REFERENCES

- 1. G. Baumslag, Residually finite groups with the same finite images, Compositio Math. 29 (1974), 249-252.
- 2. M. Burrow and A. Steinberg, On a result of G. Baumslag, Compositio Math. 71 (1989), 241-245.
- 3. W. Magnus, Uber diskontinuierliche gruppen mit einer definieren den relation (der Freiheitssatz), J. Reine Angew. Math. 163 (1930), 141-165.
- 4. G. Baumslag, Some problems on one-relator groups, Proc. Second Internat. Conf. Theory of Groups, Canberra, 1973, pp. 75-81.
- 5. _____, A non-cyclic one-relator group all of whose finite quotients are cyclic, J. Austral. Math. Soc. 10 (1969), 497-498.

DEPARTMENT OF MATHEMATICS, IVANOVO STATE UNIVERSITY, IVANOVO, 153002, RUSSIA E-mail address: svi@ivgu.ivanovo.su