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Abstract. We construct a holomorphic mapping from Cm to P" for any m

and n with m > n > 1 which shows Cherry-Lang-Wong's upper bound of the

error term of the Second Main Theorem in Nevanlinna theory is essentially the

best possible. Thus a question of Serge Lang is answered affirmatively in higher

dimensions.

0. Introduction

The classical one-dimensional Nevanlinna theory studies the number of so-

lutions to the equation f(z) — a in the disc of radius r as r tends to infinity

asymptotically. In the higher-dimensional Nevanlinna theory one studies holo-

morphic mappings from Cm into an «-dimensional complex manifold X. One

is interested not only in the preimages of points but also in the inverse images

of complex analytic subsets of X of positive dimension. Of all the various the-
orems in Nevanlinna theory, the Second Main Theorem is the most important.

In recent years, there has been considerable interest in finding the precise

error term of the Second Main Theorem. Such a question was raised by Serge

Lange [4] who was inspired by Vojta's [9] analogy between Nevanlinna theory

and Diophantine approximation. In 1990, S. Lang [5] found the best nature of
the upper bound of the Second Main Theorem by improving Wong's method
in [10] in the equidimensional case. Later, Z. Ye [14] showed all upper bounds
of the error terms in C conjectured by Lang are sharp. Recently, based on

Lang's method, Cherry [1] obtained an upper bound for the error term when

the dimension of the domain is not less than that of the image space under the

assumption that / is a non-degenerate holomorphic mapping. On the other
hand, Wong and Stoll [11] also obtained an upper bound for the error term

when the dimension of the domain is less than that of the image space un-

der the assumption that / is a linearly non-degenerate meromorphic mapping.

However their upper bound has not been verified to be sharp yet. In this paper,
we show the main term in the upper bound in Cherry-Lang-Wong's theorem is

sharp when the dimension of the domain is not less than the dimension of the

image space.
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1. Preliminaries and results

Let X be a projective manifold of complex dimension n and D be a di-

visor on X. A divisor D = ¿3/ D¡ has simple normal crossings if each Dj is

irreducible, non-singular, and at each point of X there exist complex coordi-

nates z\, ... , z„ such that D in a neighborhood of this point is defined by

Z\ • • • zk = 0 with k < n . The maximal value of k which can occur is called

the complexity of D. Let
/: Cm - X

be a non-degenerate (i.e., f(Cm) contains a non-empty open set in X) holo-
morphic map and m > n > 1. We always assume in this paper that:

D = YlDj is an ample divisor and has at worst simple normal crossings of
complexity k (< n).

Lj — Ldj is a line bundle associated with Dj, with a metric p¡ .

Sj is a holomorphic section of Lj suchthat (sf) = Dj and |s/°/|; = \Sj°f\Pj.
Q is a volume form on X, defining a metric k on the canonical bundle

LK ; so the first Chern form c\(k) - Ricß.

yf is a function with /*Q A U™=n+i V:ií/2ndzi A dz¡ = y/F, where *¥ is
Euclidean volume form in Cm .

» is a closed and positive (1, l)-form such that C\(pj) < n for all j and

Q <«"/«!.
Let (j) (> 1) and \p be positive and increasing functions such that

... f°°   du        ,  .   . [°° dx
(1) /    —r-^ = b0(y/) < oo   and     /    -r--^- = oo.

J\    uy/(u) Jx    <j)(x)

In what follows all notations and terms are defined as in [5] unless indicated

otherwise, e.g., Tf,„, Nf¡D, #/,Ram , etc.
Under the above assumptions, Cherry-Lang-Wong [1], Theorem 11, proved

that, when m> « ,

TfAr) + E Tf,pÁr) - NfAr) + tf/W')
(2)

< ^S(BT)+kl",bx,¥,r)-X-logyf(0) + 1,

where S(F, c, y/, r) = logF(r) + logip(F(r)) + logy/(crF(r)ip(F(r))). Thus
when the complexity of a divisor D is « , (2) can be written as

(3) TftK(r) + Y,Tf,Pj(r)-Nf^(r) + nf^m(r)<nlogTf^(r) + o(lo%Tf^(r))

for all large r outside a set of finite Lebesgue measure. In this paper we simplify

the upper bound of (2), explain the connection between the upper bound and

the size of the exceptional set, and show that (3) is sharp. Thus (« + e) log Tf(r)

is essentially the best possible error term, and we have answered a question of

Lang [5] when m = « .

Theorem 1. Let f, D, p¡■■, k , y/, <f>, and n be as above. Suppose that f(0) & D
and 0 0 Ram / ; then

TfAr) + £ Tf<pj(r) - NftD(r) + Nftttam(r)

(4) n + k «
< —2~ log Tfi„{r) + « log y/(Tf,„(r)) + - log ip(r) - « log^(r)

for all r > ro outside a set E with JE dr/<f>(r) < oo.
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Theorem 2. For any integers m and « with m > n > I, there are a holomorphic

mapping f from Cm to Y" , a divisor D = YL)=\ Dj c \L\> where the L is the

hyperplane bundle, and a closed positive (1, l)-form r\ such that, for all large
r,

Tf,K(r) + ^2Tf,pÁr)-NfMr) + Nf,R¡im(r) = nlogTftri(r) + o(loeTf!ri(r)).

When <p(r) = 1, then the exceptional set in Theorem 1 has finite Lebesgue

measure, so (2) is a special case of (4) and (4) is a simplified version of (2).

When <f>(r) — r, then the exceptional set in Theorem 1 has finite logarithmic
measure. However, on the right side of inequality (4) there is an extra term,

-« log<p(r), which plays an important role when Tf„(r) is of finite order (i.e.

Tft„(r) is approximately equal to rk). A more detailed discussion will be found

in [13]. In the one-dimensional case, A. Hinkkanen [3] showed the term log^

can be completely ignored. Other questions of Lang in [5] were investigated by

the author and others in the one-dimensional case (e.g. [12], [8] and [2]).

The function in Theorem 2 is of infinite order (i.e. lim sup(log Tf„(r)/ log r)

— oo) and has a big ramification term. We refer the readers to [13] for the case

of finite order maps.

2. Lemmas

Lemma 1. Let F be a positive and increasing function defined for r > 0 with

piecewise continuous derivative. Suppose there exists ri suchthat F(r\) > I,

say. Let <f> > 1 and ip be as (1). Then we have the inequality

F'(r)<F(rMF(r))/ct>(r)

for all r>r\ outside a set E with fE dr/<p(r) <bo(y)<oo.

Proof. Set E = {r e (r., oo) ; F'(r) > F(r)y/(F(r))/(p(r)} . Then

f  dr       f       F'(r) f°°   du
JEW)-JEm^(rY)dr-l vMñ)=Hv)-

Thus the lemma is proved.

Lemma 2. Let F be a positive and increasing function defined for r > 0 such that
the first derivative exists and F' is of piecewise continuous derivative. Suppose
that both F(r) and r2m~xF'(r) are positive and increasing functions of r, and

that there exists rx such that F(r\) > 1 for r > r\. Let b\>l be the smallest

number such that

bxr2m-xF'(r)>l,    for all r> 1.

Let \p and <p be the same as in Lemma 1. Then, for any e > 0,

T^Tr (r2m-l^(r))<emV^Fl/2(r))y,(r)/4>2(r)

for all r > r0 outside a set E with jE dr/cj)(r) < oo.

Proof. For any e > 0, we have from ([14], Lemma 1) that there is a positive

and increasing function y/{ suchthat ]™ dr / (ry/\(r)) - bo(Wi) < °°> ¥i(r) <
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rxl2, and y/i(r4m+6) < ey/(er) for all r > r3. Applying Lemma 1 to y/\ and

r2m~xF'(r) and y/ and F gives

T (r2mlCJ~^) - r2m~lF'(r)n(r2m~lF'(r))/<p(r)

for r > r\ and r g Ey with fE dr/<j)(r) < oo and

F'(r)<F(r)y/,(F(r))l<p(r)

for r > 2 and r ^L E2 with J£ dr/4>(r) < oo.   Thus, as r £ E\ \J E2 and

r > r0 = max{ri, r2, r3} , we obtain that

T^Tr {r2m~lTr~) <F(r)^F(r))¥i(r2m-lF(r)Wl(F(r))/m)/4>2(r)

< eF(r)y/(eFxl2(r))y/(eFxl2(r))y/(r)l(p2(r),

which implies Lemma 2.

Lemma 3. There is a one-variable entire function E with

(5) ±- flog\E(re'e)\d6 = (1+o(l))(log¡
2n Jo

and

(r^oo)

r)2       (r -* oo).(6) ¿ j * lQg|£'(ri/0)|i/0 = (1 + o(l))(log

Proof. Let r„ = exp((«(« + l)/4)) tot n = 1,2,3,... and set

(7) £(z,=n(1+(£)";

For re[rk,rfc+i),

(8) «(£,O,r) = Â:(Â:+l)/2 = 21ogrfc = (2 + 0(l))logr       (r - oo).

Consequently,

(9) 7V(£,0,r) = (l+o(l))(logr)2       (r-oo).

Moreover, for \z\ - r £ [rk, rk+l),

k k n oo /     \ n

log|^(z)| = £«log L + £log (?)   +1 + S lo* 1 + UJ
v     ' n=l n=l «=¿+1

= JV(£,0,r) + /i'+/2.

A straightforward argument shows that E is an entire function and that

(11) |/,|<A:log2<0(v/íog7)       (r^oo)

and

(12) |/2|<log2+ ¿   frJ±lY <o(l)       (r-»oo).
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It follows from (7), (10), (11), and (12) that

N(E, 0,r)<T(E, r)<logM(E, r)

= logE(r)<(l+o(l))N(E,0,r)       (r - oo)

and so, as r —y oo,

(14)
m(E,r) = T(E,r) = (l+o(l))N(E,0,r)   and   m(E, 0, r) = o(T(E, r)).

Putting together (14), (13), and (9) we have proved (5). Furthermore, for r e

[fie, rk+i),

zE>(z)

E(z)

k k-\ _

= Y,n + Y,l + {z/rn)n+T+~
n=\ n=\

-k

+

(z/rkY

(15) , (k + l)(z/rk+x)k+x  ,   ^    n(z/rn)"

l + (z/rk+l)k+x 4^. i +
n=k+2

(z/rn)"

= n(E,0, r) + Jx +
-k | (k + l)(z/rk+l)k+x  | ^

l + (z/rkf        i + (z/rk+i)k+i

For 1 < « < k - 1 and r e [r¿, rk+i), we have from the definition of rk

that

(16) > rk

rk-i
- exp (-fi*2W21 + £

Thus we obtain from the definition of /i in (15) and (16) that

k-l k-l

T(17) 141 <£, /   ?,     , <E^t-0(1)       (r^oo).
- ^ (r/r,,)" - 1     ^ «3

n=l

For « > k + 2 and r £ [rk, rk+l), similar to above, we get

\rn/z\">(rk+2/rk+l)">e" = 1 + «3/6.

It follows that

(18)

oo oo       ¿-

\j2\< y ^—< y ^ = o(i)    (r-oo)
1      -frf,(WO"-i -~,»3n=k+2 n=k+2

Moreover, if |a| > 1  and a / -1, then Re{l/(1 + a)} < 1/2; so, for

r€[rk,rk+l),

(19) Re{l/(1+ (*/**)*)}< 1/2,    if (z/rk)k ¿-I.

To estimate the remaining term in (15), we set Tk - (rk + rk+l)/2. Then, for

r e [rk, Tk],

(20)

(rM\M > (   2rk+l   \k+l = /  + r,+1-rAfc+1

V   r  I       -\rk + rk+J       ' \      rk+x+rk)

> 1 + (k+ 1) Q - ^-) > 1 + ¿(1 - ^-'/2)(A: + 1)
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for all large k. It follows form (15)-(20), k = O(^ïôgr), and (9) that, for

r £ [rk, Tk], and (z/rk)k¿-l,

E(z)

>n(f,0,r)-\Jx\-kRe
1

1 + (z/rk)k

(k+l)(z/rk+l)k+x

l + (z/rk+l)M
141

^^°-^^T|J^-i + 0(1)

> (l + o(l))n(E, 0, r)       (r -+ oo).

Therefore we have from (21) and (9) that, for r £ [rk , Tk],

(22)
J_
2tt

f2n

/    log
7o

f(re'e)de > logn(E, 0,r)- logr + 0(1)

-(rew) dd

= (-l+o(l))logr      (r-oo).

To accomplish inequality (22) for r £[Tk, rk+x), we apply Jensen's formula

to E'/E. Then the fact N(E, 0,r) = N(E, 0,Tk) and (22) give that, for all
large k ,

J_ [2*       E'
2n Jo

= N(E'/E, 0,r)- N(E'/E, oo, r) + 0(1)

= N(E',0,r)-N(E,0,r) + O(l)

(23) >N(E',0,Tk)-N(E,0,Tk) + O(l)

>N(E'/E,0, Tk)-N(E'/E, oo, 7*)+ 0(1)
ein-Í

2n Jo
log ÁTkew) d9 + 0(1) > (-1 + o(l))logTk

> (-l+o(l))logr       (r^oo).

Combining (22), (23), and (5), we see

i    t2n i    r2n

(24) 2^/0    log]E'{reÍe)lde-2liJo   l°ë\E(reie)\d6 - 0(logr)

= (l+o(l))(logr)2.

On the other hand, we have from the logarithmic derivative lemma that

(25) ¿ Í "loglE^re^ldd < m(E'/E, r) + m(E, r) = (1 +o(l))(logr)2.

Now (6) follows from (24) and (25). Thus Lemma 3 is proved completely.

Remark. Functions similar to those used here were considered in [14], [3], and

[6]. Our functions are better behaved in the sense that inequality (23) holds for
all large r rather than for some large r.

Lemma 4. LetE be the function in Lemma 3, m > 1 be any integer, and

S(r) = {z = (zu...,zm)£ Cm : \\z\\ = r} . Then

(26) /    log\E'(zl)\cr(z) = (l+o(l))(logr)2       (r^oo)
Js(r)
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and

(27) /    log|£(z,)|ff(z) = (l+0(l))(logr)2       (r-oo).

Proof. The case m = 1 is already treated in Lemma 3. So we assume m > 2
in the following. By an orthogonal projection of Cm to C (e.g. see [7]) and

Lemma 3,

r m — \    rr   t2n (r2 — f2\m-2
/    log\E'(zx)\o(z) = —— /   /    (r     lJ2     tlog\E'(teie)\dddt

JS{r) n      JO   JO '

= 2(l+o(l))(w-l)jf   l   r2J2     t(logt)2dt

= (l+o(i))GM(r).

We use induction to prove Gm(r) = (1 + o(l))(logr)2 for all m . If m = 2, it is

straightforward to show this claim holds. Suppose the claim is true for m - 1.
Then, taking the derivative of Gm with respect to r gives that

£-r(r2m-2Gm(r)) = 2(m - l)r2'""3Gm_,(r) = 2(m - 1)(1 + o(l))r2"'-3(logr)2.

Thus we get

r2m-2Gm(r) - Gm(l) = r2m-2(l + o(l))(logr)2       (r-oo),

and the claim is verified. Hence (26) follows. Similarly we can prove (27) by
using Lemma 3. So Lemma 4 is proved completely.

3. Proof of the theorems

Proof of Theorem 1. By using a refinement of Ahlfors' method (e.g. see [5], p.
95), we have that

(28)

Tf,K(r) + Y,Tf,pM)-NfAr) + Nf^m(r) < \log j^ y^o-\logyf(0) + l.

Set B(t) = {z = (z., z2, ... , zm) eCm ; \\z\\ < t} and

F{r) = f    *     [    yU»*?.
K        Jo  t2m~l JB(t) A

Then, by ([1], Lemma 9), there is a constant B such that

(29) F(r)<BT].+k!n(r).

Applying Lemma 2 for a sufficiently small e so that eB < 1 and the log(eB)
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term dominates the constant term in (28), we obtain from (29) that

Uogf j,;/"<x-Iiogy/(o) + i
z Js(r) LIS(,

« ((m- I) 1
logy/(0)+ 12 \^ 2r2m~x   V dr ) J     2

< ^log(eF(r)V2(EFxl2(r))¥(r)/^2(r)) - \logyf(0) + 1

< ^log^ri^^O^^ry+^ir))^^)/^2^)) ~log7/(0) + 1
2
n + k

< —j- log 7>, „(r) + « log y/(Tft„(r)) + - log y/(r) - n log0(r)

for all r > ro outside a set E with fE dr/<p(r) < oo . It follows that Theorem
is proved.

Proof of Theorem 2. Let z = (zx, z2, ... , zm) £ Cm and define

f(z)=f(Z\, Z2, ... , Zm) = (l,/i(Zi),/2(z2), ... ,fn(zn)),

where f(z) = exp(E(z¡)) for i = 1,2,...,« and recall m > «. Clearly /
is a holomorphic mapping from Cm to P" . Let L be the hyperplane bundle

and « be the Fubini-Study form w0 . Set D¡ = {lu, = 0} (i = 0, I, ... , n).
Then we take a divisor Z) = 2"Zf=i ̂ c l^-l and holomorphic sections s,- of

L for which the corresponding Dj are linear functions in the local coordinates

saj = Wj/wa in Ua = {tüa / 0} , where {c/Q}g is a covering of P" . Thus the

Hermitian moduli of the sections saj are

\s,
\w.

<Vl
(e;=oI^i2)i/2'

Therefore

\Sjof\ = \exp(E(Zj))\/\f\U=l,

|A| = Y[E'(zj)exp(E(zj))

j=i

n),        |ío o/| = 1/|/|,

h = «!/|/|2("+1).

It follows that

y(z) =
|A|2«a

= Cni£'(^)l2-
n%0iwi2

Hence we have from ([5], p. 95) and Lemma 4 that

Tf,K(r) + £ 7>>p/(r) - NfiD(r) + NftRam(r)

(30) = jjogyV2(z)o(z) + 0(l)

= « /    log|£'(z,)|<r(z) + 0(1) =n(l + o(l))(logr)2
JS(r)
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Since the Fubini-Study form coincides with the Chern form C\ (L),

Tf,n(r) = Tf,Pj(r)= f ^ I   f*(c,(L)) Aíb""1
(31) (,)

=   f^f     dd<log\\f\\2ACOm-X=   f     log||/||<7.
Jo     l   JB(t) Js(r)

It follows from (31), (13), and (9) that

Tf,„(r)= f    log\\f\\o(z)<ni    \E(zx)\o(z)
Js(r) Js(r)

< « max \E(zx)\ < «exp((l + o(l))(logr)2).
|z,|=r

Consequently

(32) lograr) <(l+0(l))(logr)2       (r - oo).

In the other direction, we obtain from (31), Jensen's inequality, and Lemma 4
that

(33)

logTft„(r) = log[   log\\f\\a(z) + 0(l)> f   loglog||/||a(z) + 0(1)
Js(r) Js(r)

>[    log|£(z,)|<x(z) + 0(1) = (l+o(l))(logr)2       (r - oo).
Js(r)

Combining (30), (32), and (33), Theorem 2 is proved.
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