PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 123, Number 7, July 1995

FIXED POINTS VIA “BIASED MAPS”

G. JUNGCK AND H. K. PATHAK

(Communicated by James E. West)

ABSTRACT. A generalization of compatible maps called “biased maps” is intro-
duced and used to prove fixed point theorems for Meir-Keeler type contractions
involving four maps. Extensions of known results are thereby obtained. In par-
ticular, a theorem by Kang and Rhoades is generalized.

1. INTRODUCTION

Self-maps 4 and S of a metric space (X, d) are said to be compatible
([5)) iff d(SAx,, ASx,) — O whenever {x,} is a sequence in X such that
Axn, Sx, — t € X. Compatible mappings were introduced in [5] as a gener-
alization of commuting mappings and have been useful as a tool for obtaining
more comprehensive fixed point theorems (see, e.g., [1]-[8], [10]-[16]) and in
the study of periodic points [9]. Now we introduce the concept of biased maps
by softening the restrictions imposed by compatibility. The result is an appre-
ciable generalization of compatible maps which, as we shall see, proves useful
in the “fixed point” arena.

Definition 1.1. Let 4 and S be self-maps of a metric space (X, d). The pair
{4, S} is S-biased iff whenever {x,} is a sequence in X and A4x,, Sx, —
te X, then

() ad(SAx,, Sxy) < ad(ASx,, Ax,) if a =liminf and if ¢ =limsup .

Of course, if the inequality in (*) holds with a = lim, (which fact presup-
poses that the indicated limit exists), then liminf = limsup = lim, and (%) is
satisfied. We shall frequently use this fact. The following example shows why we
could not restrict a to “lim,” if the bias concept is to generalize compatibility.

(In this paper we shall use N, Q, I,, and I to denote the positive integers,
the rational numbers, the irrational numbers, and [0, 1], respectively.)

Example 1.1. Let X =7, and define 4, S : X - X by Ax =Sx=1-x
for x €[0, 3], Ax =Sx =0 for x e QN (},1],and Ax =Sx =1 for x €

Ln(, 1], Let x5, = 5~ and x4 = T‘/f‘ for ne N. Then Sx, =1-x;, — 1

as k - 00, S8x3, =0, SSx2,—1 = 1, and therefore lim; d(SSx;, Sx;) does

Received by the editors August 25, 1993.
1991 Mathematics Subject Classification. Primary 47TH10, 54H25.
Key words and phrases. S-biased maps, compaiible maps, and (¢, d)-contractions.

© 1995 American Mathematical Society




2050 G. JUNGCK AND H. K. PATHAK

not exist although lim; d(SSx;, SSx;) = 0; in fact, the pair {S, S} is trivially
compatible for any function S.

We remind the reader that liminf x, = sup{X, : n € N&X, = inf;>, x;} (for
limsup, switch sup and inf), and that if a = liminf or limsup, ax, < ay,
when x, < y,+z, for n€e N and z, — 0 as n — oo. Also be assured that the
“biased” map concept arises naturally in the context of contractive or relatively
nonexpansive ([7]) maps. See Proposition 2.1 below.

Remark 1.1. If the pair {4, S} is compatible, then it is both S- and A-biased.
For

d(SAx,, Sx,) <d(SAx,, ASx,) + d(ASx,, Axy)
+d(Ax,, Sx,) forne N;

therefore, ad(SAx,, Sx,) < 0+ ad(ASx,, Ax,) +0 if Ax,,Sx, - te X,
{4, S} is a compatible pair, and « is either liminf or limsup. Thus {4, S}
is S-biased. Similarly, by interchanging 4 and S in the above, we conclude
that {4, S} is A-biased if the pair is compatible. On the other hand, consider
the following.

Example 1.2. Define 4, S:[0, 1] — [0, 1] by Ax =1—-2x and Sx = 2x for
x €[0, 1], and Ax =0, Sx =1 for x € (4, 1]. Then, by using Proposition
1.1 below, it is easy to show that {4, S} is both A- and S-biased but not
compatible. (Note that both 4 and S are continuous and [0, 1] is compact,
so that both 4 and S are proper maps; i.e., A~'(M) is compact if M is.)

The next result is the analogue to Theorem 2.2 in [8] for compatible maps.

Proposition 1.1. Let 4 and S be self-maps of a metric space (X, d).

(a) If the pair {A,S} is S-biased and Ap = Sp, then d(SAp, Sp) <
d(ASp, Ap).

(b) If A and S are continuous and one of A or S is proper, then {A, S} is
S-biased iff Ap = Sp implies that d(SAp, Sp) < d(ASp, Ap).

Proof. To see that (a) holds, suppose that Ap = Sp. Let x, = p for n €
N, so Ax, = Sx, — Ap = Sp. Then d(SAp, Sp) = lim, d(SAx,, Sx,) <
lim, d(ASx,, Ax,) = d(ASp, Ap) as desired, since {4, S} is S-biased.

Of course, the necessity portion of (b) follows from (a). To see that the
condition given in (b) is sufficient to ensure that {4, S} is S-biased, suppose
that {x,} is a sequence such that Ax,, Sx, — ¢t € X and that S is proper.
Then M = {Sx,,n € N} U {t} is compact and therefore S~!(M) is com-
pact. But then the sequence {x,} in S~!(M) has a subsequence {x;,} which
converges to a point p, and therefore {A4x; }, {Sxx,} converge to Ap and
Sp, respectively, since 4 and S are continuous. Then Ap = Sp =t by
“uniqueness of limits”, so that d(SAp, Sp) < d(ASp, Ap) by hypothesis. But
then, since Ax, — Ap =t and Sx, — Sp, SA4Ax, — SAp and ASx, —
ASp because 4 and S are continuous. We thus have lim, d(SA4x,, Sx,) <
lim, d(ASx,, Ax,), as desired. O

In Example 1.2 the pair {4, S} was both A-biased and S-biased. Of course,
this need not be the case. Consider:
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Example 1.3. Let 7 = [0, 1] with the absolute value metric. Define 4, S :
I —» 1 by A(x) = (x — 3)* and S(x) = 24(x) for x € I. Then A and
S are certainly proper since both are continuous and / is compact. We thus
appeal to Proposition 1.1. Now 4x = Sx iff x = §. Since 4(}) =S(3) =0,
SA(L) = S(0) = 1 and 4S(}) = A4(0) = §. Thus |4S(3) - AL =14 and
ISA(3) - S(4)| = L, so by Proposition 1.1 the pair {4, S} is 4-biased and not
S-biased. Consequently, Remark 1.1 tells us that {4, S} is not compatible.
For future reference, note that |Ax — Ay| = 1|Sx — Sy| for x,yeI.

2. (&, §)-CONTRACTIONS FOR FOUR MAPS

Meir-Keeler contractions for four maps were introduced in [5] and called
(¢, d)-contractions. To expedite the ensuing discussion of theory and results,
we extend the (&, d) concept as follows.

Definition 2.1. A pair of self-maps 4 and B of a metric space (X, d) are
(e, 8)-S, T(p)-contractions relative to maps S, T: X — X iff A(X) C T(X),
B(X) C §(X), and there exist functions p: XxX — [0, co) and J : (0, o0) —
(0, 0o) such that d(¢) > ¢ forall ¢, and for x,y e X:

(i) € <p(x,y) <d(e) implies that d(Ax, By) <e.
We shall refer to (&, d)(p)-contractions as (m) contractions if

p(x, ) = mix, y) = max {d(Sx, Ty). J(d(Sx. By) +d(ax, Ty))}
and as (M) contractions if

p(x, ) = M(x, y) = max {d(Sx, Ty), d(Ax, Sx), d(By, Ty),
1

Nl

(d(Sx, By)+d(Ax, Ty)) } .

Remark 2.1. Thus, suppose 4 and B are (g, d)-S, T(p) contractions with
p(x,y) = m(x,y) or M(x,y). Then Ax = By when p(x,y) = 0. Con-
sequently, if Ax # By, p(x,y) # 0 and (i) in Definition 2.1 therefore im-
plies that d(Ax, By) < p(x,y). So in general, d(4Ax, By) < p(x, y) for all
x,yeX.

The following proposition tells us that biased maps arise quite naturally. In
particular, relatively nonexpansive maps [7] and thus (¢, d)-contractions induce
“bias”.

Proposition 2.1. Let A, B, S, and T be self-maps of a metric space (X, d)
such that A(X) C T(X) and d(Ax, By) <d(Sx,Ty) for x,ye X. If S is
continuous, the pair {A, S} is A-biased.

Proof. For suppose Ax,, Sx, — t(€ X). Since A(X) C T(X), for each n €

N 3y, € X such that Ty, = Ax,. Then d(Tyn, Byp) = d(Ax,, By,) <
d(Sx,, Ty,) — 0,s0 By, — t. We thus have Ax,, By,, Sx,, Ty, — t. Now

d(ASx,, Ax,) < d(ASX,, Byn,) + d(Byn, Ax,) forneN,
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so the continuity of S implies
ad(ASx,, Ax,) < ad(ASx,, By,) < li)n;n d(SSx,, Ty,) = li’xln d(SAx,, Sx,),

whether o =liminf or limsup;ie., {4, S} is A-biased. O

On the other hand, Example 1.3 tells us that even though A =B and S =T,
and both 4 and S are continuous in Proposition 2.1, the pair {4, S} need
not be S-biased.

The following result on (&, d)-contractions will prove useful.

Proposition 2.2. Let S and T be self-maps of a metric space (X, d), and let A
and B be (¢, 9)-S, T(p)-contractions of (X, d) with § lower-semicontinuous.
If {x,} and {y.} are sequences in X such that lim,p(x,, y,) = & > 0 and
limsupd(Ax,, By,)=r€ R, then r<e.

Proof. Since d(¢) > ¢ and J is a lower-semicontinuous function, there is a
neighborhood N, of ¢ such that d(¢) > ¢ for t € N,. We can therefore
choose #y € N; such that 0 < ¢y < & < d(tp). Since p(x,, yn) — &, there exists
m € N such that p(x,, yx) € (o, d(¢p)) for n > m. Then, by (i) in Definition
2.1, d(Axyn, By,) <ty for n > m;ie., limsupd(Ax,, By,) =r<ty<e. O

3. MAIN RESULTS

Proposition 1.1 prompts the following convenient definition.

Definition 3.1. Let 4 and S be self-maps of a metric space (X, d). The pair
{4, S} is weakly S-biased iff Ap = Sp implies d(SAp, Sp) < d(ASp, Ap).

Of course, if {4, S} is S-biased, it is weakly S-biased by Proposition 1.1(a).

Lemma 3.1. Let A, B, S, and T be self-maps of a metric space (X, d). Sup-
pose that

Ax # By implies
(%)

d(Ax, By) < m(x, y) = max {d(Sx, Ty), =(d(Sx, By) +d(Ax, Ty))}.

1

3
If there exist u,v,p € X such that p= Au=Su=Bv=Tv and {4, S} is
weakly S-biased ({B, T} is weakly T-biased), then p = Ap =Sp (p=Bp =
Tp).
Proof. Suppose that {4, S} is weakly S-biased. Since p = Au = Su, we
have d(SAu, Su) < d(ASu, Au); i.e., (1) d(Sp, p) < d(Ap, p). We assert
that Ap = p, and hence p = Sp by (1). For if Ap # p, then Ap # Bv by
hypothesis, and (x) therefore implies that d(Ap, p) = d(Ap, Bv) <m(p,v) =
max{d(Sp, Tv), ;(d{Sp, Bv) +d(Ap, Tv))} = max{d(Sp, p), 5(d(Sp, p) +
d(Ap,p))} <d(Ap, p) by (1). But we then have the contradiction, d(A4p, p) <
d(Ap, p). The proof that p = Bp = Tp when {B, T} is weakly biased is
analogous. O

The proof of the following result uses the fact that any (m) contraction is
an (M) contraction.
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Theorem 3.1. Let S and T be self-maps of a complete metric space (X, d).
Suppose that A and B are (g, 8)-S, T(m)-contractions and that the pair {A, S}
is S-biased and {B, T} is T-biased. If one of A, B, S, or T is continuous
and & is lower semicontinuous, then there is a unique point p € X such that
p=Ap=Bp=Sp=Tp.

Proof. Let xo € X, and let {y,} be defined inductively by yz,_1 = Txzp—1 =
Axyp_p and y3, = Sx3, = BXxy,— for n € N. Since A(X) C T(X) and
B(X) C S(X), the x; can be so chosen. As is known (see, e.g., [16], [11]) and
not difficult to prove, the sequence {y,} thus defined is Cauchy. Since X is
complete, 3p € X such that y, — p. In particular,

(3.1) Axyn, Sxn, Bxpp—1, TXpp—y —p.

We first use (3.1) to show that for any sequence {v,} in X and n€ N,
(3.2)
(1) d(Av,, Bxap—1) <d(Svn, Txop—1) + Bn,

(ii) d(Axan, Bv,) <d(Sxa,, Tv,)+ v, where Bp, 7 —0asn— oco.
To prove (i), note that by definition of (m) contractions,

d(A’U,, ’ BxZn—l) < m(vn ) x2n—l)

= max {d(SUn » Txon-1), %(d(AUn s Txap-1) +d(Svn, Bx2n—l))} ,

so d(Avy, Bxyp—1) < d(Svn, Tx2p—1) or d(Avy, Bxzp_1) < %d(A’Un » Txan—1)
+ %d(S’u,, , Bxyn—1) for n € N. The first inequality satisfies (i) with g, =0,
so we need consider only the second inequality. But the second inequality and
the triangle inequality imply:
2d(AUn s B-x2n—1) < d(Avn ) BxZn—l) + d(BXZn—l s szn—l)
+d(Svn, Txyp—1)+ d(Tx2n-1, Bxan-1),

which yields: d(Av,, Bxan—1) < d(SVn, Txan_1) + 2d(BXx2n—1, TXx2n—1). This
last inequality produces (i), since (3.1) implies S, = 2d(Bx2,—1, Tx2,—1) — 0.

The proof of (3.2)(ii) follows similarly with y, = 2(A4xy,, Sx2,) -

Now assume that one of S or T, say .S, is continuous. Then SSx3,, S4x3,

— Sp by (3.1). We assert that Sp = p. For suppose that d(Sp, p) =¢ > 0.
Then (3.1) implies

¢ =d(Sp, p) = limd(SSxzn, TX2n-1)

33
( ) = 11,11n d(SS.X2,, . B.Xz,,._|) = 11'1'11'1 d(SA)Q,, . S.Xz,,) .

Since {4, S} is S-biased (see Definition 1.1),
&= li;nd(Ssz,, , Sxon) = ad(SAX2,, Sxan) < ad(ASxy,, AXn).

Now d(ASxy,, Axy,) < d(ASx2n, Bxan—1) + d(Bxan—1, Ax2n) for n € N.
Therefore,

(3.4) €< ad(AS-XZn , Axan) < ad(ASxz,, Bxan—1),

since d(Bxyn—y, Axyp) — 0.
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But d(ASx2,, Bxyn—1) < d(SSX2n, TXan—1) + Bn by (3.2)(i), so
lim sup d(ASx2p , Bx2,—1) < limsupd(SSxy,, TXan_1)
= li'rln d(SSx, Txan—1).
Then (3.3), (3.4), and the preceding inequality imply that
O<e= li;nd(Asz,, , Bxap—1) = li'lln d(SSxa, Txon_1)
= li'rln d(SSxa,, Bxap_1) = li’lln d(ASxy,, Txn-1),

the last equality following from (3.1).
But

m(Sxan , Xan—1)
i
= max{d(SSx2, TX2n-1), E(d(Asz,,, Txon—1) +d(SSx2n, Bx2p—1))},

SO
0 <e=lmm(Sxz, Xon-1) = imd(A4Sxan , BXon—1),

contradicting Proposition 2.2.

Thus, Sp = p. But then Remark 2.1 and (3.2) imply that d(4p, p) =
lim, d(Ap, Bxap—1) < lim,(d(Sp, TXn—1)+Bn) = d(Sp, p) = 0. We therefore
have Sp = Ap = p. But A(X) C T(X) by hypothesis, so Ju € X such that
Tu = Ap = Sp . Therefore, by Remark 2.1,

d(Ap, Bu) < m(p, u) = max{d(Sp, Tu), %(d(Sp, Bu)+d(Ap, Tu))}
=1d(Ap, Bu).

We conclude that 4p = Bu, and we have Bu = Tu = p = Ap = Sp; conse-
quently, Bp =Tp =p = Ap=Sp by Lemma 3.1.

By symmetry, the argument above applied to B and T yields a common
fixed point if T is continuous.

Assume next that A is continuous. Then (3.1) implies that A4x,,, ASx, —
Ap . Suppose that d(4Ap, p) =¢ > 0. Then

3.5) O<e= li;n d(AAxyy , Bxap—1) = li'rln d(ASxy, , AXap).
Since {4, S} is S-biased,
lign d(ASx2y, , AXyy) = limsupd(ASxz, , AXxy,) > limsupd(SAxa, , SX25) .

But (3.1) implies limsupd(SA4xz,, Sx2,) = limsupd(SAxz,, TXn_1), S0 by
(3.5)

(3.6) O<e= lign d(AAX2, , BXoy—y1) > limsupd(SAxz,, TXap—1).

Moreover, by Remark 2.1 and (3.2),

liminfd(SAxy,, TX2p—1) > liminfd(AAxy, , BXon_1)
= h'rln d(Asz,, . Bin_l) .
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We therefore obtain by (3.6), the preceding inequality, and (3.1)
O<e= li;n d(AAxan, Bxan—1) = li'rln d(SAx2,, Txm—1)
= limd(AAxz,, Txzn-1) = imd(SAx2n , Bx2n-1),

which implies

Hmm(Axa, Xn-1) = & = limd (44X, Bx2-1),

contradicting Proposition 2.2.

We conclude that Ap = p. But A(X) C T(X) implies that Tv = Ap = p
for some v € X, so d(Bv,p) = lim,d(Bv, Ax;,) < lim,(d(Tv, Sx3,) +
yn) = d(p,p) = 0, by (3.1) and (3.2). Therefore Buv = p = Tv = Ap.
But B(X) C S(X), so that Su = Bv = Tv for some u € X and we obtain
as above: d(Au, Bv) < m(u,v) = %d(Au, Bv). Consequently, Au = Bv;
therefore Tv = Bv = p = Su = Au, which implies Tp = Bp =p = Ap = Sp
by Lemma 3.1.

Of course, a completely analogous argument yields a common fixed point
if B is assumed to be continuous. We have shown that if one of A4, B, S,
or T is continuous, then 4, B, S, and T have a common fixed point. The
uniqueness of the common fixed point follows immediately from the definition
of (e, d)-S, T(m)-contractions. O

Corollary 3.1. Let A, B, S, T be self-maps of a complete metric space (X, d)
such that A(X) C T(X) and B(X) C S(X). Suppose there exists r € (0, 1)
such that

d(Ax, By)<rm(x,y) forx,yeX.

If {4, S} is S-biased and {B, T} is T-biased, then A, B, S, and T have a
unique common fixed point, provided one of A, B, S, or T is continuous.

Proof. Let d(¢) = ¢/r for ¢ € (0,0). Then ¢ : (0, ©) — (0,00), J is
continuous and therefore certainly lower-semicontinuous, and d(¢) > ¢ since
r < 1. Moreover, m(x, y) < d(¢) = ¢/r implies that d(Ax, By) < rm(x,y) <
r(e/r) =¢€,so that A and B are S, T-(m)-contractions. O

Of course, Corollary 3.1 holds if we replace m(x, y) by d(Sx, Ty). How-
ever, Example 1.3 shows that even though we were to make that substitution,
require that 4 = B, S = T, and demand that both 4 and S be continuous, the
conclusion to Corollary 3.1 need not hold if the pair {4, S} is not S-biased.

The role of “biased” maps in producing fixed points is demonstrated even
more dramatically by the next result. If we drop all continuity requirements
and the demand that & be lower semicontinuous in Theorem 3.1, we can still
secure a c.f.p. by merely requiring that one of A(X), B(X), S(X),or T(X) be
complete instead of X .

Theorem 3.2. Let S and T be self-maps of a metric space (X, d), and let
A, B be (¢, 9)-S, T(m)-contractions. If one of A(X), B(X), S(X), or T(X)
is complete, and the pairs {A, S} and {B, T} are weakly S-biased and weakly
T-biased respectively, then A, B, S, and T have a unique common fixed point.

Proof. As in the proof of Theorem 3.1, there exists a Cauchy sequence {y,}
defined by: y;,_1 = Txyp_1 = Axyp—2 and yy, = Sx2, = Bxyp— for n€ N.
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Suppose T(X) is complete. Since {y,} is Cauchy, the subsequence {y,,—:}
(€ T(X)) is Cauchy and therefore converges to a point p = T(v) for some
v € X . Then the Cauchy sequence {y,} also converges to p, and we have

(3.7) Axop, Sx2n, BXon—1, TXx2p—1 — P.

Since A and B are (¢, §)-S, T(m)-contractions, Remark 2.1 and the trian-
gle inequality yield

d(p, Bv) <d(p, Axy,) + d(Ax2,, Bv) < d(p, Axzn) + m(x2n, v);
sofor ne N,

d(p, Bv) <d(p, Axzp)

+ max {d(sz,, Tv), 2d(Sxan, BV) + d(Axa, Tv))} .

[\

Then (3.7) implies that d(p, Bv) < %d(p, Bv) as n — oo, and we infer
that p = Bv = Tv. But B(X) C S(X), so there exists ¥ € X such that
Su = Bv = Tv . Therefore,

d(Au, Bv) < max{d(Su, Tv), 3(d(Su, Bv) + d(Au, Tv))} = 1d(4u, Bv).

Hence, Au = Bv, and we have p = Bv = Tv = Au = Su. Consequently, our
hypothesis, Remark 2.1, and Lemma 3.1 demand that p = Ap = Bp = Sp =
Tp. That p is the only common fixed point follows from the definition of (m)
contractions and Remark 2.1.

In the above we assumed that 7(X) was complete. A comparable argument
yields (3.7) and hence the conclusion if S(X) is complete. If on the other
hand, for example, 4(X) is complete, we obtain (3.7) and have p € A(X).
But A(X) C T(X), so that p € T(X) and the above argument pertains. O

The following corollary to Theorem 3.2 generalizes the main theorem, The-
orem 2.3, of Kang and Rhoades in [13] by eliminating continuity requirements
completely and by replacing “compatibility” with “weak bias” and d(Sx, Ty)
with m(x, y). (Note that the roles of the pairs A, B and S, T are reversed
in [13].)

Corollary 3.2. Let A, B, S, and T be self-maps of a complete metric space
(X,d) with S and T surjective. Suppose that the pair {4, S} is weakly
S-biased and {B, T} is weakly T-biased. If there is a nondecreasing upper
semicontinuous function ¢ : [0, co) — [0, 0o) such that ¢(t) <t forall t >0
and

(3.8) d(Ax, By) < p(m(x,y)) forx,yeX,

A, B, S, and T have a unique common fixed point.

Proof. We first show that the pair 4, B is an (¢, 6)-S, T-contraction. Now
A(X) C T(X) and B(X) C S(X) since S and T are surjections. Since ¢ is
u.s.c. and ¢(e) < ¢ when ¢ > 0, for each such ¢ 3r, > 0 such that ¢(z) < ¢
for t € (e —r.,e+r.). We can therefore define § : (0, o) — (0, 0o) by
o(e) =sup{te(e,e+1):¢(t) <e}. Clearly, d(¢) > ¢ for ¢ > 0. Moreover,
by the above we infer that if 0 < ¢ < < d(¢), the definition of J yields ¢ €
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[t, d(¢)) such that ¢(#)) < ¢, and hence ¢(¢) < ¢, since ¢ is nondecreasing.
We conclude that for any ¢,

O0<e<t<d(e) implies ¢(f) <e.

Therefore, if ¢ < m(x,y) < d(e), d(Ax, By) < p(m(x,y)) < ¢ by (3.8).
Thus, property (i) in Definition 2.1 is satisfied.

We have shown that the pair 4, B is an (¢, §)-S, T-contraction by Defi-
nition 2.1. Moreover, since T(X) = X, T(X) is complete. The hypothesis
of Theorem 3.2 has been shown to be satisfied, and the unique common fixed
point is thereby assured. O

In our consideration of Theorems 3.1 and 3.2, we should ask whether or not
these results hold for the more general (M) contractions, where by Definition
2.1,

M(x, y) = max {d(Sx, Ty), d(Ax, Sx), d(By, Ty),

%(d(Ax, Ty)+d(Sx, By)) } .

This question merits a reply, since results analogous to Theorem 3.1 for compat-
ible pairs {A, S} and {B, T} which use M(x, y) instead of m(x, y) are in
print—e.g., Theorems 8 and 12 in [2], Theorem 3.2 in [3], Theorem 3.1 in [10],
or the very general theorem by Rhoades, Park, and Moon in [11] and [16]. The
following example shows that although we replace m(x, y) in Theorems 3.1
and 3.2 by p(x, y) = max{d(4x, Sx), d(By, Ty)} instead of M(x, y) and
permit all four functions to be continuous, we need not obtain a common fixed
point if we require only biased pairs of maps. Note that m(x, y) is obtained
from M(x, y) by deleting the p(x, y) terms.

Example 3.1. Let X =1 = [0, 1] and d the absolute value metric. Define
A,B,S,T:1-1 by

1 if x € [0, }1,
0 if x €[5, 1]
and

2x ifxe[o, 1],
1 ifxeld,1].

Clearly, A and S are continuous and A(X) = [0, %] C S(X) = X, so that
both A(X) and S(X) are complete. Moreover, A and S are proper since
is compact, so we may use Proposition 1.1(b) to show that the pair {4, S} is
biased. To this end note that Ar = St iff 1 = 1. And A(}) =1 =5()), so
SA(3) =1, AS(}) = 0. Therefore, |[AS(})-A(}) =1 =|SA(})-S($)|, which
implies {4, S} is both A-biased and S-biased. But since SA(%) # AS(),

Sx=Tx={

{4, S} is not compatible ([8, Theorem 2.2]). We now show |4x — Ay| <
314y—Sy| if x <y,so d(Ax, Ay) < i max{d(4x, Sx), d(4y, Sy)} certainly
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holds. (Note: Because of symmetry in x and y in this last inequality, we lose
no generality by assuming x <y.)

Nowif 0<x,y <y, |[Ax—Ay|=0<4|dy-Sy|. If 0<x<i<y<j
|Ax—Ay| = |3-(1-2y)| = 3|4y —1| and |4y—Sy| = |(1-2y)-2y| = |1 -4y
2|Ax — Ay|. On the other hand, if § < x <y <1, |[Ax — 4y| = 2(y — x),
whereas |Ay — Sy| = 4y — 1 > 4y — 4x = 4(y — x), since 4x > 1; thus,
|[Ax — Ay| < %lAy — Sy|. Finally, if y > %, |Ay — Sy| = 1, but for any
X,y |Ax — Ay| < % We have shown that in any event, x < y implies
|Ax — Ay| < 3|4y — Sy|. But 4 and S do not have a common fixed point;
neitherdo B and T ,since A=B and S=T.

The above example clearly demonstrates that the potentially ill-behaved
terms in M(x, y) are d(Ax, Sx) and d(By, Ty) when the pairs {4, S} and
{B, T} are not compatible. Consequently, improvements or generalizations of
Theorems 3.1 and 3.2 may be difficult to come by in the context of (M) con-
tractions and biased maps. But when the pairs {4, S} and {B, T} are com-
patible, Proposition 2.2 in [5] guarantees the desired response from d(Ax, Sx)
and d(By, Ty). The interested reader can confirm this by checking the proofs
of theorems in [2], [12], and [16], for example.

-

4. RETROSPECT

By the above, if we require that the pairs {4, S} and {B, T} be compatible
instead of being S and T biased, respectively, Theorem 3.1 is valid for (M)
contractions as well as (m) contractions. Therefore, the following “suggests”
that Theorem 3.1 may not be a new result.

Proposition 4.1. Let S and T be self-maps of a metric space (X, d), and let A
and B be (¢, 0)-S, T-(m)-contractions with & lower semicontinuous. Suppose
that the pair {A, S} is S-biased. If one of A or S is continuous, then the pair
{4, S} is compatible.

Proof. Suppose {x,} is a sequence in X and ¢ € X such that Ax,, Sx, —¢.
We can then appeal to the proof of Proposition 2.1 to obtain a sequence {y,}
such that By,, Ty, — t. If we substitute x, for x;, and y, for x;,_; in
that portion of the proof of Theorem 3.1 which verifies that Sp = p when S
is continuous, we obtain lim, d(A4Sx,, By,) = lim,d(SAx,, Sx,) = 0. But

d(ASx,, SAx,) < d(ASxn, By,)+d(Byn, Sx,)+d(Sx,, SAx,), forneN,

so d(ASx,, SAx,) — 0;1ie., {4, S} is compatible.
The argument in the instance in which 4 is continuous is comparable. O

The following example assures us that, in spite of Proposition 4.1, Theorem
3.1 pertains to situations not included by Theorem 2.1 of [6]. We again refer
to Remark 2.1 and remind the reader that Proposition 4.1 certainly holds for
(¢, 6)-S, T-contractions.

Example 4.1. Let X =[0, 1]. We define maps 4, B, S, T : X — X such that
AX) = {§} € T(X) = {0} UL}, 1], B(X) = {4, 3} = S(X), and only 4 is
continuous. These facts will be immediately apparent, and we leave them for
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the reader to confirm. Now define

Ax=Bx=Sx=% and Tx=1-x ifxe[O,%],

and

1
=5
First note that {4, B} is an (e, d)-S, T-contraction since it satisfies |4x —
By| < }|Sx — Ty| for x,y € X. To see this, observe that |Ax — By| # 0
only when y > 1. Then |Ax — By| = §; whereas Sx > } for all x, so that
|ISx — Ty| = |Sx — 0| > 3. Thus, in any event, 3|4x — By| < |Sx — Ty|.
To see that {4, S} is compatible, suppose that Ax,, Sx, — ¢t € X . Clearly,
t =1 and x, < § for large n since |Ax — Sx| = } for x > 5. Then
SAx, = S(}) =4 and ASx, = 1. Thus |S4x, — ASx,| — 0. On the other
hand, consider B and T. If Bx,, Tx, >t € X, then t=14,x, > 1, and
xn < L forlarge n. So Tx, € {},1— x4}, Bxy, = }, and TBx, = 5 for
all large n. Then |TBx, — Txs| — |3 — 1| = 0, and {B, T} is therefore
T-biased. On the other hand, if x, =1 -1 eg, Tx, - %+ and therefore
|BTxy — Bxy,| — |3 — 1| = § . Consequently, {B, T} is not B-biased and thus
not compatible.

Ax Bx =S8Sx =

o] W

, and Tx=0 ifxe(%,l].

We conclude by noting that Theorem 3.2 eliminated all continuity require-
menton A, B, S, and T, and the ls.c. requirements on J imposed in Theo-
rem 3.1, and merely required that one of the range spaces be complete in lieu
of X being complete. This prompts the

Question. To what extent can the lower semicontinuity hypothesis on J be
muted in Theorem 3.1?
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