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OPTIMAL INTERVALS OF STABILITY
OF A FORCED OSCILLATOR
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(Communicated by Hal L. Smith)

Abstract. Consider the differential equation of a nonlinear oscillator with lin-

ear friction and a T-periodic external force. We find optimal bounds on the

derivative of the restoring force and on the period T in order to obtain a

unique T-periodic solution that is asymptotically stable.

1. Introduction

The purpose of this paper is to complete the results obtained in [7] and [1].

Consider the differential equation

(1.1) x" + ex'+ g(x) = p(t)

where c> 0 is a fixed constant, p £ C(R/TZ) and g £ Cl(R) satisfies

(LM) a < g'(x) < b   for each x £R

with a > 0. If a = 0 we also need the additional assumption

(1.2) g(-<x>)<jj   p(t)dt<g(+œ).

Recently, in [7], Ortega has studied the case a = 0 and obtained sharp condi-

tions on b for the existence, uniqueness and stability of a T-periodic solution
of (1.1). In fact he has proved that there exists bo, that can be computed, such
that if b < bo, then (1.1) has a unique T-periodic solution that is (locally)

asymptotically stable when (1.2) holds. Moreover there exists t(b) > 0 such

that if b > bo but T < x(b) the above assertion is still true, while if T > x(b),

then instability will appear for some p satisfying (1.2).
The case a > 0 was considered in [3] and [4] and sufficient conditions on a

and b were obtained for the same problem. More recently, in [1], Ortega and

the author have also studied this case and found sharp conditions that guarantee

global asymptotic stability (g.a.s.) (and independent from the period T). In

fact we have defined two functions, A and B, and we have proved that if

/l[a]5[6] < 1, then there exists a unique T-periodic solution of (1.1) that is

g.a.s., while if .d[a]2r[¿?] > 1, then one can find a periodic function p (for

suitable period) such that (1.1) has an unstable periodic solution.
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In this paper we shall obtain sharp conditions for a fixed period T when
^[a]5[¿] > 1. In fact we shall find a sequence of intervals that can be computed

such that if T is in one of these intervals, then (1.1) has a unique T-periodic

solution that is asymptotically stable. In general this sequence is finite and has
several disjoint intervals (see Figure 1). This is different from the case a = 0

where only one interval appears.

Thanks to the principle of linearized stability the nonlinear problem can be
reduced to the following problem in linear theory: to determine under what

conditions on a and b the linear equation

y" + cy' + a(t)y = 0       (a < a(t) < b, a.e. t £ R)

does not have nontrivial 2r-periodic solutions. To deal with this question we
shall use a technique based in control theory as used by Brockett in [2] and by

Ortega in [7].
The main results on (1.1) are stated in Section 2. The linear equation is

studied in Sections 3 and 4. The proofs of the main results appear in Section

5.
I would like to thank Professor Ortega for encouraging me to study this

problem and for his suggestion to elaborate this paper.

2. The main theorems

Consider the equation

(2.1) x" + ex' + g(x) = p(t)

where c > 0 is a fixed constant, g £ CX(R) and p £ C(R/TZ). It will be
assumed that there exist positive constants a and b such that

(2.2) a<g'(x)<b   VjcgE.

Consider the functions

{k~xl2 exo{-co)lxtanh-x(o}k/c)}   if0<k< c2/4,

2c~x/e ifk = c2/4,

fc_1/2exp{-c(y¡"1arctan(£íj/t/c)}    if k > c2/4,

and

B[k] = (° if0<k<c2/4,

\ kxl2exo{coj^x[arctan(œk/c) - %]}   if k > c2/4,

where cok = y/\4k - c2\. Here arctan: (-oc,+co) —> (-n/2, n/2). As a

consequence of Theorem 1.2 in [1] we have that if ,4[a]i?[¿] < 1, then (2.1) has
a unique T-periodic solution that is globally asymptotically stable. Therefore

we are interested in what happens when ,4[tf]2?[6] > 1.

Theorem 2.1. Suppose that A[a]B[b] > 1 and (2.2) holds. There exist xx =
Ti(a, b) and x2 = x2(a, b) such that if

(2.3) T f h[ti , t2]   V« € N

holds, then (2.1) has a unique T-periodic solution that is locally asymptotically

stable.

Remark. We shall see below that the constants xx and x2 can be computed. In
particular if ^[a]7i[6] = 1, then xx = x2 and therefore the intervals of stability
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0 1, x2 2t, 2t2 3t,

Figure 1. The dotted line stands for the intervals of

stability in the case c = 2, a = 0.3, b = 15. Here
Ti = 1.61408... and x2 = 2.34997...

are the infinite components of {t > 0\t ^ nxx, n £N} . On the other hand, if

/l[ûi]5[è] > 1 we have that xx < x2 and hence there must exist some n £ N

such that

(2.4) «±I < a.
n        X\

If «o G N is the first number satisfying (2.4), then there exist exactly «o inter-

vals of stability for the equation (2.1) (see Figure 1).
In the next result we shall show that (2.3) is sharp. We shall need the addi-

tional assumptions

(2.5) inf{g'(.x): x £ R} = a,       sup{g'(x): x£R} = b.

Theorem 2.2. Suppose that (2.5) holds. If there exists n £ N such that

(2.6) T£n(xx,x2),

then there exists some p £ C(R/TZ) such that (2.1) has an unstable T-periodic

solution.

Now we shall say how one can calculate the constants, but first we introduce

some notation. If k > 0 define

ifk>c2/4,

+00   ifA:<c2/4,

where cok = y/\4k - c2\. Notice that ¿¡k is the first positive zero of any nontriv-

ial function <j> satisfying 4>" + c<f>' + k(f> = 0, (f)(0) = 0. Suppose that b > c2/4
and define the switching function : y £ L°°(R) as follows:

{a   if t<-t\b,

b   if -&<r<0,

a   if 0 < t.

For each s £ [0, c¡b + c¡a) consider the initial value problem

= 0,(p)(y"(t) + cy'(t) + y(t-s)y(t)

[ ,;ly(0) = 0,/(0) = l.

When the solution ys(t) of (Ps) vanishes for some t > 0, we define T(s) as

the first positive zero of ys(t) and define R(s) = y's(T(s)) where y's(t) is the

derivative of ys(t) with respect to t. In the equation the function a(t) = y(t-s)
is a piece-wise constant function that at most has one switch in the interval

(0, T(s)). This equation is similar to the Meissner equation studied for example

in [6, p. 115] with c = 0.
The problem (Ps) can be integrated and one can obtain explicitly the func-

tions T and R. In particular these functions are defined in an interval I c
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Figure 2. The functions T and R when a > c2/4

[0,Çb + ¿la) such that (Çb, ¿¡b + ¿¡a) c /.  Figure 2 shows the graph of these
functions.

The explicit expression of T(s) and R(s) and its properties are given in an

appendix at the end of the paper. Then one can compute ti > 0 solving

(2.7) t, = r(Jl),    R(sx) = -l,       lie (/it, a],

and x2> 0 solving

(2.8) r2 = T(s2),    R(s2) = -l,       s2e[a,ab + ^a),

where o is the point where R has its minimum. The solvability and uniqueness

of these equations follows from Proposition 1 in the appendix.

3.  A PROBLEM IN CONTROL THEORY

Let 0 < a < b be such that b > c2/4. For X > 0 consider the problem

{y" + cy' + a(t)y = 0,

v(0)=y(L) = 0,    y'(0) = l,    y'(L) = -X,

y(t)¿0   Vt£(0,L),

where L > 0 and a £ L°°(0, L) is such that

(3.1) a<a(t)<b   a.e.t£(0,L).

Consider the functions T(s) and R(s) defined on the interval / as in Section

2. We have the following result:

Lemma 3.1. If the problem (P¿) has a solution, then

(i) The equation

(3.2)

is solvable.

R(s) = -X,       sel,
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(ii) If sx,s2 are the solutions of (3.2) and T(sx) < T(s2), then L £

[T(sx),T(s2)].

Proof. We shall use the language and methods of control theory (see for example

[5]). Consider the control process

x' = C[u]x,       x = col(xx, x2), C[u]= (   u   _).

The class of admissible controllers is U = {u £ L°°(0, r)\r > 0, a < u(t) <
b a.e. t £ (0, r)}, the initial point is X0 - col(0, 1) and the target set is

K = {(0, d)\d < 0} . For each u £ U attaining the target set denote by x(u)
the first positive zero of xx (t), where x = col(xi, x2) is the corresponding

response. Consider the set V = {u £ U\x2(x(u)) - -X} . Note that the lemma

will be proved if there exist sx, s2 £ I such that T(V) c [T(sx), T(s2)] and

R(sx) = R(s2) = -X.
To prove this consider for each n £ N the cost functional

Fn[u] = x(u) + n(x2(x(u)) + X)2.

Note that a £ V and that if v £ V, then Fn[v] = x(v). Let u* be an optimal

control minimizing F„ with optimal response x* = col(x*" , x2n). Its existence

follows for example from Theorem 4 in [5, p. 259]. Consider the Hamiltonian

function H(n, x, u) = n • C[u]x = (nx - cr\2)x2 - un2xx, and the function

M(n, x) = ma\{H(n, x, u)\a < u < b} = (nx - cn2)x2 + b(n2xx)~ - a(n2xx)+ .

The maximal principle of Pontryagin says that there exists tj = col^ , >72) a

nontrivial solution of n' = -C[u*n]xn such that H(tj, x*, u*n) = M(tj, x„) a.e.

t £ (0, x(u*)). In consequence

(a   ifr}2(t)>0,

n[)     \b   ifJf2(t)<0.

Since r}2(t) and x\n(t) are solutions of adjoint equations and x\n(t) ^ 0 \/t £

(0, t(w*)) it follows that Tj2(t) has at most one zero in (0, x(u*n)). Therefore

un has at most one jump in (0, x(un)) and only takes the values a and b.

Hence u*n is a switching function as considered in Section 2 and there must exist

s* suchthat u*n(t) = y(t-s*) a.e. t £ (0, x(u*n)). Moreover x(u*n) = T(s*) and

x*2"(x(u*)) = R(s*n).

The sequence {s*} is bounded. This follows from

(3.3) T(s*n) = x(u*n) < Fn[u*„] < F„[a] = x(a) = L

and the properties of T(s) (see Proposition 1 (ii) in the appendix). Hence we

can suppose that {s*} converge (in the other case one can take a convergent

subsequence). If a < c2/4, then (3.3) implies that the limit of {s*} is in I. If

a > c2/4, then / = [0, & + &) but T(0) = T(^b+^a) and R(0) = R(Zb + c;a).
Therefore in both cases there exists sx £ I such that T(s*) -» T(sx) and

R(s*) -* R(sx). Let x* = col(xJ', x2) be the solution of x' = C[y(t - sx)]x,

x(0) = col(0, 1). Note that T(sx) = x(y(-- sx)) and R(sx) = x2*(T(sx)).

We assert that R(sx ) = -X. If the claim is not true there must exist a

subsequence such that (R(s*k) + X) -> r ¿ 0. But then F„k[u*„k] = T(s*k) +

nk(R(s*k) + X)2 -* -(-oc contradicting that u„k is the minimal optimal control

for F„k since F„k[a] = L < +oo .
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Finally, if v £ V, then x(v) > T(sx). In the other case, since T(s*) -»

T(sx), for n sufficiently large we should have Fn[v] — x(v) < T(s*) < Fn[u*]

contradicting again the optimality of u*„ .

To calculate s2 we can use the same reasoning minimizing the cost functional

Gn[u] = e-T{u) + n(x2(x(u)) + X)2

for «sff such that 1+nX2 > e~L .

For the next result suppose that A[a]B[b] > 1. Then as consequence of

Proposition 1 in the appendix there exist unique xx > 0 and t2 > 0 satisfying

(2.7) and (2.8).

Lemma 3.2. Suppose A[a]B[b] > 1 and let xx, x2 be as in (2.7) and (2.8).

(i) If the problem (Px) has a solution, then L £ [xx, x2].

(ii) If L £ [xx, x2], then there exists à £ L°°(0, L) satisfying (3.1) such

that the corresponding problem (Px ) has a solution.

Proof, (i) This is a particular case of Lemma 3.1.

(ii) If L £ [xx, t2] there exists 5 £ [sx, s2] such that T(s) — L. Then
consider ä(t) — y(t - s) and the problem

' y" + cy' + à(t)y = 0,

(À)| y(0) = y(L) = 0,    y'(0) = 1,    y'(L) = -1,

,y(t)¿0   in (0,1)

has a solution.

Corollary 3.3. With the same conditions as in the previous lemma, if T e

(ti , t2) , then there exists ß £ L°°(R/TZ) satisfying (3.1) such that the equation

(3.4) y" + cy' + ß(t)y = 0

is unstable.

Proof. If T £ (xx, x2), then /l[a]77[¿] > 1 and there exists s £ (sx, s2) such

that T(s) = T. Consider ß £ L°°(R/rZ) suchthat ß(t) = y(t-s) Vi € (0, T).
The solution y(t) of (3.4) satisfies y(t+T) = R(s)y(t) W 6 R. Then R(s) < -1
is a Floquet multiplier of (3.4) and thus is unstable.

4. The linear equation

Let 0 < a < b be such that ^4[a]/7[è] > 1. Consider the linear equation

(4.1) y" + cy' + a(t)y = 0

where a £ L°°(R/TZ) satisfies

(4.2) a < a(t) < b   a.e. t £ R.

Proposition 4.1. Let xx < x2 be as in (2.1) and (2.8) respectively. If

(4.3) T£n[xx,x2]   V«eN,

then there does not exist any nontrivial 2T-periodic solution of (4.1).

Proof. Suppose, contrary to the assertion of the proposition, that there exists a

nontrivial 2r-periodic solution of (4.1). If <f>(t) is such a solution, then it must
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vanish (to see this integrate (4.1) over a period). Let io be such that <j>(to) — 0.
Since the zeros of </> are simple and <p is periodic, the number of zeros in the

interval [io, to + 2T) is even. Let 2n (n £ N) be the number of zeros of tf> in

[t0,to + 2T).
We shall again use the language of control theory, but now we use polar

coordinates: yx(t) = p(t)sin6(t), y2(t) = p(t) cos 9(t). Consider the control

process

.. .. f 9' = cos2 9 + u sin2 9 + csin 9 cos 9,
(4.4) <

I p' = p((\ - u) sin 9cos9 - ecos2 9).

The class of admissible controllers is U — {u £ L°°(i0, r)\r > to, a < u(t) < b

a.e. t £ (to, r)}, the initial point is Xq = col(0, 1) and the target state is

Xx — col(2«7i, 1). Consider the control problems of minimal and maximal

time to attain the target state. Note that if col(0(i), p(t)) is a solution of (4.4),

then y(t) = p(t) sin 9(f) is a solution of (4.1). Also note that 9(t) is increasing
when 9(f) — jn , j £ Z. Let u* and col(p*, X*) be a minimal optimal control

and the corresponding response. Let

t0 < * 1 < • • • < tin = T*

be such that 9*(tk) = kit (k = I, ... ,2n). Observe that p*(t0) = p*(t2n) = 1.
As a consequence of the principle of optimability and Lemma 3.1 there exist

s\ < ••• < 4, such that R(s*k) = -p*(tk)/p*(tk-X) and tk - tk_x = T(s*k) for
each k = I, ... ,2n . Hence we have x* - T(s*) H-1- T(s2n) and

(4.5) R(s*x)---R(s*2n)=l.

Thus (sx, ... , s2n) is a solution of the problem of minimizing the function

f(sx, ... ,S2n) = T(sx)+- ■ -+T(s2n) in the set C = {(sx, ... , s2n)\g(sx, ... , s2n)

= 0, sk £ I Vfc} where g(sx, ... , s2n) = R(sx)-■ ■ R(s2n) - 1. Let a be as in
Section 2. From (4.5) and Proposition l(iii) in the appendix we have that

R(o) > 1. We distinguish two cases:

Case 1: \R(o)\ — 1. This happens when ^[a]/i[¿] = 1. Furthermore xx =
T(a) and C = {(a, ... , o)}. Hence sx = ■ ■ ■ = s2n = o and x* = 2nxx .

Case 2: \R(o)\> I. Lemma 2 and Proposition l(iv) in the appendix imply

sk £ (Çb>Çb + Za) ■ Now by using Lagrange's multipliers there exists X £ R such

that Vf(s¡, ... ,s¡„) = XVg(s¡, ... , 5|„), or equivalently

T'(s*x) = XR'(s*x)---R(s*2n)

T'(s2*„) = XR(s*l)---R'(s2\).

As in this case T'(a) ^ 0 and R'(a) — 0 one has that s£ / a and hence

R'(sk) î 0 for each k — I, ... ,2n . Thus one can divide each equation by the

corresponding R'(s*k) and multiply by R(s*k) to obtain

T'(s\)R(s\) T'(s*2n)R(s*2n)

R>(s\) R'(s*2n)

thanks to (4.5). Now, since the function h(s) = T'(s)R(s)/R'(s) is one-to-one

in (it, Çb+Za)\{a}, then s¡ = ■ ■ ■ - s2n . Hence R(sl*)2n - 1 and consequently

we have that s* = sx and t* = 2«Ti .
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Therefore in both cases the minimal optimal time is 2«Ti. We use the

same reasoning to show that the maximal optimal time is 2«t2 . But since

u = a is a control that allows one to reach the target at the time 2T we have

2«Ti <2T < 2nx2 leading to nxx < T < nx2 , contradicting (4.3).

5. Proofs of the main theorems

Now the results in Section 2 follow from standard methods:

Proof of Theorem 2.1. Repeating the reasoning of [8, p. 168] one obtains that

(2.1) has at least one T-periodic solution. If Xi and x2 are T-periodic so-

lutions of (2.1), then y(t) = xx(t) - x2(t) is a T-periodic solution of (4.1)

with

tt(0=( ̂ ¡ry if*i(o**<o,
\a if xx(t) = x2(t),

that satisfies (4.2). From Proposition 4.1 one obtains that y = 0 and hence

(2.1) has a unique T-periodic solution. If z(t) is such a solution, consider for

each 5 £ [0, 1] the linear equation

(5.1) y"(t) + cy'(t) + [sg'(z(t)) + a(l -s)]y(t) = 0.

Note that for 5 = 1 (5.1) is the linearized equation of (2.1) at z(t). Let A[s]

be the discriminant of (5.1), that is, the trace of a monodromy matrix. This is
a continuous function of s (see for instance Lemma 2.1 in [7]) and it is well

known that the existence of 2r-periodic solutions of (5.1) is equivalent to

\A[s]\ = l+e-cT.

Therefore from Proposition 4.1 it follows that \A[s]\ ^ 1 + e~cT and since

|A[0]| < 1 + e~cT one obtains that \A[s]\ < 1 + e~cT for each 5 e [0,1].
Therefore the Floquet multipliers lie on the open unit disk. In particular this

is true for s = 1 and the asymptotic stability of z(t) is a consequence of the

principle of linearized stability.

Proof of Theorem 2.2. Since T/n £ (xx, x2) one can use the same argument of

[7, Theorem II] together with Corollary 3.3 to state the theorem.

Appendix

Here we study the properties of the functions T(s) and R(s) defined in

Section 2 related to the linear initial value problem (Ps).

Proposition 1. (i) T(s) and R(s) are Cx functions defined in an interval I c

[0, ib + D such that (& , & + &) c /.
(ii) T(s) is strictly increasing in (¿¡b, t\b + c¡a). Moreover if a < c2/4, then

lim   T(s) =   lim   T(s) = +00.
s—»inf / i—»sup /

(iii) R'(s) has only one zero in (íb,£,b+ia) where R(s) reaches a minimum.

If a is such a zero, then R(a) = -A[a]B[b].

{iv)Ifst{ib,Zb + ta).then \R(s)\ < 1.
(v) The equation

R(s) = r,        s£l,

has at most two solutions for each r e R.
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Proof. After a simple but tedious computation one can obtain explicitly the

functions T and R, the interval I and the minimum a . We distinguish three

cases. In all cases the properties follow from simple verification.

Case 1: a > c2/4. Then I = [0, ib + ¿¡a) and

-(7r-arctan(^tan(^i)))

T(s) = {

O),

_n_|_n_

(¿a (Ob

2

-(Ob

5-¿arctan(^tan(fS))

if 0 < s < -f ,
— (Ob '

s-ib + i(n-arctan(%tan(<f(s-£„))))   ifib<s<ib + ^

jr_i_n_

(Oa (Ob

f - &-¿arctanQtan(f(s- &)))

Í -yjcos^s) + (^)2 sin2(^s)e-iT^

** = & + £>

ÍfÍ6 + ^ <«<&+<?«,

if0<í<&,

*(s) - •) - yJcos2(f(s -Ht)) + Oa)2sin2(^(s-ib))e-ins)

if &<*<& + £,.

i?(s) has its minimum in o = ib + 2arctan(coa/c)/coa . Figure 2 is a drawing of
these functions in this case.

Case 2: a = c2/4. Then I = (n/cob, +00) and

T(s) = 0)h
tan(^j) *£<*<&.

s "& + ¿(* - arctan(^(5 - &)))   if & < 5,

*(*) =

cos(^5)e-§rW if^<5<^:

-^-Kügíí-fc^-í™    if&<*.

Here _R(s) has its minimum in o = ib + 2/c.

Case 3: a < c2/4. Then I = (2(n - arctan(ct;6/œa))/œb, +00) and

s - ¿tanh-1(^tan(^s))   if ¿(* - arctanQ)) <s<ib,

*-& + ¿(*- arctan(^tanh(f (5 - &))   if & < *,

-^cos2(^)-(^)2sin2(^)í-i7-W   if¿<*-aictan{£))<*<«*,

-^/cosh2(f (5 - it)) + Q)2sinh2(f(s - it))e-ins)   ¡f&<,.

i?(s) has its minimum in a = ib + 2tanh~x(coa/c)/coa .

In Section 4 we used the following lemma.

Lemma 2. (i) The function h(s) = R(s)T'(s)/R'(s) is one-to-one on (ib,<Zb +

&j)\{(T} • Let sx, s2 £ I be such that sx 0 (it, £b + £a) ß«^ I-K(52)| > 1 • Tftevi
(ii) There exist sx, s2 £ I such that R(sx)R(s2) - R(sx)R(s2) and T(sx) +

T(s2) < T(sx) + T(s2).

(iii) There exist sx, s2 £ I such that R(sx)R(s2) - R(sx)R(s2) and T(sx) +

T(s2)>T(sx) + T(s2).

Proof. We study the case a > c2/4. The other cases are similar and are left to

the reader.
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(i) Here h(s) ~ 2sin(coa(s-ib)/2)/(œacos(coa(s-ib)/2)-csin(cûa(s-ib)/2))

is strictly increasing in (ib, ib + ia)\W} ■
(ii) Let <T0 = 2arctan(o)b/c)/ojb. R(s) reaches a maximum in er0- We

distinguish several cases. If sx £ [0, cto) > then there exists sx £ (oq, ib) such

that R(sx) = R(si) and T(sx) < T(sx) (see Figure 2). Similarly, if s2 £ (o, ib +

io), then there exists s2 £ (ib, o) such that R(s2) = R(si) and T(s2) < T(s2),

proving the assertion.

Therefore suppose that sx £ [on, £&] and s2 £ [ib, o]. Since R(s) is strictly

decreasing in [o~o, er], for each s £ [sx, s2] there exists a unique <p(s) such that

R(s)R(<p(s)) — R(sx)R(s2). The function <p(s) is continuous and decreasing.

Moreover T(s) is strictly decreasing in [oq , ib] and increasing in [ib, a]. In

consequence we obtain (ii) for sx £ [o~o, &) taking sx = s, s2 = <p(s) for any

s £ (o0, ib) ■

Finally suppose that sx =ib- Consider the function f(s) = T(s) + T(tp(s)),
s £ [sx, s2], and let r £ (ib, s2) be such that r = tp(r). We assert that f(s)
is decreasing in (ib, r). Note that this implies (ii). From the inverse function

theorem, <p(s) is differentiable in (ib, r) and

R'(s)R(<p(s)).

9 (S)       R(s)R'(<p(s)) '

also f(s) is differentiable and f'(s) = T'(s) + T'((p(s))(p'(s). Multiplying by
R(s)/R'(s) > 0 one obtains

^lf'(s) = h(s)-h(<p(s))<0

and hence f'(s) < 0 in (ib, r), proving the assertion.

(iii) Similar.
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