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Abstract. We examine the maximum sizes of mutually complementary fami-

lies in the lattice of topologies, the lattice of Tx topologies, the semi-lattice of

partial orders and the lattice of equivalence relations. We show that there is a

family of k many mutually complementary partial orders (and thus Tq topolo-

gies) on k and, using this family, build another family of k many mutually Tx

complementary topologies on k . We obtain k many mutually complementary

equivalence relations on any infinite cardinal k and thus obtain the simplest

proof of a 1971 theorem of Anderson. We show that the maximum size of a

mutually Tx complementary family of topologies on a set of cardinality k may

not be greater than k unless co < k < 2C . We show that it is consistent with

and independent of the axioms of set theory that there be N2 many mutually

Tx-complementary topologies on wx using the concept of a splitting sequence.

We construct small maximal mutually complementary families of equivalence

relations.

1. History and introduction

In 1936, Birkhoff published On the combination of topologies in Fundamenta

Mathematicae [7]. In this paper, he ordered the family of all topologies on a

set by letting xx < x2 if and only if xx c x2. He noted that the family of all
topologies on a set is a lattice. That is to say, for any two topologies x and a
on a set, there is a topology t A ct which is the greatest topology contained in

both x and o (actually x A a = x n a) and there is a topology x\l a which

is the least topology which contains both x and a. This lattice has a greatest

element, the discrete topology, and a smallest element, the indiscrete topology,

whose open sets are just the null set and the whole set. In fact, the lattice of all

topologies on a set is a complete lattice; that is to say there is a greatest topology

contained in each element of a family of topologies and there is a least topology
which contains each element of a family of topologies.

A sublattice of this lattice which contains all the Hausdorff spaces is the lattice

of 7i topologies. This is also a complete lattice whose smallest element is the
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cofinite topology (whose open sets are just the null set and those sets whose

complements are finite).
We say that topologies x and a are complementary if and only if x A a = 0

and x V o = 1. In 1965, Steiner [16] used a careful analysis of an argument

of Gaifman [14] to show that the lattice of all topologies on any set is comple-

mented. On the other hand, there is an elementary example of a Tx topology

which has no complement in the lattice of Tx topologies. We shall speak of a

complement in the lattice of Tx topologies as a Tx -complement.
Removing the antisymmetric axiom from the list of axioms for the theory of

partial orders yields the larger class of preorders. The family of all preorders

on a set can also be ordered by letting Pn < Pi if and only if Pn D Pi as

relations. The family of all preorders on a set is also a lattice. The join of two

preorders is just their intersection as relations, while their meet is the transitive

closure of their union. In fact, once again, the lattice of all preorders on a set

is a complete complemented lattice. The subfamily of partial orders is a semi-

lattice. Complementation is quite natural in the lattice of preorders as well as

in the semi-lattice of partial orders. Two partial orders (or preorders) are com-

plementary if and only if their intersection as relations is the identity relation

and the transitive closure of their union is the improper (largest) relation.

The family of all equivalence relations on a set can also be ordered by letting

~o<~i if and only if ~nD~i. The family of all equivalence relations on a set

is also a complete complemented lattice [15]. In fact, it is a sublattice of the

lattice of preorders.

The lattices of topologies, Tx topologies, preorders and equivalence relations

and the semi-lattices of To topologies and partial orders should be studied

together. In 1935, Alexandroff and Tucker [2], [1], [17] independently observed

a close relationship between topologies and preorders. If < is a preorder on
a set X, then the AT (Alexandroff-Tucker) topology on X is that topology
obtained by letting {y : y > x} be open for each x £ X. Conversely, if X is a

topological space, then the induced preorder < is defined by a<b ■& a £ b or,

equivalently, a < b <=> (VJJ G x)(a £ U => b £ U).
These relationships are inverse [ 16] in the sense that if (X, <) is a preordered

set and x is the AT topology on X, then the induced preorder on (X, x) is

equal to <. Furthermore, if we define a topological space to be an AT space if

and only if each point has a smallest neighborhood, then if (X, x) is an AT

space and < is the induced preorder on X, then the AT topology on (X, <) is

equal to x.
These observations mean that preorders 'are' topological spaces and, in fact,

partial orders 'are' To topological spaces. Equivalence relations are preorders

and thus also topological spaces. Of course, the topology which corresponds to

an equivalence relation which is not just the identity relation is not To.

We have studied the nature of complementation in these lattices in [20] and

[19]; an extensive bibliography can be found in the former.

In this paper, we study the existence of families of topologies, each pair of

which are complements. These families of mutually complementary topologies

turn out to be rather hard to construct. The first construction was of three mu-

tually Tx complementary topologies on the integers and was accomplished by

Anderson and Stewart in 1968 [4]. In 1971, Anderson [3] gave a difficult and
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interesting construction, for each infinite cardinal k , of a family of k many

mutually complementary topologies on a set of cardinality k . In that paper,

he also constructed a family of k many mutually Tx -complementary topolo-

gies on a set of cardinality k . Anderson then turned to the finite case [5], [6]

and obtained some nice estimates of the maximum size of a mutually comple-
mentary family of topologies on a set of cardinality n . In fact, his topologies

in the finite case 'are' equivalence relations. The second author has, with Ja-

son Brown, obtained some results on complementation in the finite case [11],

[8] and, in particular, has obtained [10] estimates of the number of mutually

complementary partial orders (To topologies) on a finite set.

This completes the short bibliography for the study of the existence of fam-

ilies of mutually complementary structures on a fixed set.

In this paper, we restrict our attention to the infinite case but examine the

maximum sizes of mutually complementary families in the lattice of topologies,

the lattice of Tx topologies, the semi-lattice of partial orders and the lattice of
equivalence relations.

We observe that Anderson's construction of k many mutually complemen-

tary topologies on k is best possible. We remark that Anderson's method does

not yield mutually complementary families in either the semi-lattice of partial

orders, the semi-lattice of To topologies, the lattice of preorders, or the lattice

of equivalence relations. We show, by induction, that there is indeed a family

of k many mutually complementary partial orders (and thus To topologies)

on k . Furthermore, we show that the structure of such partial orders can be

taken, in some sense, as simple as possible.

We obtain an alternate construction of a family of k many mutually Tx

complementary topologies on k by showing that there is a family of k many

mutually complementary partial orders of a certain kind on k . Furthermore,

this construction is direct rather than by induction. We then show that any

such family can be modified to be a family of mutually Tx complementary
topologies.

We obtain, by induction, k many mutually complementary equivalence re-
lations on any infinite cardinal k . This elegant construction provides what is

probably the simplest and least technical proof of Anderson's 1971 result.

We note that our observation in the case of the lattice of all topologies does
not remove the possibility that there may be more than k many mutually Tx

complementary topologies on k . A subtler argument shows that the maximum

size of a mutually Tx complementary family of topologies on a set of cardinal-

ity k may be greater than k but only for k which are uncountable and less

than 2C. Nevertheless, we show that it is consistent with and independent of

the axioms of set theory that there be N2 many mutually Tx -complementary

topologies on co x. We leave open, however, the possibility that there may be a

construction, without using special axioms of set theory, of 2C many mutually

Tx-complementary topologies on c.

We use the concept of a splitting sequence in the proof of consistency of the

existence of more than k many mutually Tx complementary topologies on k .

We believe that this concept is of independent interest and ask some questions
about the existence of splitting sequences of various kinds.

We show that these mutually complementary families must be constructed

with some care by showing that there are maximal families of mutually comple-
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mentary equivalence relations on tc of any size between three and k . Indeed,

these families are maximal even among preorders.

We conclude the paper with the observation that complementation can arise

in a 'finitary' way or an 'infinitary' way. We define this observation in a rigorous

way and pose some questions whose investigation we hope will shed further light

on the nature of complementation.

2. Lower bounds for partial orders

The complexity of a partial order can be measured in a very crude way by the

maximum size of chains. The partial orders we construct in Theorem 1 have no
chains of size more than 3. On the other hand, there is no family of even three

mutually complementary partial orders with no chains of size 3 (every element
must be maximal or minimal and no element can be maximal (or minimal) in

two mutually complementary partial orders).

Theorem 1. If k is an infinite cardinal, then there are k mutually complemen-

tary partial orders on k . Furthermore each maximal chain in each of these

partial orders has size 3.

Proof. We use the notation idys to indicate the identity relation on ß (here and

in Lemma 3 below). We construct k many mutually complementary topologies

by fixing the index set of the topologies and adding points one at a time. That

is, we choose a listing

L = {(ao(t),al(Ç),yQ(t),yl(t)):Ç£K}

of K4 in order type k in which each term appears cofinally and (V£ G k)(Ví G

2)a¡(£), y ¡(S) < Ç and then define a family of partial orders {<£: a, ß £ k}

and a family of mappings {nß: a, ß £k} so that

(1) <icß2,

(2) ß0<ßx=><ßo=<ßinß2,

(3) a0¿cxx =><^ n <¿t= idß ,

(4) nß:ß^3,

(5) ßo<ßx^ nt C nt,

(6) y <ß ô =» either nß(y) = 0 A nß(o) = 1 or nß(y) = 1 A nß(S) = 2 or

(3n £ ß) : y <ßa n <ßa ô A nß(y) = 0 A nß(n) = 1 A nß(o) = 2,

(7) if 4o{ßpo(ß)) = 1 - nßdß)(yx(ß)), then nß^ß)(ß) = 0, nß+lß)(ß) = 2,

(8) (Vy>0)(3\a):nya+X(y) = 0,

(9) (Vy>0)(3!a):^+1(y) = 2,

(10) if nß(y) = 0 then 3y'(nß(y') = 1 A y <ß y'), if nß(y) = 2 then

3y'(nß(y') = lAy'<ßy).

We accomplish this construction by induction on ß only. We start by setting

each 7t¿(0) = 1 and setting each <xa- {(0, 0)} . Suppose {<£: a £ k , v £ ß}

and a family of mappings {iiva: a £k ,v g ß} have already been defined.

If ß is a limit ordinal, then conditions (2) and (5) uniquely define <ß and
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Let us therefore assume that ß is the successor of the ordinal ß~ . We need

only define each nt(ß~) and each <ßa n(({ß~} x ß)li(ß x {/»"})) and then

use (2) and (5).
We consult the listing L for the j8~-th 4-tuple

(ao(ß-), ax(ß-), y0(ß~), 7\{ß~)) = (oto, ax,y0, 7\)

and, if n^0 (y0) - 1 = nßa, (yx), then we define nt0(ß~) — 0, 7r£,(/?_) = 2 and

all other n&(fi~) - 1. We declare ß~ <ß0 yo and yx <£, ß~ and add no other
order relations between ß~ and the elements of ß~ except those induced by

transitivity.

Now we define <a= \J{<% '■ ß £*} and na = [}{ni : ß £ k} .

We claim that {<a: a £ k} is a mutually complementary family of partial

orders. Join follows from condition (3). To show meet suppose that U is open

in both <ao and <Q, . If U is nonempty, then by condition (10), U must either

contain ß with nao(ß) = 2 or else contain ô with nao(ô) = 1. In the latter

case, find ß suchthat (a0(ß), ax(ß), yo(ß), yx(ß)) = (ax,a0,0,S) with ß >

S and, by condition (7), we have nao(ß) = 2 and ô <ao ß so in either case

U contains ß with nao(ß) = 2. By condition (9), nai(ß) = 0 or nai(ß) = 1.

In the former case, by condition (10), there is y £ U with nai(y) = 1. Thus,

in either case, there is y g U such that na{ (y) = 1. If U is proper, then, by
condition (10), U must either miss ß with nai(ß) = 0 or else miss ô with

na¡(o) - 1. In the latter case, find ß such that (a0(ß), ax(ß), y0(ß), yi(ß)) =

(ax, a0,ô, 0) with ß > ô and, by condition (7), we have nai(ß) - 0 and

ß <Ql ô. So, in either case, U misses ß with na](ß) = 0. By condition (8),

nao(ß) = 2 or nao(ß) - 1. In the former case, by condition (10), there is y' & U

with nao(y') - 1. Thus, in either case, there is y' £U such that nao(y') = 1.

Find n £k suchthat (a0(n), ax(n), y0(n), yx(n)) = (a0,ax,y',y) where

r\ > yo, 7x • By condition (7), n <ao y' and y <a, n. Thus n g U and n G U

which is impossible.

We shall provide a construction of k many Tx complementary topologies

on a set of cardinality k in Section 5 by showing that any family of mutually

complementary partial orders of a certain kind can be modified in an appropri-
ate way. We need the partial orders to have the property that the set of minimal

elements is finite. The maximal chains in these partial orders have size 4. One

advantage of this construction is that it is direct rather than inductive. Another
advantage is that a similar construction gives the best known lower asymptotic

bound in the finite case [10].

Theorem 2. // k is an infinite cardinal, then there are k mutually complemen-

tary partial orders on k. Furthermore, the set of minimal or maximal elements

in each of these partial orders is finite and all the maximal chains in each of

these partial orders have size 4.

We need a definition and a lemma before proceeding with the proof.

Definition 1. Let {Bf : m, j £ k} be a family of subsets of k such that each

{Bf: m £ k} is a partition. We call this indexed family saturated if, for each

v, m , there is z such that z G Bm and v £ Bf .
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Lemma 1. For any infinite cardinal k , there is a saturated family of subsets of

k .

Proof. Express k as the union of an increasing sequence {An : n £ co} where,

for al n £ co, \An+x - An\ = k . Define partitions {{"Bf: m G k}: j G An} of

An such that (Vu, m G An)(3z G An+X - An)z £"+x Bm A v £"+x B™ using any

one-to-one map from A2 to An+X - An .

Proof of Theorem 2. Let X = 2x2xkxk. We define x'- tc2 —► 2 by letting
X(m, x) = l<$l+m = x. Let {Bf : m, j £ k} be a saturated family of

subsets of k . Let <m (where m < k) be the smallest partial ordering on X

which satisfies:

(1) {j, k) ¿ (m, 0) =* (l-x(m,k), i, j, k) <m (0, i, m, 0).
(2) (j, k) Í (m,0) =»(1,1-1, m, 0) <m (x(m,k), i,j,k).
(3) q£Bf, (j,k), (q, p) ¿ (m ,0) ^ (x(m, k), i, j, k) <m

(l-X(m,p), r,q,p).

We complete the proof with a series of lemmas. The next lemma gives some

basic information about each of these partial orders including the fact that they

each have four levels.

Lemma 2. There is a function lvm : X —> {1, 2, 3, 4} which is defined for each

m £K so that

• (V/>o, px £ X)po <m px => lvm(po) < lvm(px),

• if m^v, then lvm(p) = 1 => lvv(p) = 3 and lvm(p) = 4 => lvv(p) = 2,
• if lvm(p) = i and i < 3, then there is q £ X such that p <m q and

lvm(q) = i+l,
• if lvm(p) = i and i > 2, then there is q £ X such that q <m p and

lvm(q) = i-l.

Proof. In case (t, u) = (m, 0), define lvm(i, s, t, u) = 1 if i = 1 and define

lvm(i, s, t, u) — 4 if i - 0. In case (t, u) ^ (m, 0), define lvm(i, s, t, u) — 2

if x(m ,u) = i and define lvm(i, s, t, u) = 3 if x(m > m) =¿ /. The definition
provides us with an element below or above a given element at an adjacent level

since each Bm is nonempty and since, for each v, m, there is z such that

z £ Bm and v £ Bf . The fact that the order relation is defined on adjacent

levels means that the only order relations between elements on nonadjacent

levels occur through the transitive closure.

Lemma 3. If m^v , then <m n <v= idx .

Proof. Suppose (i, s, t, u) <m, <v (j, p, q, r).

Case 1. {(t, u), (q, r)}n{(m, 0), (v , 0)} — 0 . In both orders lv(i, s, t, u)

= 2 and lv(j, p, q, r) — 3. By condition 3, q £ B¡" and q £ Bf which
contradicts the fact that {B¡" : m G k} is a partition for each t £ k .

Case 2. {(t,u),(q, r)} - {(m,0),(v, 0)} . Suppose that (t, u) = (m, 0)
and(q, r) = (v , 0). Now lvm(i, s, t, u) = 1, since it cannot be 4 and so

lvv(i, s, t, u) = 3. Thus lvv(j, p, q, r) = 4. Hence lvm(j, p, q, r) - 2.

This means that condition 1 applies in <v and condition 2 applies in <m to

yield p - s and I - p = s . For each v , m , there is z such that z G Bm and

v £ Bf , which is a contradiction.

Case 3. \{(t, u),(q, r)} n {(m, 0)(v , 0)}\ = 1. Suppose (t, u) = (m,0).
This means that lvm(i, s, t, u) — 1 since it cannot be 4. Thus lvv(i, s, t, u) =
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3 and so lvv(j, p, q, r) — 4. This implies that (q, r) — (v , 0) which is a

contradiction. Suppose (q, r) = (m, 0). This means that lvm(j, p, q, r) - 4

since it cannot be 1. Thus lvv(j, p, q, r) = 2 and so lvv(i, s, t, u) - 1. This

implies that (t, u) - (v, 0), which is a contradiction. The proof is complete.

Lemma 4. If m^v, then there is no proper preorder (i.e., no preorder not equal

to k2) which contains <m and <v.

Proof. Any open set in <m contains a point at level 4. In <v, that point

(0, i, m, 0) is at level 2 and so we get ( 1 - x(v > l + m), r, q, I + m) in that
open set whenever q g Bm by the definition of the partial order between levels

2 and 3. Suppose this open set does not contain all minimal points in <„ . Let

one of these points be ( 1, y, v, 0) which is at level 3 in <m . Now choose

a z G k so that z £ Bm and t) € 5f. This is possible by saturation. In
particular above, we get both (1 -x(v, l + m), r, z, l + m) to lie in the open
set. Now we know that (1 — x(v , I + m), r, z, 1 + m) <m (I, y, v, 0) since

X(m, 0) — 0 by the definition of the partial order between levels 2 and 3, and

so we are done.

Corollary 1. For any infinite cardinal k , there are at least k mutually comple-

mentary To topologies on k .

3. Lower bounds for equivalence relations

Two equivalence relations ~i and ~2 on a set X are complementary if and
only if

• x~xy i\x~2y=*x = y,

• all points are equivalent in the transitive closure of ~i U ~2 •

Theorem 3. For any infinite cardinal k , there is a family of k many mutually
complementary equivalence relations.

Proof. We say that an ordinal a is congruent to 0 modulo 3 and indicate this

fact by a = 0 (mod 3) if a = n + n where n is a limit ordinal (possibly the

ordinal 0) and n £ co and n = 0 (mod 3). Let {(at, b^, ç*, dç) : 0 < Ç £ k , â, =
0(mod 3)} enumerate the 4-tuples of ordinals in k such that c¿ =¿ d( in such

a way that a¿, b¡, c¿ and d¿ are elements of ^. Now define, by induction on

Ç, a family of equivalence relations {~^: n g k , £, <k , Ç = 0 (mod 3)} so that

(1) ~fj is an equivalence relation on £,

(2) q # ß, x ~£ y, x ~J y => x = y,

(3) a„ ~ b„ where ~ is the transitive closure of ~?,+3 U ~d+3,

(4) s < C ̂  nç2 =~«.
We get started by putting all ~^ to be the identity relation. Suppose that such

equivalence relations ~^ , on £ = 0 (mod 3) and £ > 0 have been constructed

for each n £K . We now define the equivalence relations ~^+3 on £ + 3.

If n & {C(, dç}, then define ~^+3 to be the smallest equivalence relation
which obeys condition (4). That is, we put the next three ordinals into new one

element equivalence classes.

Define ~i*3 to be the smallest equivalence relation which obeys condition

(4) such that a¿ ~|+3 Ç and Ç + 1 ~cí+3 £ + 2. That is, we put £, into the same
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old equivalence class as a¡ and put £ + 1 and £ + 2 into a new two element

equivalence class.

Define ~¿+3 to be the smallest equivalence relation which obeys condition

(4) such that ¿>{ ~^+3 £ + 2 and £ ~^+3 £ + 1. That is, we put £ + 2 into the

same old equivalence class as fy and put ¿; and £ + 1 into a new two element
equivalence class.

Conditions ( 1 ), (2) and (4) are ensured by the construction while the sequence

implies condition (3). If £ < k is a limit ordinal, then let ~,= U{~rí: C < £} ■

For each n £ k , let ~,,=~, • Condition (2) implies that no two points are

equivalent in more than one ~„ while condition (3) implies that, for any two

distinct equivalence relations ~Cí, ~¿ and, for any two elements a¡, bç G k,

these two elements are equivalent in the transitive closure of these two equiva-

lence relations. Since we have enumerated all ordered 4-tuples whose last two

elements are distinct, we are done.

4. Upper bounds for topologies and Tx topologies

Theorem 4. There do not exist k+ many mutually complementary topologies on

k .

Proof. Suppose {xa: a £ k+} were mutually complementary topologies on k .

• Case 1. For k+ many a, there is a point which is not closed in xa .

Suppose that ya is another point in the closure of {ßa} . We can assume

that ßa and ya are fixed and this contradicts the assumption that the

join of each two xa 's is discrete.

• Case 2. For at least two a, each point is closed in xa . This means

that the meet of these two xa 's contains the cofinite topology which is
a contradiction.

Since these two cases exhaust the possibilities, we are done.

Corollary 2.  • The maximum number of mutually complementary topologies on

k is precisely k .

• The maximum number of mutually complementary partial orders on k

is precisely k .

• The maximum number of mutually complementary equivalence relations

on k is precisely k .

• The maximum number of mutually complementary preorders on k is
precisely k .

An important cardinal invariant is p [13] which indicates the least cardinality
of a family of subsets of co with the finite intersection property but for which

there is no infinite subset of co which is almost contained (modulo finite) in
each element of the family. Of course Ni < p < c.

Theorem 5. If there are more than k pairwise Tx-complementary topologies on

k , then p < k < 2C.

Proof. Suppose that {xa: a £ k+} is a family of pairwise Tx-complementary

topologies on k . Let % be a free ultrafilter on co. For each ß £ k , there is
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at most one a £ k+ such that %f converges to ß in xa . This means that for

all but k many a £ k+ ,%/ converges nowhere in xa .

If 2e < k , then for all but k many a £ k+ no ultrafilter on co converges

in tq . Let A ck+ list these all but k many elements of k+ . Let an, ax £ A

be arbitrary. We deduce that co must be closed in both xao and xai which

is impossible. If k < p, choose an, ax such that ^ converges neither in xao

nor in xai • Find in tao and find in xai a cover of k by k many open sets U

such that U n « g ^. Let these open sets be listed as {Ua : a £ k , i £ 2} . For

each a £ k , i £ 2, let Z'a = co - Ula . Now {Z'a : a £ k , i £ 2} C ^. So, we

can find P £ [co]03 which is almost contained in each Zla . Now P is closed in

both xag and xa¡ .

Corollary 3. • The maximum number of mutually 7^-complementarytopologies
on co is co.

• It is consistent that the maximum number of T^complementary topolo-

gies on cox is cox (seep. 127 o/[13]).

• Under p - c and 2C = c+  (e.g. under GCH), if k =¿ c, then the
maximum number of mutually Tx-complementary topologies on k is
K.

5. Lower bounds for Tx topologies

Lemma 5. If {<a: a G k} are mutually complementary partial orders on an

infinite cardinal k in the lattice of all partial orders and if, for each a £ k ,

the set of <a-minimal elements Fa c k is finite, then there are mutually Tx

complementary topologies {oa: a G k} on k x co.

Proof. Let xa be the topology generated by sets of the form {y £ k: S <a y}

where ô £ k . For each a, y £ k, n £ co and for each xa basic open set U

about y £ k , let U* n = (U - {y}) x co U {(y, n)} . Declare rja to be generated

by these C/y* „ 's and the cofinite topology.

To see joins, let (y,n),a0, ax be given. There are U £ xao, V £ xay such

that U(lV = {y}. Now U* „ and V*n are open respectively in oao and oax

and have intersection equal to {(y, n)} .

To see meets, let U be open in both aao and oax . Let n: kxco ^> k be the

projection mapping. Note that, for any U £ oa, n(U) £ xa. Thus n(U) = k

so, for each a £ k, there is n £ co such that (a, n) £ U. This means U

contains (a, na) for each a G Faü and some integers na. By definition, this

means that U contains a cofinite subset of (K-Fao)xco. Similarly U contains

a cofinite subset of (k - Fat) x co. Since Fao n Fa] = 0, we are done.

Corollary 4. For each infinite cardinal k , there are k many mutually comple-

mentary topologies in the lattice of all Tx topologies on k .

Proof. Apply Theorem 2 and Lemma 5.

To proceed further to the construction of more than k many mutually Tx
complementary topologies on k , we seem to need a definition which is of in-
dependent interest:

Definition 2. {Xy : y £ X} c [X]<x is said to be a splitting sequence on X if every

X £ [X]w is split by each flip beyond some point.
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This means

(VX £ [X]w)(3a £ A)(VF G [X - a]<w)(Vn : F -► 2)\X n f\{X?{7) : y £ F}\ = co

where we require that each Xy c y and indicate Xy and y - Xy by Xx and

X® respectively.

Theorem 6. If X is an uncountable regular cardinal, there is an almost disjoint

family of tc many subsets of X (modulo < X) and there is a splitting sequence
on X, then there is a family of k mutually I^-complementary topologies on X.

We need a lemma:

Lemma 6. If X is an uncountable regular cardinal and there is a family {C%:a£

k ,rj £ X} of subsets of X and an almost disjoint family {Ba : a £ k} of subsets

of X (modulo < X) satisfying:

(1) (Va G K)(Vi7 G X)C% is almost equal to Ba (modulo < X),

(2) (Vy £ A)(Va0 ¿ ax G K)(3n £ X) : {y} = C? n Q ,
(3) (VZ G [X]w)(Va £ k)(3S £ A)(VA G [X - ô]«°)\ f|{C° : n £ A} nX\ = N0,

then there is a family of k mutually T^complementary topologies on X.

Proof of Lemma 6. For each a £ k , let the topology xa have the subbase

{C° - F: n £ X, F £ [X]<co} . Condition (2) says that {y} is open in xao V xa¡

and thus that the join is discrete.

If the meet is not cofinite, suppose that ao, ax £ k and that V is a coinfinite

set which is open in both xao and xai . Let X g [X]w be disjoint from V.

Now V contains some f){C%°: n £T}-G where T G [X]<0} and G £ [X]«°.
Choose ô £ X from condition (3) for ax £ k . Now choose ß £ fl{C^°: n £

T} - \J{C%' : n < S} - G which can be done since each C£' is almost equal to

Ba¡. Since ß £ V and V is open in xa¡ , there is A G [X]<(0 and F G [X]<(°
so that ß £ ri{Q' : n £A} -F cV. Since A n ô = 0 , condition (3) implies
that Z = fl{C£' : n £ A} n X is an infinite set. Now Z-FcVandZcX
contradicts the fact that V r\X = 0 .

Proof of Theorem 6. Let {Ba: a £ k} be an almost disjoint family of subsets

of X (modulo < X). Let {Xy : y £ X} be a splitting sequence. Since k <2X,

let x '■ k x X -> 2 be such that (Va0, ax £ K)(3n £ X) : x(oto, *l) i1 X(&x > n) ■ Let

ipo, ipx: X -+ X be so that for each yo, yx £ X there are cofinally many n £ X

such that ^0(77) = yo and y/x(n) = yx . Define

C; = {womu(Ba-n)öX^a-^"))

for each n £ X and a £K . We apply Lemma 6.

To show condition (2), suppose that y £ X and ao ?= ax £ k are given. We

choose r\o £ X such that BaonBa] c t]o > choose yi so that ^(ao ,7x)¥=- X(a\ > Yx)

and choose n > rjo so that y/o(n) = y and y/x(n) — yx . Since X®UXX c n, we

have that {y} = C%° n C,ai.

To show condition (3), suppose that X £ [X]w and a £ k . Since {X,, : y g A}

is a splitting sequence, there is a ô £ X so that every flip from {Xy : y £ X - ô}

intersects X in an infinite set. Now if A G [X - ô]<(°, then f|{C^:f7GA}c

f]{X^a''''[i■',^: n £ A} and even the latter intersects X in an infinite set. The

theorem is proved.
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Corollary 5. Under CH, there are 2N| many mutually Tx-complementary topolo-

gies on cox.

Proof. The complete binary tree of height cox has c many vertices and 2N|

many branches. A splitting sequence for cox can be readily constructed under

CH by transfinite induction. In fact, suppose that {Jfa : a £ cox} is a sequence

of elementary submodels of H(c+) such that

• a G ß =>- Jfa £ Jfß ,

• lj{^a: a £ cox} D [co]" ,

• (Va G cox)(3r G ̂ a+x n 2<°)r splits every real in Jfa (so any Cohen real

over Jfa works).

Thinking of the reals as the power set of a, there is some Xa £ Jfa+X which

splits every infinite subset of a which belongs to Jfa . Thus {Xa: a G cox} is

the desired splitting family.

Corollary 6. It is consistent with any cardinal arithmetic that there are 2Nl many

mutually Tx-complementary topologies on cox.

Proof. The proof of Corollary 4 shows that there is a splitting sequence on cox

in any model which is obtained by adding N[ Cohen reals to a model of set
theory.

Problem 1. Can one establish, in ZFC, that there are c+ many (maybe even 2C

many) mutually Tx -complementary topologies on c?

Problem 2. Are there infinitely many mutually Tx -complementary (completely
regular) Hausdorff spaces?

6. Maximal mutually complementary families

Theorem 1. If 3 < v < k , then there is a maximal family of v many mutually

complementary equivalence relations on k. In fact, these families are maximal
even among preorders.

Proof. Let A be a cardinal which equals v if v is infinite and otherwise equals

v - 1 . We say that two functions fi,, fx £ Kk are orthogonal if \fo n/i | < 1. By

induction on a G k , we can find X + 1 many partitions {{f7: a £ k}: - 1 <

y < X} of X x k into functions in kx in such a way that, for each -1 < y <

X, {f7 : a £ k} is an orthogonal family.
To see this, note that if A =¿ /e, then Xxk = (}{X x X^: £, £ k} where

{X^ : £ G k} is a partition of k into sets of size X and so each Xx X^ can be

partitioned into functions forming an orthogonal family separately. So assume

X — k and proceed by induction on ß g k and suppose that partitions of

k x k into functions {{f7'- a £ k}: - 1 < y < ß} have been constructed

and that the family {{f7: a £ k, -1 < y < ß} is an orthogonal family. To

construct {f£': a G k} , let {(/¿9, p^): S, £ k} enumerate k xk and proceed

by induction. If {fi : a £ £} have been constructed, let ff(p'r) = p\ ■ Extend

this definition of fß so that it is a total function which is disjoint from each

element of {fi : a £ Q and is orthogonal to each f7 for a £ k , y £ ß . This

can be done since, if f? has been defined on fewer than k many elements, then

the inductive hypothesis of orthogonality guarantees that ff so far intersects
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fewer than k many elements of {f7: a £ k , -1 < y < ß}. Since the family

{f£ : a £ Q also has size less than k , it is possible to extend ff on any one

element and preserve all the inductive requirements.

For each 0 < y < X, we construct equivalence relations {~7: y e 1} on

(X x k) U {oo} by declaring each f7 - {(y, fl(y))} to be an equivalence class
in ~,, and declaring ({y} x k)U {oo} to be an equivalence class in ~r.

We construct ~_i by declaring each f~x to be an equivalence class in ~_i
as well as declaring {oo} to be an equivalence class in ~_i.

To see that the meets are all the identity equivalence relation, note that re-

stricted to X x k orthogonality applies. Suppose that A is closed under ~7 V ~s
where y =¿ ô G X and y 7= -1. Since A is closed under ~¿ , either 00 G A or

A n ({y} x k) 7= 0. Since A is closed under ~y and y =¿ — 1, in either case,
00 £ A. Since this reasoning applies equally to Ac, we get a contradiction.

To see that this family is maximal, suppose that « is another preorder which

is complementary to each ~y, where -1 < y < X. Since 00 is an equivalence

class in ~_i, there must be some (y, a) £ Xx k such that either (y, a) < 00

or 00 < (y, a). However (y, a) ~y 00 and either way that is a contradiction.

This construction works for any X > 2. Actually it works for X — 1 as well,

but we obtain only ~_i as the identity relation and ~n with one equivalence

class.

D. Dikranjan and A. Policriti [12] have recently shown that there are many
families of two mutually complementary equivalence relations on a finite set.

Problem 3. What are the possible cardinalities of maximal families of mutually

complementary families of partial orders (or To topologies)?

We now of no finite maximal mutually complementary families of partial
orders of cardinality greater than two on an infinite set. We know of no count-

ably infinite maximal mutually complementary families of partial orders on an

uncountable set. There is an easy example of a maximal family of two mutually

complementary equivalence relations on any uncountable set. Let ~o on k x 2
have two equivalence classes k x {0} and k x {1} . Let ~i on kx2 have each

{a} x2 as an equivalence class.

Problem 4. What are the possible cardinalities of maximal families of mutually

complementary families of Tx topologies?

Here we know of no examples of maximal mutually complementary families

except by appealing to Zorn's lemma and using the upper bounds established in

Section 4.

Definition 3. Suppose < is a preorder on k . Let A c k . Define î< (A) —

{b £ k: (3a £ A)b > a}. If we have (VA ¿ 0) î< (î<. (î< (î<< (A)))) = k,
then we say that < and <', in that order, are 4-complementary. If we have

(VA t¿ 0) î< (î<- (î< (A))) = k , then we say that < and <', in that order, are

3-complementary. If we have (V/l 7= 0) |< (î<- (A)) = tc, then we say that <

and <', in that order, are 2-complementary.

Note that the preorders constructed in Theorems 1, 2 and 3 are mutually

4-complementary.
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Problem 5. What are the possible sizes of mutually 3-complementary (mutually

2-complementary) preorders (partial orders) (equivalence relations)?
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