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ON THE COMPACTNESS OF THE EVOLUTION OPERATOR
GENERATED BY CERTAIN NONLINEAR Í2-ACCRETIVE

OPERATORS IN GENERAL BANACH SPACES

ATHANASSIOS G KARTSATOS

(Communicated by Barbara Lee Keyfitz)

Abstract. A sufficient condition is given for the compactness of the evolution

operator U(t, s) generated by a family of nonlinear (u-accretive operators

A(t). This family A't) satisfies a time-dependence condition which is not cov-

ered by the results of Calvert and the author. It is also shown that the main part

of this sufficient condition is necessary.

1. Introduction and preliminaries

In what follows, ¿%, 31+ are the real line and the set [0, oo), respec-

tively. Also, T is a fixed positive number and X is a real Banach space.

Definition 1. We denote by f? the set of all integrable functions / : [0, T] x

[0, T]^32+ suchthat:
(i) f(s,s) = 0, f(s,t) = f(t,s), f(t,s)<f(t,r) + f(s,r), 0<r<s<

t< T;
(ii) for each s e [0, T), we have f(-,s) e &x(0, T) and /(• + s, •) e

SA\0,T-s);
(iii) for each h e (0, T), the function

F(s,r)= [ f(t + s,t + r)dt
Jo

is upper semicontinuous on [0, T - h] x [0, T - h],  i.e., {sn} ,{/■„} C [0, T -

h] x [0, T - h] and s„ —> So, r„-> r0 imply that

limsup-F^ , r„) < F(s0, r0).
n—»oo

Definition 2. Let 3 c [0, T) xX, 2t(s) = {xeX : (s,x)eS), se{0,T).
Let U(t, s),  0 < s < t < T,  be a family of operators in X. Then U(t, s)
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is said to be an evolution operator of type (A (3, <x>, f), where co e 32 and

f e&, provided that:

(El) if 0<r< s <t<T,  U(t,s) maps 3(s) into 3(t),  U(s, s) is the
identity on 3(s) and U(t, s)U(s, r) = U(t, r) on 3(r);

(E2) for s e [0, T) and x e 3(s),  U(-, s)x e C({s,T),X);
(E3) for 0 < r < j < 7\ 0<t<T-s, xe 3f(s) and y e 3(r),

||U(t + s, s)x -U(t + r, r)y\\ < ewt\\x - y\\ + [ ew{'-T)f(r + s,t + r)dt.
Jo

Definition 3. For x, y e X we set

(x,y)+ = mfJ.-i(\\x + Xy\\-\\x\\).
X>0

An operator A : X —► 2X is «-accretive, where co e32, whenever

(x - y, u - v)+ > -o)\\x - y\\   for all x, y e D(A), u e Ax, v e Ay.

Condition I. Let A(t), t e [0, T), be a family of co-accretive operators, for

some co e 32+. Let 3 = {(t, x) e [0, T) x X : xe D(A(t))}. Let f e &
and let U(t, s) be an evolution operator of type %?(3, co, f). Suppose that for

0<s <t <T, x e 3(s), 0 < r < T and w e A(r)z we have

e-°"\\U(t, s)x - z\\ - e-ws\\x - z\\

< f e-°"((U(r, s)x - z, -w)+ + f(r, r))dx.

Condition IL R(I+XA(t+X)) d D(A(t)) for all te{0,T) and all Xe(0,T-t)
with Xco < 1.

Calvert and the author gave in [4] a result, under Conditions I and II, con-

taining necessary and sufficient conditions for the compactness of the operator

U(t, s). However, this result does not cover an important case of operators

A(t), i.e., operators satisfying the following condition.

Condition III. (i) There exists co e 31+ such that for each t e [0, T] the operator

A(t) is co-accretive and R(I + XA(t)) = X for X e A= (0, X0), where Xo is a
fixed positive constant such that X0co < 1.

(ii) There is a continuous function h : [0, T] —> X of bounded variation on

[0, T], and an increasing function L : 3?+ —* 32+ such that

(C) \\Ax(t)x - Ax(s)x\\ < \\h(t) - h(s)\\L(\\x\\)( 1 + \\Ax(s)x\\),

for all Xe A, t, s e [0, T], and x e X,  where

Jx(t) = (I + XA(t))~x,   Ax(t) =X-\I- J,(t)).

In fact, under Condition III, the integral inequality in Condition I will have

the function L(||x||)||A(T)-/i(r)||(l-r-||üv||) in place of the function f(r, r). This

can be seen in the paper of Tanaka [15, p. 51]. Because of the presence of the

factor L(||x||)(l+ 11^11), the function f(r,r) does not satisfy (i) of Definition

1. Thus, the sufficiency part of the proof of the main result in [4] does not go

through in the present setting, and some modifications are needed in the proof

of the necessity part.
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Our purpose in this paper is to give a set of sufficient conditions for the

compactness of the Crandall-Pazy evolution operator generated by a family of

w-accretive operators satisfying Condition III. This is the content of Theorem

1. Theorem 2 shows that two of these conditions are also necessary for the

compactness of this evolution operator.

We collect some properties of («-accretive operators A and the directional

derivative (x, y)+. The books of Barbu [2] and Lakshmikantham and Leela

[ 13] are excellent references on the subject of accretive operators. We assume

that R(A + XI) = X for all X e A. We set Jx = (I + XA)~X, Ax = (l/X)(I-Jx)
and always assume that X e A.

(i)   \\Jxx-Jxy\\<(l-Xco)-x\\x-y\\, x,yeX.
(ii)   \\Jxx - x\\ < X(l - Xco)  x\Ax\, xeD(A), where

\Ax\= inf{\\y\\), xeD(A).
y€Ax

(iii)   Ax is cox -accretive with cox = co(l - Xco)~x. Also,

\\Axx - Axy\\ < X~l(l + (1 - Xco)-x)\\x-y\\, x,yeX.

(iv)  Axx e AJxx, x e X.

For x, y, z e X and a, ß e32 we have

(1) (x,ax + y)+ = a\\x\\ + (x,y)+;
(2) (ax,ßy)+ = \ß\(x,y)+ for aß>0;
(3) (x,y + z)+ <(x,y)+ + (x, z)+;

(4) (x,y)+<\\x + y\\-\\x\\;
(5) |(x,j;)+|<|M|;
(6) the function (x, y)+ : X x X —> 32 is upper semicontinuous.

We give below some of the properties of the Crandall-Pazy evolution operator

U(t, s). The rest of its properties can be found in [5]. We let A = {(t, s) e

[0, T]2 : 0 < s < t < T} and assume that Condition III is satisfied. We let

D = D(A(0)). We know that D(A(t)) = D= const, for all t e [0, T].

(i) For each (t, s) e A,    U(t, s) : D —> D and the mapping (t, s, x) —>

U(t, s)x is continuous on A x D.

(ii) For every r,s,te[0,T] with r < s < t,  we have U(t, s)U(s, r) =

U(t,r).

(iii)   \\U(t,s)x-U(t,s)y\\<e^-^\\x-y\\,   (t,s)eA,x,yeD.

2. Main results

Our main result is contained in the following theorem.

Theorem 1. Assume that Conditionlll holds. Then the Crandall-Pazy evolution

operator U(t,s) is compact on D, for each t,s e A with t > s, if the

following additional conditions are satisfied:
(i) For every x e D, Jx(t)x is continuously differentiable w.r.t. t e [0, T],

for all X e A, with derivative J'x(t)x of bounded variation on [0, T\. In addi-

tion, for every bounded set B c D,

limA /   \\J'x(t)x\\dt = 0 uniformly w.r.t. x e B.
¿—o   Jo
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(ii) The resolvents Jx(t) are compact on D for each t e [0, T] and each

XeA.
(iii) Given e > 0, s e{0,T), t0 e (s, T] and a bounded set B c D, there

exists S = S (s, to, e , B) such that

\\U(to,s)x-U(t,s)U(t0,s)x\\ <e

for every t e (s, s + S) and every x e B.

The following statement is important for the applicability of Theorem 1 in

reflexive Banach spaces.

Remark 1. Let Condition III hold with h(t) = t and let X be reflexive. Then,

for every x e D, Jx(t)x is absolutely continuous and differentiable a.e. w.r.t.

t e [0, T] for all X e A. In addition, for every bounded set B c D,

limA /    \\J'x(t)x\\dt = 0 uniformly w.r.t. x e B.
*■—o   Jo

Proof. We observe that Ax(t) = (1/X)(I - Jx(t)) and

\\Jx(t)x - Jx(s)x\\ < XL(\\x\\)\t -s\(l + \\Ax(s)x\\).

We have

s^l<XL(\\x\\){l + (l/X)\\(I-Jx(t))x\\]
(1) |<-*|

<L(\\x\\)(X + \\x\\ + \\Jx(t)x\\),

(2) \\Jx(t)x\\ < \\Jx(0)x\\ + TL(\\x\\)(X + \\x\\ + \\Jx(0)x\\)

and

(3) \\M0)x\\ < \\Jx(0)xo\\ + (1 - X0co)-X \\x - ¿roll

for any x e D, XeA, where x0 e D is fixed. It is easy to see that (l)-(3)

imply that Jx(t)x is Lipschitz-continuous, and thus absolutely continuous on

[0, T]. Since X is reflexive, Jx(t)x is differentiable a.e. w.r.t. t e [0, T]

and the norm of the derivative, ||/a'(î)x|| , is an integrable function on [0, T]

(cf. Brézis [3, Proposition A.l]). Moreover, from the above inequalities we also

obtain that X\\Jl(t)x\\ -» 0 as X -> 0 uniformly for (t, x) e ({0, T]\M) x B,
where M is a measurable subset of [0, T] with p(M) = 0 and B is a bounded

subset of D. This implies the validity of the integral condition.

Lemma 1. Let Condition III be satisfied and let f : [0, T] —► X be a continuous

function of bounded variation on [0, 71. Then, for any s e [0, T], Xo 6 D,

the Crandall-Pazy solution x(t) = U(t, s)xo of the problem

x' + A(t)x-f(t)3 0,   te{s,T],

x(s) = Xo

is well defined. Moreover, the Crandall-Pazy solution Xß(t) of the problem

x' + Aß(t)-f(t) = 0,   te{s,T],

x(s) = Xo

is also well defined and Xß(t) -* x(t) as ß —» 0+ ,  uniformly on {s, 71.
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Proof. To show the existence of the solution x(t) of (Cl), we observe first that

the operator A(t)-f(t) is co-accretive. We show that R(I + X(A(t)-f(t))) = X

for all X e A, t e [0, T]. Fix X e A, te [0, T], y e X. Then there exists x =
x(X, t,y) suchthat (I+XA(t))x 3 Xf(t)+y. Thus, (I+X(A(t)-f(t)))x By. To
show the ¿-dependence of B(t) = A(t)-f(t), we set Jf(t) = (I + XB(t))~x. It

is easy to see that 7/(0 = Jx(t)(x + Xf(t)), XeA, t e [0, 71. Thus, as in
Evans [6, proof of Theorem 2],

||//(f)jc - Jj*(s)x\\

< X\\f(t) - f(s)\\ + X\\h(t) - /t(s)||L,(||x||)(l + \\Bx(s)x\\),

where Lx :32+ -^32+ is an increasing function. Letting g(t) = Var({0, /]; f)+

Var({0, t]; h), where Var({0, t]; f) denotes the total variation of / on
[0, i], we obtain

(4)        \\J*(t)x - JxB(s)x\\ < X\\g(t)u0 - ^(i)«o||L2(||ac||)(l + \\Bx(s)x\\)

for some new increasing function L2 :32+ -» 32+ and any uo e X with ||un|| =

1, i.e., a type of ¿-dependence exactly like the one in Condition (C). Thus, the

solution x(t) = U(t, s)xo exists by [5, Theorem 2.1].

Concerning Equation (C2), we set Dß(t) = Aß(t) - f(t). We note that Aß(t)

is cox -accretive, with cox = co/(l - ßco), for all ß e A and all t e [0, 71. We

now show that R(I + XDß(t)) = X for all j? e A, A > 0 with Xcox < 1,
and t e [0, T]. Actually, it suffices to show that R(I + XAß(t)) = X for the
same values of ß, X and t. To see this, fix y e X and consider the equation

(I+XAß(t))x = y. The solvability of this equation is equivalent to the existence

of a fixed point for the mapping y/(x), where

^x)sx+fi+nhJß{t)x-

This mapping has a unique fixed point for the above values of the parameters

ß,X and t (cf. [5, proof of Lemma 4.1]). We need to show that Dß(t) satisfies
a condition like (C), but this follows immediately from the fact that the operator

Aß(t) satisfies such a condition (cf. [5, proof of Lemma 4.1]) and an inequality
like (4).

In order to apply Lemma 4.1 of [5], it remains to show that

Jx'ß(t)x -» 7/(0* as ß -» 0+,

for each XeA, t e [0, T], where Jx'ß(t) = (I + XDß(t))-x. We set 7/(0 =

(I + XAß(t))~x and note that Jx'ß(t)x = jf(x + Xf(t)) and JxB(t)x =

Jx(x + Xf(t)). We also know that jf(x + Xf(t)) -* Jx(x + Xf(t)) as ß -»
0+, for all X e A, t e [0, T], because of the continuity of the mapping

Jq(t) : X -* D(A(t)) in the variable q. This is shown, with x + Xf(t) replaced
by x, in [5, proof of Lemma 4.2]. Thus, xß(t) -» x(t) as ß —> 0+ , uniformly

on {s, 71.

Proof of Theorem 1. We consider the approximating problems

._   . u' + Aß(t)u = 0,     te[s, T],

u(s) = X ,
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and

,_, , u' + Aß(t)u = J'x(t)x + Ax(t)x,   te{s,T],
(bß> t    \ T  S    \

u(s) = Jx(s)x,

for fixed XeA and x e D, where ß is a sufficiently small positive constant

and cox is as in the proof of Lemma 1. We let uß , üß denote the C1 solutions

of these problems, respectively. Since the functions uß, üß are continuously

differentiable, we have that the function \\üß(t) - uß(t)\\ is differentiable a.e.

on {s, T] and such that

(d/dt)\\üß(t) - uß(t)\\ = (üß(t) - uß(t), ü'ß(t) - u'ß(t))+

= (üß(t) - uß(t), -(Aß(t)üß(t) - Aß(t)uß(t)) + J'x(t)x + Ax(t)x)+

< (üß(t) - uß(t), -(Aß(t)üß(t) - Aß(t)uß(t)))+

+ (üß(t) - uß(t), J'x(t)x + Ax(t)x)+

< (üß(t) - uß(t), J'x(t)x + Ax(t)x)+ + cox \\üß(t) - uß(t)\\,

where we have used the c^-accretiveness of the operators ^4^(0» Integrating

this inequality ((x ,y)+ is upper semicontinuous), we obtain

\\uß(t)-üß(t)\\

< \\uß(s) - üß(s)\\ + j (üß(T) - uß(r), J'x(x) + Ax(x)x)+dx

+ cox      \\üß(x) -uß(x)\\dx.
Js

Working as in Remark 2.1 of [4], we see that this inequality implies

\\üß(t) - uß(t)\\

< e"^\\üß(s) - uß(s)\\ + J'e^'-^(üß(x) - uß(x), J'x(x)x + Ax(x))+dx.

At this point we need to note that Uß(t) = Uß(t, s)x, üß(t) = Uß(t, s)Jx(s)x,

where Uß , Uß are the Crandall-Pazy evolution operators associated with ( E^ ),

(F^ ), respectively. From Lemma 1 we have that Uß(t, s)x —> U(t, s)x and

Uß(t, s)Jx(s)x -» Jx(t)x, as ß-*0, because U(t,s)x is the Crandall-Pazy
solution of the problem

u' + A(t)u 9 0,   te{s,T],

u(s) = x,

and Jx(t)x is the Crandall-Pazy solution of the problem

u' + A(t)u 9 J'x(t)x + Ax(t)x,   te{s,T],

u(s) = Jx(s)x

(cf. [5, Theorem 3.1]). Thus, for every X e A,  every x e D and every t > s,

we have

(5)
\\Jx(t)x-U(t,s)x\\<e°>«-°\\\Jx(t)x-x\\

+ Í eC0{'-u)(Jx(u)x-U(u,s)x, J'x(u)x + Ax(u)x)+du.
Js
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We now use Ax(t)x = (I/X)(I- Jx(t)x) and the properties of (x, y)+ to obtain

(Jx(u)x - U(u, s)x, J'x(u)x + Ax(u)x)+

= (l/X)(Jx(u)x - U(u, s)x, XJ'x(u)x + XAx(u)x)+

(6) < (l/X)\\Jx(u)x- U(u,s)x + XJ'x(u)x + XAx(u)x\\

-(l/X)\\Jx(u)x-U(u,s)x\\

= (1/X)\\x - U(u,s)x + XJ'x(u)x\\ - (l/X)\\Jx(u)x - U(u, s)x\\.

Using

-ew(t-u)\\Jx(u)x - U(u, s)x\\ < -\\Jx(u)x - U(u, s)x\\

< \\x - U(u, s)x\\ - \\x - Jx(u)x\\,

t>u>s, in (6), and then modifying (5) accordingly, we obtain

(7)

[1/X) [ \\Jl(u)x-x\\du<ea{'t-^\\Jl(s)x-x\\
Js

+ (1/X) f e°'{'-u)(2\\x-U(u,s)x\\+X\\J¡(u)x\\)du

for every X e A,  every t e{s, T] and every x e D. Thus, if we replace x in

(7) by U(to, s)x,  for some to e (s, T], we find

(8)
Il f

/  (Jx(u)U(to,s)x-U(t0,s)x)du
\\Js

< j  \\Jx(u)U(t0,s)x-U(to,s)x\\du

< Xe^'-^\\Jx(s)U(to,s)x - U(t0,s)x\\

+ [ ew{t~u) (2\\U(to,s)x - U(u, s)U(to,s)x\\+X\\Jx\u)U(to,s)x\\)du.
Js

We observe that our hypotheses and (8) imply that for every e > 0, se

[0, T), to e (s, T] and a bounded set B c D there exists ô = S(s, to, e , B) >
0 and X0 = X0(s, to, e , B) > 0 such that

(9)
I A
\     (Jx(u)U(to,s)x-U(to,s)x)du
Us

< e

for every t e (s, s + S), X e (0, Xo).
We ixi,í and to as above and consider the operator

F(x) = /  Jx(u)U(t0, s)xdu.

To show that the set F(B) is relatively compact, we show first that the set &

of functions
fx:u-+ Jx(u)U(t0 ,s)x,   ue{s,t], x e B,

is relatively compact. To this end, we must show that & is bounded, equicon-

tinuous and such that each set

(10) Qu = {fx(u) : fxe&),   ue{s,t],
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is relatively compact in X. All three properties follow from our considera-

tions above as well as our hypotheses. In fact, the boundedness of & follows

from (2) and (3) and its equicontinuity from the global Lipschitz-continuity of

Jx(u)x. The relative compactness of the set Qu in (10) is a consequence of

the assumed compactness of the operator Jx(u). Thus, the set & is relatively

compact. Let us pick a sequence {xn} C B. Then, by the relative compactness

of the set Ñ?, there exists a subsequence {x„k} such that the sequence of func-

tions fXn converges strongly and uniformly to some continuous function / on

{s, f\. Thus,

/ Jx(u)U(to,s)xnkdu^ I f(u)du.
Js Js

This implies that the set

F(B) = {y e X : y =      Jx(u)U(to, s)xdu, for some x 6 B}

is relatively compact. We have shown that the operator F maps bounded subsets

B of D onto relatively compact sets. Since F is also continuous, it is compact.

Now, let B be a bounded subset of D, e > 0, s e [0, T), t e(s,T], t0 e
(s, T] and Co = (t — s)e/2. Then there exist Ô = 3(s, to, eo, B) > 0, X0 =
Xo(s, to, €o, B) > 0 so that (9) holds with eo instead of e and such that the
set F(B) can be covered by a finite number of open balls of radius e0. From

(9) we see now that the set

{y :y= /  U(to, s)xdu = (t -s)U(to, s)x, for some x e B)

can be covered by a finite number of open balls of radius 2e0 = (t - s)e. This

implies that U(to, s)B can be covered by a finite number of open balls of radius

e and proves the compactness of the operator U(to, s) for any s e [0, T) and
any t0 e (s, 71.

The next result shows the necessity of Conditions (ii) and (iii) of Theorem
1.

Theorem 2. Assume that Condition III holds. Then if U(t, s) is compact for all

(t,s)eA with t>s,  Conditions (ii) and (iii) of Theorem 1 are true.

Proof. We give the complete proof although part of it follows as in [4]. Assume

that U(t, s) is compact for (t, s) e A with / > s. Fix such a point (t, s). To

show that Jx(s)x is compact for every X e A, we note, as in Theorem 4 of
Tanaka [15], that we have

||l^*)*-*ll<*"(,~')ll*-2||

+ j'e^'-^[(U(x,s)x-z,-y)+

+ L(||x||)||A(T)-A(r)||(l + ||y||)]</T,

for any r e [0, T],  z e D(A(r)), y e A(r)z and any x e D. Letting r = s
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and replacing x and z by Jx(s)x, we have

\\U(t,s)Jx(s)x-Jx(s)x\\

< f e*'-) [(U(x, s)Jx(s)x - Jx(s)x, -y)+
Js

+ L(||7,(5)x||) f \\h(x) - h(s)\\(l + \\Ax(s)x\\)]dx
Js

<<j>(co, t,s)\\Ax(s)x\\

+ e^L(\\Jx(s)x\\)(l + \\Ax(s)x\\) f \\h(x) - h(s)\\dx
Js

because Ax(s)x e A(s)Jx(s)x. Here, <f>(co, t,s) = co~x(e(o(t~s-) -I) if co > 0

and (t - s) if co = 0. Let B c D be bounded. Then Jx(s)B and Ax(s)B are

uniformly bounded ( X is fixed here). Since L(||x||) is also bounded on B, we

have that, given e > 0, there exists ô = S(s, X, e , B) > 0 such that

\\U(t,s)Jx(s)x-Jx(s)x\\<e/2

for all t e (s, s + ô). Since Jx(s)x is bounded and U(t, s) is compact, the
set U(t,s)Jx(s)B is relatively compact. As such, it can be covered by a finite

number of open balls of radius e/2. This last inequality implies that Jx(s)B

can also be covered with a finite number of open balls of radius e. Thus, Jx(s)
is compact for every 5 e [0, T). Its compactness for s = T follows easily from

its Lipschitz continuity on [0, 71.

To show (iii) of Theorem 1, we fix (t0, s) e A with t0 > s and let B c D be

bounded. Since the function g : (t, x) —> U(t, s)x is continuous on {s, T]xD

and Q = {s, T] x U(to, s)B is a compact set, it follows that g is uniformly

continuous on Q. Thus, given e > 0, there exists S = S(s, to, e , B) > 0 such

that
\\U(t0, s)x - U(t, s)U(t0, s)x\\ < e

for all t e (s, s + S) and all x e B. This completes the proof.

3. Discussion

It would certainly be interesting to know whether Theorem 1 is true without

the assumption (i).
The author gave a result in [9] which contains the generation of an evolution

operator for the functional evolution

x' + A(t)x = G(t,xt),   te{0,T],
(FDE)

xo = (p,

where ^4(0 is m-accretive for all t e [0, T] and satisfies Condition (C) with
A(0 = t- The function G is Lipschitzian in both variables and the function <f> :

{-r, 0] —» X is also Lipschitz-continuous, where r is a positive constant. The

evolution operator U(t, s) for (FDE) is defined on D = D(A(t)) = const and
produces a solution x(0, t e {-r, T], which lies in the generalized domain

D, defined by

D = D(A(0)) = D(A(t)) = {xeX :   lim ||^(0x|| < +00},
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only on an initial interval [0, T{], r» < T, where it is actually Lipschitz-

continuous. This solution is the uniform limit of solutions y"(t) of the prob-

lems
y' + A(t)y = G(t,yrx),   te{0,T],

x(0) = <t>(0) e D,

such that y"(t) = <f>(t), t e [—r, 0]. Such an evolution operator, with solution

lying in D whenever 0(0) e D, was also obtained by the author and Parrott in

[11] (via a fixed-point theorem) and by Tanaka in [15], [16]. Tanaka's operator

in [15] is actually more general than that of [9] and [11].

Shin and the author [12] gave some existence results by using the Schauder

fixed-point theorem on such functional time-dependent problems involving com-

pact evolution operators. The cases covered in that paper do not include the case

of an evolution operator satisfying Condition III. Thus, another open problem

arises in this direction. For conditions like the ones considered in [12], the

reader is also referred to Pavel's book [14]. For evolutions with constant opera-

tors A, we cite the papers of Gutman [7], [8] and the book of Vrabie [17]. The
original results involving the compactness of the operator / —> Xf for nonlinear
problems

x' + Ax 3 f

are due to Baras [1].

The author has given in [10] a method by which one can obtain large classes of

compact evolution operators which are generated, for example, by m-accretive

perturbations A + B(t) of m-accretive compact semigroup generators A. These

m-accretive operators A + B(t) satisfy Condition III and Items (ii) and (iii) of

Theorem 1.
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