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ON SUBMANIFOLDS WITH HARMONIC MEAN CURVATURE

MANUEL BARROS AND OSCAR J. GARAY

(Communicated by Christopher Croke)

Abstract. The classification of curves in Em with harmonic mean curvature

vector field in the normal bundle is obtained and then it is used to obtain some

applications.

1. Introduction

Let x : M" —► Em be an isometric immersion of a Riemannian manifold

in the Euclidean space. Denote by H and A the mean curvature vector field
of (M, x) and the Laplacian of M respectively. A classical and well-known

equation of Beltrami gives a nice relation between H and A, namely Ax =

-nH. Therefore minimal submanifolds in Euclidean space correspond with

harmonic submanifolds.
Submanifolds satisfying AH = 0 were called biharmonic submanifolds by

B. Y. Chen. He also conjectured that biharmonicity implies harmonicity (and

so minimality). This conjecture has been proved to be true in some special cases.

For instance, B. Y. Chen [Ch] solved the conjecture for surfaces in E3. Also
I. Dimitric [Di] did so for curves in Em by showing that straight lines in Em

are the only biharmonic curves in Em .

On the other hand if one considers a circle in E2 or more generally a Cornu

spiral in E2, the curvature function A: is a linear function in terms of the
arclength parameter. Then k is harmonic and it automatically gives the har-

monicity of H in the normal bundle.

In this short note we classify curves in Euclidean space Em with harmonic

mean curvature vector field in the normal bundle. Besides straight lines, circles

and Cornu spirals (which correspond with planar curves) we will obtain a two-

parameter family of curves living in 2-spheres of E3 (see Theorem 1).

This result is used to get some applications. First we will get the complete

classification of hypercylinders constructed on curves in Ep with harmonic

mean curvature vector field in the normal bundle, so obtaining an extension of

Theorem 79 of [Ch-Ve].
In the last section we will use Theorem 1 jointly with the Hopf fibration
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n: S3 -* S2 to get a one-parameter family of surfaces in S3 with non-constant

harmonic mean curvature function.

2. Curves in Euclidean space with harmonic mean curvature

vector field in the normal bundle

Consider an immersed curve ß = ß(s): I C R —> Em where s denotes the

arclength parameter of ß . T = T(s) = ß'(s) will be the unit tangent vector

field of ß. Assume that ß is not a plane curve (it is not contained at any

2-plane of Em) so we can define a 2-dimensional subbundle, say v, of the
normal bundle A of ß into Em as

(1) */(*) = Spanfö, &}(*)

where ¿¡2 and £3 are unit normal vector fields to ß defined by

(2) T'(s) = k(s)t2(s),

(3) i'2 = -k(s)T(s)-x(s)Us)

where k > 0 is the curvature (the first curvature if m > 3) and t is the torsion

(the second curvature with x > 0 if m > 3) of ß .

Denote by 1/1 the orthogonal complementary subbundle of 1/ in A. Cer-

tainly the fibers of vL have dimension m - 3 . Therefore the Frenet equations

of ß can be partially written as:

(4) T'(s) = k(s)t2(s),

(5) Z2(s) = -k(s)T(s)-T(s)Ç3(s),

(6) . &(s) = T(s)i2(s) + S(s)

where ô(s) £ »^-(s) for all s £ I.
The curvature vector field of ß (the mean curvature vector field of ß) is

defined by

(7) H(s) = T'(s) = k(s)Ç2(s).

Equations (5) and (6) also give how the normal connection D of ß into Em

behaves on v

(8) DrÍ2 = -TÍ3,

(9) Dri3 = t& + <5.

Let AD be the Laplacian associated with D. One can use the Frenet equa-

tions, (8) and (9) to compute ADH and so one obtains

(10) ADH = (-k" + kx2)Z2 + (2k'x + kx')Ç3 + kxô.

Now let us consider that ß has harmonic mean curvature vector field in A,

which means ADH = 0 and so

(11) k"(s)-k(s)x2(s) = 0,

(12) 2k'(s)x(s) + k(s)x'(s) = 0,

(13) k(s)x(s)S(s) = 0.

Equation (12) gives x(s)k2(s) = c, where c is some constant which we may

assume to be nonzero since ß is not a plane curve. Consequently (13) implies
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that ô must vanish identically. This means that v (and so vL) is a parallel

subbundle in A. Furthermore u1 is composed of totally geodesic directions,

and consequently we can reduce codimension to some E3 totally geodesic into
Em with ß c E3. The normal bundle of ß into E3 is essentially v .

After that we still have equations (11) and (12) reduced to

(14) k" = kx2,

(15) C = TrC2

and certainly we can use standard arguments to get the integration of these

equations.

We begin by doing a first integration to obtain

(16) (k')2 = b-£-2

where b is some positive constant.

Now the general solution of (16) is given by

(17) k(s) = ^b(s-a)i + j

where a is a new constant.

Finally the torsion is given by

(18) x(s) =
b2(s-a)2 + c2'

The fundamental theorem of curves says that there exists a curve in E3

(unique up to motions) whose curvature and torsion functions are given by

(17) and (18) respectively.
The parameter a is not essential in the sense that it depends of the origin we

use to measure the arclength function of ß . Therefore the class of curves we

have just obtained can be a priori parametrized into R - {0} x R+ according to

the values of c and b respectively. But from (18) the sign of c is determined

from the orientation of ß. So essentially we have a family of curves in E3

parametrized into R+ x R+ .

Also notice that from (17) and (18) we get

(i9) L + wt = i

and this shows that these curves are spherical curves, namely, they are contained

in 2-spheres of E3 centered at the origin (it does not matter) and with radii

y * . From now on we will denote this class of spherical curves by

(20) Ci=lßbccS2U^j cE3/(c,b)£R+xR+\.

This situation can be summarized in the following:

Theorem 1. Let ß: I c R —► Em be a full arclength parametrized curve; then

it has harmonic mean curvature vector field in the normal bundle if and only if
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either:
( 1 ) m = 2 and ß is a straight line, or

(2) m = 2 and ß is a circle, or

(3) m — 2 and ß is a Cornu spiral, or

(4) m = 3 and ß £Q.

Remark 1. To better understand the statement of the last theorem let us recall

an easy classical fact which says that the straight lines, the circles and the Cornu

spirals are the only plane curves with harmonic curvature functions. Theorem

1 should be compared with the classification of biharmonic curves in Em (see

[Di]).
As a first application of the above theorem, we can obtain a nice generaliza-

tion of Theorem 79 of [Ch-Ve]. In fact, we obtain the complete classification

of hypercylinders constructed on curves in Ep with harmonic mean curvature

vector field, in particular, those hypercylinders with harmonic mean curvature

function.

Corollary 1. The only hypercylinders Mp+X in Ep+q with harmonic mean curva-

ture vector field in the normal bundle are open parts of the following submanifolds:

(1) M = /?"+', or
(2) M — Rp x ß, ß being a circle, or
(3) M = RP x ß, ß being a Cornu spiral, or

(4) M = Rp x ßbc, for any pair of positive numbers b, c.

3. A CLASS OF SURFACES IN  S3

WITH NONCONSTANT HARMONIC MEAN CURVATURE

In this section and without loss of generality we will consider the unit 3-sphere
in E4 and the Hopf fibration n : S3 —> S2 on the unit 2-sphere in E3.

Given a curve ß : I c R -* S2 c E3 with curvature and torsion functions

k > 0 and x respectively, we have

(21) -1 + ^ = 1K    ' k* + k*x*

The curvature of ß into S2 is given by

k'(s)
(22) p(s) =

k(s)x(s)'

Lemma 1. For any positive number b, the curve ßt, = ßbb has harmonic curva-

ture function in the unit 2-sphere S2 c E3.

Proof. Just use (17) and (18) with b = c to see that the curvature function of

ßi, into the unit sphere, say /?¿,, is a linear function.     Q.E.D.

Given an immersed curve ß : I C R -* S2, choose n : I c R -* S3 such

that n o ß = n . We will assume that it is parametrized by arclength and cuts

the fibres of n orthogonally. With the notation Sx := R/2nZ we define an

immersion X of the cylinder I x Sx into S3 by

(23) X(s,tp) = ei<?r1(s).
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X is called the Hopf cylinder corresponding to the curve ß . By a direct com-

putation, we can obtain the shape operator A to X(s, tp)

(24) A(s,9)={2^   ¿).

Theorem 2. For any positive number b, the Hopf cylinder Mb = U~x(ßb) has

nonconstant harmonic mean curvature function in S3. Moreover, given a Hopf

cylinder M = Il~x(ß) in S3, then it has harmonic mean curvature function if

and only if either
(1) ß is a great circle in S2 and M is the Clifford torus, or

(2) ß is a small circle in S2 and M is a rectangular tori, or

(3) ß = ßb in S2 and M = Mb for some positive number b.

Proof. From (24), the mean curvature of M = Urx(ß) in S3 coincides with

the curvature of ß in S2 . The Laplacian of M in the X(s, <p) parametrization
is given by

(ÈL    ÍL\
\ds2 + dtp2)'

Now the first part of the theorem is clear. To see the "if part of the second

statement notice that cases (1) and (2) correspond with the constancy for the

mean curvature. Finally to prove the "only if part of the second statement just

say that a curve with harmonic curvature in S2 must belong to Q..   Q.E.D.
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