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THE Ü-SPACE SQUARING MAP ON Q3S4"+1  FACTORS

THROUGH THE DOUBLE SUSPENSION

WILLIAM RICHTER

(Communicated by Thomas Goodwillie)

Abstract. We compute the first EHP spectral sequence differential followed

by the double suspension. We show that 2n,(S*n+x) C Im(£2), which refines

the exponent for 7t»(S2n+l) of James and Selick. The proof follows an odd

primary program of Gray and Harper, and uses Barratt's theory of unsuspended

Hopf invariants and Boardman and Steer's geometric Hopf invariants.

1. Introduction

We work in the category of 2-local spaces. Let Ü, be the left lexicograph-

ical James-Hopf invariant (see [5, Def. 3.10] or §2). We have James's EHP
fibration [6]

(1)
Q2S2q+\ Z, S" -^ CIS"+X -^ as2"+i

James [12] showed that 4nt(S2q+x) c Im(F2), giving an exponent of 22q for

n*(S2<l+x), which Selick [15] improved to 22(>-^l2x. F. Cohen [6, §6] reformu-

lated Selick's proof as a compression of the ü-space squaring map on Q,4S4n+x
through some map g: Q.2S4n~x —► Q45'4'!+1. We give a stronger compression

result, which was conjectured by Gray and Mahowald.

Theorem 1.1. The following diagrams commute up to homotopy.

n3s4n+1 -^ ns2n -^- os4"-1

-SIEJ

fi354n+1

Q354n-1   -„ QSin-3

i+o3(-o

Thus 27c*(5'4"+1) c Im(F2), which is suggested by Selick's exponent theorem.
With Barratt, Cohen, Gray and Mahowald [3], we gave simple proofs of weaker

compression theorems, and deduced that the E2 term of the EHP spectral
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sequence is a Z/2 module, and that 4 is the order of the identity map on

Q2W(n).

The proof follows the odd-primary work of Gray [9, 10] and Harper [11].
We compute the ü-deviation of a map ß: Í2S9 —► ÙiS2q+x determined by the

sequence

(2) çisq -^ n2sq+x Ä a2s2q+x x+n2{~X)\ c?s2q+x

by identifying (Theorem 2.3) the delooping of the second composite as a cup
product. We dualize (Theorem 3.1) a theorem of Barratt and Toda [17, Prop.

2.6], which involves the Hopf invariant of a Toda bracket. By Boardman and

Steer's Cartan formula recognition principal [5, Thm. 3.15] (Theorem 3.2), ß

is determined by its ü-deviation to be (-l)q~xClE2 o H2: CIS" — Q3S2«+1 .

The proof of Theorem 2.3 uses techniques from Barratt's unpublished theory
of unsuspended Hopf invariants. Essentially, we prove an unstable symmetry
formula for H2. Furthermore, Barratt's technique of analyzing the Hilton

Hopf expansions of commutativity (x + y)f = (y + x)f and associativity

(x + (y + z))f = ((x + y) + z)f proves Theorem 2.3 up to James filtration

4, giving crucial evidence for the result.

Our work also owes a heavy debt to Boardman and Steer's [5] work on sus-

pended Hopf invariants. Theorem 3.1 is based on Boardman and Steer's proof
of the Cartan formula for their geometric Hopf invariant [5, Thm. 5.6, pic-

ture p. 201].
In §4 we prove two formulas about the Barratt-Ganea-Toda relative Hopf

invariant [2, 7, 16, 14], which can be used to give a unified proof of both
our theorem and Harper's. In §5 we attempt to give some context for our

work, sketching the unified proof and discussing results related to Theorems 2.3

and 3.1.
I want to thank Michael Barratt, Brayton Gray and Mark Mahowald for

many stimulating conversations leading to the proof. I would also like to
thank Fred Cohen, Mike Hopkins, Jeff Smith, George Whitehead and Bruce
Williams for various conversations about elementary unstable homotopy theory.

I want to thank John Harper for carefully reading the manuscript and suggest-

ing some useful changes, and pointing out Zabrodsky's version [19, Lern. 3.2.1&

Prop. 3.2.2] of Theorem 3.1.

2. James Hopf invariants

We now recall from Boardman and Steer [5] the definition of smash prod-

ucts, cup products, James Hopf invariants and Whitehead products. See also
Whitehead's book [18] for its attention to point-set topology, and for the James
splitting, which is not treated in [5] or in any of James's papers.

Suspension will mean smashing on the right with Sx = i/{0, 1} , so 1.X =
XAS1. We define Sn = (Sx)^nX = I"/d(In). By associativity of the smash

product, LnX = X A Sn . For spaces A and B , the shuffle permutations

shuffle: ln+m(A A B) = A A B A S" A Sm  x*A™s"\ znA A YTB
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are frequently used and suppressed from the notation. Given maps </>: Y? A —->

X and y : X"M —► Y, the cm/? product <j> • y is defined to be the composite

<¿> • y: Zn+mA ̂± ITA AlTA^XAY.

We define adjoints between suspensions and loop spaces following Zabrod-

sky [19, §0.3]. Given pointed spaces A, X and K, and pointed maps f:AA

K —► X and g : A —■> XK , we denote their adjoints by f* : A —-> X* and

g^ ^ A tf —f X. Given a map /: A -* f22X = (QX)5' * X5', it will be
clear from context which of the adjoints /": Xv4 —■» Í2X and /*: Y?A —■* X we
mean.

Let X be a connected CW complex with basepoint * e X. The James con-
struction J(X) = JJ^, Xk/ ~ is naturally homotopy equivalent [5, Thm. 3.3]

to QXX. Let ik : Xk —► QXX be the adjoint of the "sum" Ç = £*,, Ijr¿ :

XX^ —» XX. The James-Hopf invariant H¡ : QXX —♦ QXX[;1 is defined so
that [5, Lern. 3.11]

(3) üfoXí,-       J]       Z(nai -n0l.na¡): Z(Xk) — XX^,
1 <<T| <---<<Tj<A:

where the sum is ordered left lexicographically. The map H¡ is uniquely deter-

mined by (3). This follows from the James splitting [18, Thm. VII(2.10)], the

homotopy equivalence XQXX -^-> V°f,XX[¿1 obtained by adding up the Hopf
invariants.

Given /: X.4 —> M and g:lB —» M, the Whitehead product [5, Def. 4.2]
[/, g\. Y*A A B —■* M is defined to be the unique homotopy class such that

(£*12)*[/, í]=(/°«l, c?°7t2)

= -fonx - gon2 + fonx +gon2 e [L(A xB), M].

For any maps /, g : 2ZA — XX, we have (/, ¿?) = [/, ¿?] ° 2(A) e [I>4, XX].
Given spaces and maps a: A —+ X, ß: A —> Y, f: XX —► M and g : XF —►
Ai, it follows from naturality that (/ o Xa, g o 2/?) = [/, g] o X(a • /?) e

[X/í, XX]. Recall the algebraic identities gf = fg(g,f) and (gh, f) =
(g » f)((S, f), h)(h, f), for elements f, g, h of a group. Therefore, for any
maps f, g, h: A —> X,

(4) lg + Zf = lf + lg + [i, i]ol(g . f) e[lA,lX].

Ig + Zh +Zf =2/ + lg + lh + [i, i]oZ(g . /)

( } +[[i, i], i]ol(g . f. h) + [i, i]ol(h- f) e[2ZA,lX].

The symmetric group X/¿ acts on Xik], for any space X, by

a(xx A • • • A xk) = xCT-1(1) A • • • A xff-i(fc).

Note that the a(i)th coordinate of a(xx A • • • Axk) is x¡. Note that if X = S9 ,

then for any a e I,k, the permutation a : X[k] —» X[^ is homotopic to the
degree (-l)ks^a'> map, under the canonical homeomorphism Skq = Xlkx.
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Now we discuss Barratt's theory of unsuspended Hopf invariants. For a

preliminary account of this theory see [4], which unfortunately contains serious

mistakes. In particular Baues claims [4, Prop. 11(2.15) & Prop. 111(5.3)] a Cartan

formula for Hj which is false and incompatible with Theorem 2.3 below. We

begin with

Lemma 2.1. Let X be a space and f, g: X —> S2q~x be two maps such that

E2f = E2g e [X2X, S2q+X]. Then the composites [i, i] o f, [i, /] o g: X -+ Sq
are homotopic.

Proof. The Whitehead product [i, /]: S2q~x —► Sq suspends to zero. By the
EHPfibration(l), [i, i] factors through P by some map k: S2q~x —► ÇÎ2S2q+x .

By [18, Thm. XII(2.4)], k ~ (-l)q~xE2, but we do not need this. Then the
composites k o f, k o g: X —► Ù2S2q+x are homotopic.   □

By the Jacobi identity (cf. [6, Cor. 1.3]), the triple Whitehead product
[[i, i], i] e n3q+x(Sq+x) is zero. Hence, by (4), (5) and Lemma 2.1, we have

Lemma 2.2. Given a space A, maps fx, ... , //: A —> Sq, and a e X/,

/ /

j^Lft = ¿Z^foU) + [» > 0 ° E Wi'ftw) e [^,Sq+x],
i=l ;=1 i<a{j), a-l(i)>j

where the sum of commutators is ordered arbitrarily.

For spaces X and Y, let a: XQX —> X be the evaluation map. We define

<g>: QXX A QXF —* QX(X A Y) to be the adjoint of the composite

X(QXX A QXF) Ä X(X A QXF) -^ X(X A F).

Let k = {I, ... , k}, and let -< and -<r denote the left and right lexicographi-

cal order on k2 . Then the composite XXfc ̂H XQXX ̂ * XQXX A QXX -^

XX A X is the sum 5Z(/,/)eJt2 ̂n' ' niï > meamng we sum m me left lexicograph-

ical order. Note that we can drop the terms i = j if X is a suspension. We
now prove

Theorem 2.3. The following diagram is homotopy commutative.

QSq+l        _^_>   ÇlS2q+l

4 l+0(-l)«

(Çis^)[2] _®u çis2q+x

Proof. For convenience, let X = Sq. Then we have (12) ~ (-1)" : X A X
X AX. We thus need to prove that H£+ X(12) o H£~ gTo X(A) : XQXX
XX!2!, or that

(6)       (ü2^-i-X(12)oüf)oXiA:~     E^     Z(nrn¡):2ZXk -+2ZXAX.

{('J)eki\iij}
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Equation (3) now reads ufo Lik = £{(/,./)€# | ,<n ^(^/ ■ ft/) » and we have

2(12) o ufo 2ifc =      E        E(^ 'Ä«) =    E       ^^ ' nj) >
{(a,ß)e&\a<ß} l(i,M&\i>j}

since (12) o (71, • nj) — n¡ • n¡ : Xk —► X[2]. Now we use Lemma 2.2 to rewrite

this sum in left lexicographical order. Let i, j, a, ß be distinct indices with

/ > j and a > ß . Then (a, ß)^r(i, j) and (i, j) ■< (a, ß) iff ß < j < i < a.
Hence

2( 12) o i/f o 2/* =     E       2(*/•«,•) + [!, 1] o    ]T   Z(na-nß-nrnj)

{(i,j)£k2\i>j) ß<j<i<a

= £X 2(7t( - Kj) + [i,i]° 2(124) o ufo 2/* ,
Í>J

since we can order the commutators left lexicographically. By Lemma 2.2 we

have

Y^ l(7ii ■ nj) + Y? 2(Ki • *j) = E^ ^^ ' *l) + I' • '] ° z(1423) ° ̂ ° &* ,
/</' i>7 1V7

picking up a commutator [1,1] o L(na • nß • 71, • ?r,) = [1, 1] ° (1423) o

2(71^ • n¡ • na • nß) for each a < ß and / > j with (/', j) -< (a, ß), i.e. i < a.

Furthermore (124) ~ id and (1423) ~ (-l)q. Recall [6, Cor. 1.3] that
[/,/]: 2XW — 2(X A X) = S2q+X has order two. Thus [1,1] o 2(1423) ~
[i,i]o(-l)« = (-l)«[i,i]~[i,i].HHice

(üf+2(12)oüf)o2lfc =        E^       X(JT,.7Î7 ) + [!,/] o ufo (21)0X1^

í(i,j)elc2\i¿j}

By Lemma 2.1, [1,1] o üfo (2i) = [1, 1] o (2i) o üf, since ufo (2/) and (2z)oüf
are equal after a suspension. But

[1,1] o (2i) = 2[i, /] = 0 e [2Xt4l, 2(X A X)].   D

3. Ü-DEVIATIONS, CUP PRODUCTS AND THE CARTAN FORMULA

For spaces F and X and a map /: QF —» Q2X, with adjoint f~\ 22QF —♦
X, we define the H-deviation D(f): (2QF)t2l ->I to be the homotopy class
so that

(7)
/~o I?p = /~o 227r, + D(f) o (lnx • 2tt2) + /"o 22jt2 G [22(QF x QF), X],

where 2tt, • Xtt2 differs from X27r,2 : 22(QF x QF) —► 22(QF A Q.F) by a shuf-

fle. The Barratt splitting [1] 2(QF x QF) x^'+y^2+z^) n^F v

2(QF A QF) V 2QF shows that D(f) is uniquely defined by (7). For any
space A, let /* : [LA, F] —+ [L2A, X] denote the natural transformation send-

ing the map a: LA —* F to the composite f*(a): I.2A —2-> 22QF -¿-* X.
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Then for £,x, Ç2: LA —* F, we have

(8) /.(€, + &) = /.(íi) + /)(/) o (2^ • Lg) + /.(&) e [22^, X].

3.1. The dual Barratt-Toda formula. The Hilton-Eckmann dual of the Hopf in-
variant of a Toda bracket is the ü-deviation of a colifting (cf. [3, Lern. 2.1])

of a sequence such as (2). We will not use colifting explicitly, or prove that

our map ß below is induced by some nullhomotopy of the composite QF —►

Q5 —► QX, although this was our motivation. Now we use Boardman and

Steer's geometric proof of the Cartan formula [5, Thm. 5.6] to prove a dual
Barratt-Toda formula.

Theorem 3.1. Assume we have the homotopy commutative diagram

ClB E

4
EAE

B

I'
X

where F is the homotopy fiber of p, with boundary map ÇIB —► F. Then there
exists a map ß: QF
commutative.

Q2B -

Q2X such that the following diagrams are homotopy

Sid
ÜF (EfiF)!2!

(SOt) PI

D(ß)

n2x

(mE)W

Proof. Recall that F = {(e, X) : k(l) = p(e)} c E x PB. Write elements of
QF as (n, A): 5" — F, so that Vs e Sx , A(s)(l) = p(n(s)). Let p: E —> X'
be a homotopy of the diagram, with p(0) = fop , p(l) = aoA. We define the

map ß-.ClF —» Q2X by (see picture (9))

22QF

ß~{(n,A)AsAt)

X

(9)

f(A(s)(^)), 0<i<f,
P(n(s))(^ - I),    i<t<3,

a(n(s) A n(t)),     s < t < 1.
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Then, following Boardman and Steer [5], we compute the ü-deviation of ß .

For (nx ,Ax),(n2, A2) e QF, ß((nx ,Ax) + (n2, A2)) e Q2X is represented by
the picture

a o nx a n2

ß(m<^)

ßim,^)

where the solid lines are mapped to * e X. Thus (cf. [5, Lern. 5.7]) the com-

posite 22(QF x QF) —^ 22QF —> X is homotopic to the sum of three maps;
we have

ß~oL¿p ~ ß~oL¿nx +aoo AooLnx-Ln2 + ß~oLln2: 22(QF x QF) —► X.

By (7) we have calculated D(ß), so the right-hand square homotopy commutes.

For any loop A e Q25, d(A) = (*, A) € F and ß(*, A) e Q2X is a dilation
of /o A to the lower triangle of the square (9). Thus the triangle homotopy
commutes,   d

3.2. Boardman and Steer's Cartan formula recognition principle. The natural

transformation X2: [LA, LY] —► [22^4, (2F)[2]] satisfies a Cartan formula [5,
Thm. 2.2], where l2 is induced by the composite, which we will also call A2 ,

X2: Q2F -$♦ OLY™ Ä Q2(22yl2l) "2(shuffle), Q2(2F)[21 ;

A2(íi + &) = A2tf, ) + «!•& + hfa) : VA - (LYfx       for ft : 2L4 -» 27.

A2 is adjoint to 2üf, and similar to equation (3), X2 is characterized by

(10) X2oL\~    Y   Lnl'LnJ:L2(Yk)^(LYf-\
\<i<j<k

Theorem 3.2. Given ß:ClX—* Q3XXl2¡ for a suspension X = LY of a CW

complex Y, with Y —► QX -=-+ Q3XX[2] nullhomotopic, assume that the H-

deviation of ß is D(ß): (XQX)^ Ä X™ -^ CILX™ . Then ß is homotopic
to the composite

QX -^ QXF[2] -^ Q222F[2] n2(shuffle), Q2X[2] -^ Q3XXl2l.

Furthermore, if X = Sq, then ß ~ (-1)*-'QF2 o ü2: ÜSq -» Q352<?+1.

Froo/ The composite above is Q2F o 22 : Q2F —> QX(Xy)[2]. By assumption
and (8), for a space A and maps Çx, Ç2 : LA —► X, we have

(11) j8.(i, +6) = ß.(Ci) + Eo ({, •&) + &(&) € [22^, Q2Xt2!].
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Following the proof of [5, Thm. 3.15], we compute

ß~o L\ = (ßo ik)~= ß,(Lnx + ■■■ + Lnk) = EoX2oL\ e [L2Yk , Q2X^].

Hence by the characterization (10), ß~~ EoX2, which verifies the first part. If

X = Sq , then shuffle ~ (-l)q~x and

ß~= Eo(-l)"-x oLH£= (-l)q~x(EoLH?).   Q

Proof of Theorem 1.1. Theorem 3.1, fibration (1) and Theorem 2.3 yield a map

ß: QSq —> Q3^1 such that the composite ß o QF is 1 + Q3(-l)« . The-
orem 3.2 identifies ß to be (-1)9_1QF2 o ü2, and the following diagram is
homotopy commutative:

np                     Hi
&s2q+x   -►   Q.Sq   -►   QS2q-x

i+n3(-i)«    \. ./     (-i)'-'n£2

Q3S2<?+1

4. The relative Hopf invariant

For a mapping cone M = Y U CA of an NDR pair (Y, A), let 8: M —►
Y/A V LA be the coaction map (cf. [7, 8]), obtained by pinching out the subspace

A. Let 0i : M —> Y/A and 02: M —► LA be the composites of 0 with
the projections onto the two factors. We define the relative Hopf invariant

\)\ÇlM ^Ç)2(Y/AALA) by

x     \ex(oj(s))AQ2((x)(t)),    0< j< í < 1, c _w
\fUû A s A t) = <    K   x"       v   K"        7   ~.   ~ for co eClM.

1*, otherwise,

In the absolute case M = LA, h: Q2^ —► Q2(2^4 ALA) is Boardman and
Steer's geometric Hopf invariant [5, Def. 5.4]. Again following [5, Thm. 5.6],
we have

Theorem 4.1. Let £IB —► F -^ E be the principal fibration induced from a map

p: E —> B. Assume that E has an NDR subspace M such that p(M) = *,
and let e : M —► F be the lift of M >-» E given by the trivial nullhomotopy. Let
M =Y\JCA be the mapping cone of the NDR pair (Y, A), and let A: E/M —►
E/CA AE/Y be the relative diagonal map. Suppose the following diagram is

homotopy commutative.

E/M        —?—* B

(12) .j [f

E/CA AE/Y ^-^ X

Let i : Y/A A LA >-» E/CA AE/Y be the inclusion arising from M >-» E. Then
there exists a map ß : QF —■+ Q2X making the following diagram homotopy
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commutative.

Q2F

rtf

Q2X

iid ■*   QF   <- He
QAf

Q2(F/C^AF/F)
Í2¿i

Q2(F/^a2^)

If X is a loop space and there is a homotopy retraction LE —► 2Af of M >-> E,

then it suffices for the next diagram to be homotopy commutative instead of (12).

(13)

EAE/Y

B

Proof. Let p: E/M —> X1 be a homotopy of the diagram (12), so that p(0)
f • p and p(l) = a • A. Let n: E —► E/M, nx: E —» E/CA and n2: E -
E/ Y be the collapse maps. Then ß is defined similarly to (9); ß **: 22QF -
X is defined by

X3ß~((n,A)AsAt)

'f(Ms)(2i)),
ß(n(n(s))(2i-l),

a(nx(n(s))An2(v(t))),

— <

0 < í < § ,

j<t<s,

s<t<l,

for (n, A) e QF.

The homotopy commutativity of the left triangle follows immediately, as in the

proof of Theorem 3.1, while the right five-sided figure commutes strictly.

Assuming the stronger hypotheses and adjointing, we see that we have an in-
jection [E/M, X] >-> [E, X]. Then diagram (13) implies the stronger (12).   o

Given a map /: A —> Y with mapping cone M = Y öf CA, let 6: M —>
M V LA be the coaction map obtained by pinching out the NDR subspace

A x j c M. We similarly define the relative Hopf invariant \j: QM —►

Q2(M A LA). Given any spaces X and Y, let X\>Y be the fiber of the map
X V Y >-► X x Y (cf. [7]). Let p: X\>Y —» Q(X A Y) be the natural map from
the fiber to the loops of the cofiber. There is a splitting Q(Xby) x Q(F) x

Q(X) ^ Q(X V Y), which defines a projection n>: Q(X v Y) —► Q(Xby).
Then Q(i) o m, : Q(X VF)-» Q(X V Y) is homotopic to the map which sends
co to co - ix o nx o co ̂  i2 o n2 o oj. Boardman and Steer's result [5, Thm. 5.12]

can easily be translated to prove the following, which relates f) to the Toda-Hopf

invariant [16, 14] Ü': Q7P_,(52") -♦ QS2""-'.

Theorem 4.2. The relative Hopf invariant h: QAf —* £l2(M A LA) of the map-
ping cone M =YUf CA is homotopic to the negative of the composite

QAf Ä Q(M V LA) -ÎU Sl(M\>LA) Ä Q2(M A LA).
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5. Remarks

In this section we indicate how the results of §4 can be used to give a unified

proof of our result and Harper's. First we need another James-Hopf invariant
formula. Let 6k — (12 • • • k) be the cyclic permutation, which acts on XM for
k <p. Then

Lemma 5.1. For any p and any connected CW complex X, the following dia-
gram is homotopy commutative.

ÇÏLX ÇÏLX^
l+í!c?2 + ---+£í0í>

(ÇÏLX)
...       id AH„_ i

—■-►   CÏLX AÍ2ZX1"-11 QI*W
£2(£)

ÇÏLX^

£2(£)

Q2I2XW

Proof It is enough to check the diagram restricted to each ik : Xk —> Q2X,
or that

r<7,_i • n<jl+,Y     £2(rc<7, • »*, • •
tep , \<(T\<-<ap<k

Y l2(ni ■**■
lek , Ki|<-<Tf.,<t , /¿{i, ,...,t„_i}

^T^,)

in the abelian group [22(X¿), 22X^]. Note that p(k) = k(kpZ\), and that for

each term on the right-hand side, there is a unique t e k such t,_ i < / < r,.   a

For any connected CW complex X, the James-Hopf invariant Hk : J(X) —*

Q2X^ factors through a map H~k: J(X)/Jk_x(X) —> Q2XM , by construction.

Lemma 5.2. Localized at an odd prime p, the following diagram is homotopy
commutative:

J(S 2n,
ÇïS2"p+i

J(S2n)AJ(S2n)/Jp-2(S2n)
W|A//p_,

Í252n+1 AClS2n(p-X)+x SlS2np+ 1

Proof. Since £lS2np+x is a retract of Q252"p+2, we can deloop Lemma 5.1.   D

The James construction Jk(X) of a suspension X = 2F is the mapping

cone of a map fk: Lk~xYlkx -* Jk-X(X). Let 0: Jk(X) ->• Jk(X) V X^ be

the coaction map and rj: Q«4(X) —► Çl2(Jk(X) A X^kx) be the relative Hopf
invariant. By shuffling a suspension coordinate of X^kx = Lk Yik], we have

üpA id: Jk(X) A X^kx —► X^+1l, which one can show is a desuspension of the
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composite

Jk(X) A XM — J(X) A J(X)/Jk_x(X) S^k Q2X A Q2X^ X Q2Xt/c+1l.

Now localize at a prime p, even or odd, and let X = S2n . The composite

of the relative Hopf invariant and üf A id: JP(X) A X^-11 —> X^l gives a map

hp : Q/p_i (X) —► Q2X[p] . We have the EHP fibration of James and Toda

çfzxW -2+ JP_X(X) -» 7(X) -^ Q2X^.

As an immediate corollary of Theorem 4.1 and the above discussion, we have

Theorem 5.3. There exists the following p-local homotopy commutative diagram.

tf1XW   _^  Q7P_,(X)   -ÍL-  tf^i

Theorem 5.3 can be used to prove half of Theorem 1.1 as well as Harper's the-

orem [11]. For p = 2, Boardman and Steer [5, Thm. 5.12] show that i)2= X2.
For p odd, Theorem 4.2 shows that t)p is similar to Toda's original map [16].

Our original proof of Theorem 2.3 followed James's proof that 2Q(Ü2) ~ *
(cf. [6, Lern. 4.1]). We applied a Cartan-like formula

H2(f + g) = H2(f) + f^g + H2(g) + [i2, i2] o H3(f) ~ g

for f,g:LA —> Sq+X , to the Hilton-Hopf expansion

0 = ((-i) + i)f=(-i)f + f+[-i,i]oH2(f)

for any map /: LA —► Sq+X .
Zabrodsky [19, §3] proves a result similar to Theorem 3.1. He calculates the

ü-deviation of the map ß: Q/Í —► Q2C determined by the sequence

LSIA A a X B A C

and nullhomotopies of Qg : SIA —>■ Q.B and fg : A —y C. Suppose that g is

a cup product A —► A A A A B. Then combining Zabrodsky's Lemma 3.2.1
and Proposition 3.2.2, we have the following homotopy commutative diagram:

(2Q^)I21 S*U AAA

(14) D(ß) L

C       ^—    B

An alternate proof of ( 14) can be given using the fibration ÇIA * CIA —► 2Q^4 -^+

A and the Q^ "projective plane"; see the discussion with references in [13,
Thms. 1, 2].
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