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THE DECAY OF SUBHARMONIC FUNCTIONS
OF FINITE ORDER ALONG A RAY

J. M. ANDERSON AND A. M. ULANOVSKY

(Communicated by Albert Baernstein II)

Abstract. A result is proved relating the growth of a subharmonic function

u(z) of finite lower order at least one, along a ray, to the quantity

B(r) = sup{w(z): \z\ < r}.

This sharpens a previous result of the second author when the lower order

is finite. An example is constructed to show that the result obtained is best

possible.

1. Introduction

Let u(z) be a subharmonic function (s.f.) in U where U denotes either the

complex plane C or the sector U(6) = {z:\ argz| < 6} where 0 < 6 < n. If

B(r) -    sup    u(z),
\z\<r,z£U

then the lower order X of u(z) is defined by

A = liminf^.
r-»oo     log r

It is well known that a s.f. u cannot decay too fast along a ray in comparison
with B(r). For convenience we consider the positive ray.

Theorem A. (a) // 0 < X < 1, then

u(r)> (cosnX)B(r)(l+o(l)),

for a sequence r — rk —► oo.

(b) If X > 1, then
u(r)>-B(r)(\+o(\)),

for a sequence r — rk —> oo.

Part (a) is the cos nA-theorem, valid also if u(r) is replaced by

A(r) = inf{u(z): \z\ = r, zeC}.
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Part (b) is due to A. Beurling ([1]) but, as shown by Hayman [2] and Fryntov

(to appear in Proc. Amer. Math. Soc), the corresponding result for A(r) is

false for every X > 1. This is also discussed in Chapter 6 of [2]. The following

result is in [4]:

Theorem B. (a) If X > 1, then

(1) M(^-5(r)-TioiEô(1 + o(1))'

for a sequence r = rk -> oo.

(b) If X = 1, then either u(x + iy) = a + bx  (b < 0) or

limsup(M(r) + B(r)) = oo.
r—»oo

The constant 7r2/2 in the inequality (1) is sharp, as shown in [4]:

Theorem C. Let <p(z) = YX=oakzk • where ak > 0 and Ylh=\ ak> ®- Then if
u(z) = -9texp0(z), we have

2. Results

The present note starts from the observation that the functions of Theorem

C all have infinite lower order. It turns out that ( 1 ) can be improved if X < oo.

Theorem 1. Let u(z) be subharmonic in U(0), 0 < 6 < n, and continuous on

the boundary, and suppose further that X>n/6. If

(2) limsup(w(r)-i-5(r)) < oo,

s:
then

\u(r) + B(r))l-^dr>-œ.

The surprising thing, perhaps, in Theorem 1 is the presence of the log r

factor. But Theorem 1 is sharp, as is shown by

Theorem 2. Given any X with 1 < X < oo and any positive increasing function

y/(r) —> oo as r —> oo, there is a function u(z), subharmonic in C with order

X, satisfying (2) and such that

(3) £(u(r) + B(r)fJ>-gîLdx = -x.

Theorem 2 can give an improved version of Theorem 2 of [3].

Corollary 1. For any X > 1 there exists an entire function f(z) of perfectly
regular growth of order X such that

f°(logm(r) + loèM(r))W{rr]l°gr dr = -oo.

Here, of course

m(r) = min{|/(z)|: \z\ - r},        M(r) = max{|/(z)|:\z\ = r}
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and y/(r) is, as before, an arbitrary function tending to oo as r—»oo. It will be

clear from the proof of Theorem 5 that (3) can be achieved for X — 1, but the
corresponding functions are subharmonic only in U(n) and not in C. Drasin

has shown recently (private communication) that there exists an entire function

of order 1 maximal type for which

log m(r) + log M(r)—>-oo       (r-»oo),

thus answering a question posed by Hayman in [3]. Because of the above-

mentioned difficulty, we are unable to extend Corollary 1 to the case X - 1 and

maximal type.

We do not give the proof of Corollary 1. Although our construction yields

only a subharmonic function, the necessary adjustments to obtain an entire

function are precisely those of [3], Section 2.

3. Proof of Theorem 1

It is enough to consider the case 6 — n and X = 1 (otherwise we consider

v(z) = u(zxlx) in U(n)). By subtracting a suitable constant, if necessary, we

may also assume, by (2), that

(4) u(r) + B(r)<0,

for r > 0. For 0 < e < n/2 set, for 0 < 0 < n - e,

uE(reiv) = u^e^''-^) + u(rei,?)

so that ut is subharmonic in the sector V(e) = {z: 0 < argz < n - e} and
continuous on the boundary. Moreover, from (4)

ue(r)<0,        ue(re'^)<0,

for all r > 0. Since uE(z) < 25(|z|), the lower order of ue is at most X

(which we have taken equal to 1). So, the Phragmen-Lindelöf Principle yields

that uí¡(re"1') < 0, in Ve. In particular

0 > ue(relV) = 2u(rei¡LT).

Since these inequalities hold for every 0 < e < n/2 and every 0 < <p < n - e,

we conclude that u(z) < 0, 0 < argz < n/2 ; and that uo(reilf)) = u(re'{"~^) +

u(re"p) < 0, 0 < <p < n/2. Similar inequalities hold for -n/2 < argz < 0 for

u(z) and for n/2 < <p < n for Uo(re"f). Thus

u(z) < 0,    y = 3z > 0 ;        u0(z) < 0,    x = Viz > 0.

From the limiting case R —► oo of [2], Lemma 6.1, p. 296, the boundary values

uo(x) and u(iy) satisfy

A00  u(iy)   .        f°° u(iy)   .
-co < /     , v    , dy < /     . v    , dy.

J-oo 1 + v2   '    Jo    l+y2

Analogously, since u0(z) < 0 for 9iz > 0, we have

^  [°°  uo(x),
-oo < / , dx.

J-oo  1 + X2
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Moreover, from [2], Lemma 6.6, p. 317,

- t. v        ,. .  . y  Z"00   u0(*)   j       4y  Z"00 w(x) + u(-x) ,
2u(iy) = uo(iy) < - /       ,      , dx = — \    -±—^—\—'- dx.

o\y,- nJ_ooX2 + y2 n Jo        x2 + y2

Combining these we obtain, since u(iy) < 0, that

~œ<'°     l^oo ^'      ̂
- I r iC yW+-y^)dy){u{x) + ui~x)) dx
_ 1   f°° 1+logx,  . ,      .    ...

- » /      v-2, i   Mx) + u(~x^dx '
7t Je-\    X'- + 1

which proves Theorem 1.

4. Proof of Theorem 2

We may suppose that 1 < X < 2. For if X > 2 we may write X = nXo where

n e N and 1 < Ao < 2. If w0(z) is the subharmonic function whose existence
is asserted for X0 and for which the integral (3) diverges, then u(z) = wo(z")

satisfies (3) for a given value X. The function u(z) will have the form, for

\4>\<n,
/vl-l

(5) M(r^) = -fH /      z*-'/>(0 ¿r,        z - re''*,
./o

for a suitable function /?(i).

For the given function y/(t) of Theorem 2 we set
/•OO

y/x(t)= /    y/(er¡')re~rdr;
Jo

y/2(t)= /    ty(er/t)e-'dr.
Jo

Since ^(r) —> oo as r —► oo, we conclude that

ij/j(t)-Kx>,       i-»0,7 = l,2;

Vi(f)-4y2(')-K»>        '-»0.

We now choose the function p(i) to satisfy the following conditions:

/vl-l

p(0) = 0;        p'(t)>0,    0<t<X-l; /      j>(r)rfi=l;
./o

and
/•A-l

(6) /      /»(i)(Vi(0-4^(0)^ = oo.
Jo

Clearly such a function p(t) exists. Now w(z) defined by (5) is subharmonic
in U(n). Moreover, since sin7r(A - t) < 0 for 0 < t < X - 1, we have

(du/d<p)(-r) < 0, for all r > 0. Using this inequality it is easy to establish
that, for sufficiently small p,

u(-r)<j- f    u(-r + peie)dd.
2n Jo



DECAY OF SUBHARMONIC FUNCTIONS 3729

Thus u(z) is, in fact, subharmonic in C. We remark that it is precisely here
that our argument is unable to deal with the case X - 1.

We define a(r), perhaps not uniquely, by the equation

B(r) = u(re,a(r)),       r>0,

and note that

/vl-l

(du/d(p)(reia{r)) = /      ^-'(X - t)p(t) sin(a(r)(A - t)) dt = 0.
Jo

Simple arguments prove that a(r) > n/X and that a(r) —> n/X, r-K».

We set e(r) — Xa(r) - n so that

u(r) + B(r) = -2 j     r*"1 cos2 ((X - t)^^\ P(t) dt

-, i^'j-, • ife(r)     t(n + e(r))\   . ..

Using the estimates sinx > x/2 for |jc| < n/6 and |e(r)/2 - t(n + e(r))/2X\ <
n/6 for 0 < t < X/4 as r —► oo, we obtain, as r —► oo,

u(r) + B(r) < -\ jTV («Ö - t*-±jp-)2 mdt + 0(,¥)

" ~(" Mi'"2/"' r'"<' " ,'W)2'i'+ °(r^')

where, for convenience, <J(r) = Xe(r)/(n + e(r)).
Inspection shows that the last integral attains its minimum when S(r) =

ôo(r), where

Now

f¡-lr~'p(t)dt

¿-1 ,        /vl-l

and since p'(t) > 0, it follows that ôo(r) < 2/logr as r-toc. We conclude

that

«M+Wi-WjT '-(*,-15?)#w&
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The proof now follows immediately. From (6) we obtain

y/(r)\ogr

r*i:
(u(r) + B(r))^J^dr

■n2 (    r°° fx~x
-8f("/o   Jo     ^er)re~trtlP^dtdr

+4        /      y/(er)e-'rtp(t)dtdr
Jo   Jo

2     /vl-l

= ~Wj      P(t)(Vi(t)-4V2(t))dt = -oo.

Theorem 2 is proved.
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