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THE DECAY OF SUBHARMONIC FUNCTIONS
OF FINITE ORDER ALONG A RAY

J. M. ANDERSON AND A. M. ULANOVSKY

(Communicated by Albert Baernstein II)

ABSTRACT. A result is proved relating the growth of a subharmonic function
u(z) of finite lower order at least one, along a ray, to the quantity

B(r) = sup{u(z): |z| < r}.

This sharpens a previous result of the second author when the lower order
is finite. An example is constructed to show that the result obtained is best
possible.

1. INTRODUCTION

Let u(z) be a subharmonic function (s.f.) in U where U denotes either the
complex plane C or the sector U(0) = {z: |argz| < §} where 0< 0 <=z. If

B(r)=sup u(z),
|z|<r,zeU

then the lower order A of u(z) is defined by
2 = liminf 28300
r—oo logr
It is well known that a s.f. u cannot decay too fast along a ray in comparison
with B(r). For convenience we consider the positive ray.
Theorem A. (a) If 0< A< 1, then
u(r) > (cosmA)B(r)(1 + o(1)),

for a sequence r =r, — .
(b) If > 1, then
u(r) 2 —=B(r)(1 +o(1)),

Jfor a sequence r =r, — .
Part (a) is the cosmA-theorem, valid also if u(r) is replaced by
A(r) =inf{u(z): |z| =r, z € C}.
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Part (b) is due to A. Beurling ([1]) but, as shown by Hayman [2] and Fryntov
(to appear in Proc. Amer. Math. Soc.), the corresponding result for A(r) is
false for every A > 1. This is also discussed in Chapter 6 of [2]. The following
result is in [4]:

Theorem B. (a) If A > 1, then

B(r)

2
(1) u(")Z—B(')—TW

(1+0o(1)),
for a sequence r =r, — .
(b) If A =1, then either u(x +iy)=a+bx (b<0) or
lim sup(u(r) + B(r)) = oo

The constant 72/2 in the inequality (1) is sharp, as shown in [4]:
Theorem C. Let ¢(z) = Y po,arz%, where a, >0 and Y72 ax > 0. Then if
u(z) = -Rexp¢(z), we have
n® B(r)

ur)< =B - 3580

——(1+0(1)), r — oo.
2. REsSULTS

The present note starts from the observation that the functions of Theorem
C all have infinite lower order. It turns out that (1) can be improved if A < co.

Theorem 1. Let u(z) be subharmonic in U(6), 0 < 6 <z, and continuous on
the boundary, and suppose further that 2> n/6. If

(2) limsup(u(r) + B(r)) < oo,

then

ri+l

/ (u(r) +B(r))log dr > —oo.
The surprising thing, perhaps, in Theorem 1 is the presence of the log r
factor. But Theorem 1 is sharp, as is shown by

Theorem 2. Given any A with 1 < A < co and any positive increasing function
w(r) = oo as r — oo, there is a function u(z), subharmonic in C with order
A, satisfying (2) and such that

3) /l () + B(r))“’—(r’)lﬂ dx = —cc.

A+1
Theorem 2 can give an improved version of Theorem 2 of [3].

Corollary 1. For any A > 1 there exists an entire function f(z) of perfectly
regular growth of order A such that

/oo(log m(r) + log M (r)) ——— y/(rﬁi)gr dr=—-o0
1

Here, of course

m(r) = min{|f(2)|: |z| =r},  M(r) = max{|f(2)|: |2| = r}
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and y(r) is, as before, an arbitrary function tending to oo as r — oo . It will be
clear from the proof of Theorem 5 that (3) can be achieved for 4 =1, but the
corresponding functions are subharmonic only in U(n) and not in C. Drasin
has shown recently (private communication) that there exists an entire function
of order 1 maximal type for which

logm(r) + log M(r) — —oc0 (r— o0),

thus answering a question posed by Hayman in [3]. Because of the above-
mentioned difficulty, we are unable to extend Corollary 1 to the case A = 1 and
maximal type.

We do not give the proof of Corollary 1. Although our construction yields
only a subharmonic function, the necessary adjustments to obtain an entire
function are precisely those of [3], Section 2.

3. PROOF OF THEOREM 1

It is enough to consider the case § = n and A = 1 (otherwise we consider
v(z) = u(z'/*) in U(m)). By subtracting a suitable constant, if necessary, we
may also assume, by (2), that

(4) u(r)+ B(r) <0,
for r>0. For 0<e<mn/2 set,for 0<p<m—e¢,
u(re'®) = u(re'™=¢=9) 4+ u(re')

so that u, is subharmonic in the sector V(¢) = {z: 0 < argz < m — ¢} and
continuous on the boundary. Moreover, from (4)

u(r) <0, U (re'™#) <0,

for all r > 0. Since u.(z) < 2B(|z|), the lower order of u, is at most A
(which we have taken equal to 1). So, the Phragmen-Lindel6f Principle yields
that u.(re’?) <0, in V,. In particular

0> u(re’"T°) = 2u(re’" 7).

Since these inequalities hold for every 0 < e < n/2 and every 0< ¢ <7 — ¢,
we conclude that u(z) < 0, 0 < argz < n/2; and that up(re’?)) = u(re'*=9))+
u(re’#) <0, 0 < ¢ < n/2. Similar inequalities hold for —n/2 < argz < 0 for
u(z) and for /2 < ¢ < m for up(re'?). Thus

u(z) <0, y=3z>0; up(z) <0, x=Rz>0.

From the limiting case R — oo of [2], Lemma 6.1, p. 296, the boundary values
uo(x) and u(iy) satisfy

_ % u(iy) /°° u(iy)
oo</_°°1+y2dy< [ ay.

Analogously, since uy(z) < 0 for Rz > 0, we have

—00 < /oo Uo(X) dx

o 1 +x2777
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Moreover, from [2], Lemma 6.6, p. 317,
o] (o o] -
[ ) g B [ ) ) g
T J_ oo X2+ )2 n Jo x2+y?
Combining these we obtain, since u(iy) <0, that

_ % u(iy) /°° u(iy)
oo</0 1+y2dy5 L2y dy

2 [ o0 1
<2 /0 ( / L dy) (u(x) + u(~x)) dx
< 1 [®1+logx

Tl S x2+1
which proves Theorem 1.

2u(iy) = uo(iy) <

(u(x) +u(-x)) dx,

4. PROOF OF THEOREM 2

We may suppose that 1 <A< 2. Forif 4> 2 we may write A = nidy where
neN and 1 <4y <2. If up(z) is the subharmonic function whose existence
is asserted for A9 and for which the integral (3) diverges, then u(z) = uo(z")
satisfies (3) for a given value 4. The function u(z) will have the form, for
¢l <,

A—1
(5) u(re’®) = —m / Z-ip(dt,  z=re®,
0

for a suitable function p(¢).
For the given function y(t) of Theorem 2 we set

wi(t) = / w(eyre " dr;
0

valt) = [ wieear.
0
Since y(r) — co as r — oo, we conclude that

v;(t) — o0, t—0,j=1,2;
w1(t) — 4ya(t) — oo, t—0.
We now choose the function p(t) to satisfy the following conditions:

A—1
p0)=0; p'()>0, O0<t<i-1; / p(tydt=1;
0

and

-1
(6) | p()(y1 (1) — 4y (1)) dt = oo.

Clearly such a function p(¢) exists. Now u(z) defined by (5) is subharmonic
in U(n). Moreover, since sinn(d —t) < 0 for 0 < ¢t < A — 1, we have
(Ou/op)(—r) < 0, for all r > 0. Using this inequality it is easy to establish
that, for sufficiently small p,

1 2n /0
u(-r) < 5= /0 u(—r + pe'®) do.
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Thus u(z) is, in fact, subharmonic in C. We remark that it is precisely here
that our argument is unable to deal with the case A=1.
We define a(r), perhaps not uniquely, by the equation

B(r) = u(re’"),  r>0,
and note that

(Ou/dg)(re) = = r*~{(A - t)p(t) sin(a(r)(A — t))dt = 0.
0

Simple arguments prove that a(r) > n/A and that a(r) - /A, r — .
We set &(r) = Aa(r) — m so that

u(r)+ B(r) = -2 o r*~! cos? ((,1 - + s(r)) p(t)dt
0

24
=-2 0/1—1 r*~'sin’ (? _ Um+elr) ;;(r)))p(t) dt.

Using the estimates sinx > x/2 for |x| < n/6 and |e(r)/2 — t(m + &(r))/24]| <
n/6 for 0 <t <A/4 as r — oo, we obtain, as r — oo,

u(r) + B(r) < —% ! A=t (@ _ e
0

2
; . ) p(t)dt+0(r )

- (mteln) g;g' i OH Pi(t - 8(r))2dt + O(r¥)

A—1

r*=(t—8(r)’p(1) dt,

2
< -
= 1642 J,
where, for convenience, d(r) = Ae(r)/(n + &(r)).

Inspection shows that the last integral attains its minimum when 6(r) =
do(r) , where

A—1

tr-ip(t)dt
So(r) = Ol—l _tp() )
b r'p(t)dt
Now
A=l wOr- 1 !
~t _ —t ’
[ rewar=- 5 gl rew+woar

and since p’(t) > 0, it follows that dy(r) < 2/logr as r — co. We conclude
that

2 A—1
u(r) + B(r) < ‘TZ? /0 P (t2 - i) p(t)dt.

logr
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The proof now follows immediately. From (6) we obtain

/. " () + B(r))% dr

7[2 oo pA-1 v
< — |- ere"t’p(t)dtdr
<gzl-[ [ wererinn

oo pi—1
+4/ / v(ee "tp(t)dt dr)
o Jo
2

a2 (A
=—iz [ POw0 - )= .
Theorem 2 is proved.

REFERENCES

1. A. Beurling, Some theorems on boundedness of analytic functions, Duke Math. J. 16 (1949),
355-359.

2. W. K. Hayman, Subharmonic functions, Vol. 2, Academic Press, New York, 1989.

3. —, The minimum modulus of integral functions of order one, J. Analyse Math. 28 (1975),
171-212.

4. A. M. Ulanovsky, How fast can a subharmonic function decay along a ray? (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE LONDON, LONDON WCIE 6BT, UNITED
KINGDOM

INSTITUTE FOR Low TEMPERATURE, PHYSICS, 47, LENIN AVENUE 310164, KHARKOV, UKRAINE
E-mail address: ulanovskii®math25.ilt.kharkov.ua




