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Abstract. The behaviour of bounded sets is important in the theory of count-

able inductive limits of Fréchet spaces, the (LF)-spaces, and its applications.

An (LF)-space is called regular if every bounded set is contained and bounded

in one of the steps. In the present paper necessary conditions and sufficient

conditions are given for the regularity of an (LF)-space. The conditions are

expressed in terms of the behaviour of the neighbourhoods of the steps. It is

proved that the conditions are equivalent for (LF)-spaces of sequences or of

continuous functions.

The purpose of the present article is to give necessary (and also sufficient)

conditions to ensure that an (LF)-space satisfies that every bounded set is con-

tained and bounded in some of the steps. The countable inductive limits of

Fréchet spaces, called (LF)-spaces, were thoroughly studied by Dieudonné and

Schwartz [7] and by Grothendieck [8]. They were motivated by their relevance

in the theory of distributions of Schwartz and its applications to partial differ-

ential equations. More recently several authors have analyzed the structure of
(LF)-spaces and of (LF)-spaces of sequences and of continuous or holomorphic
functions. These spaces are important in connection with applications to spaces

of ultradistributions and convolution equations. We refer to [1], [9] and [17]
for excellent presentations of the theory of (LF)-spaces.

The space (E, t) = ind„(7s„, tn) is an (LF)-space if (En, t„)„em is an in-
creasing sequence of Fréchet spaces with continuous inclusions (E„, t„) c

(En+X, tn+x), E = \Jn€NEn and (E, t) is endowed with the finest locally con-

vex topology such that the injections from (E„, t„) into E are continuous.

Here an (LF)-space is always assumed to be Hausdorff. If every step (En, t„)

is a Banach space, then the inductive limit E is called an (LB)-space. In what

follows, for each n £ N, we let (Un tk)k&n denote a basis of absolutely convex

O-neighbourhoods in E„ . We will assume without loss of generality

(a) U„,k DU„,k+xVn,k£ N;(b) U„,k c Un+X^n, k £ N.
We will use n, m, p, v, M, N for natural numbers in the first index (steps)

and k, I, K, L for natural numbers in the second index (neighbourhoods in a
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fixed step). If E„ is a Banach space with unit ball B„ , we assume 2B„ c Bn+X

for each n £ N and we take U„ tk := 2~k+xBn for each ieN. Our notation

for locally convex spaces is standard. See e.g. [14].
The behaviour of bounded sets is very important in (LF)-spaces. An (LF)-

space E is called regular if every bounded subset B of E is contained and

bounded in some step E„ . Grothendieck proved that an (LF)-space is regular

if and only if it is locally complete (see e.g. [14, Chapter 5]). Accordingly, every

complete (LF)-space is regular and it is an open problem, due to Grothendieck,
whether every regular (LF)-space is complete. See e.g. [1, p. 78]. The structure

of (LB)-spaces is quite well understood (see [1,3, 4]). Several authors have in-

vestigated regularity properties of (LF)-spaces (Bosch, Kucera, McKennon and
Qiu Jing Hui [10, 11, 12, 15, 16] have treated these questions). The impor-
tant work of Vogt [17] presented Palamodov's theory of acyclic (and weakly

acyclic) spaces, avoiding the homological tools, and versions of Retakh's con-

ditions (and their relation to the regularity) which are suitable for applications

and for evaluation in concrete cases. Vogt [ 17] also introduced and studied the

Köthe (LF)-spaces of sequences Ep ( 1 < p < oo). He characterized their reg-

ularity and completeness. These spaces appear in the study of duals of kernels

of convolution equations on spaces of ultradistributions. Bierstedt and the first

author [2] studied weighted (LF)-spaces of continuous functions. The charac-

terization of regular (LF)-spaces of Moscatelli type was given in [6, 13]. The

(LB)-spaces of Moscatelli type were studied in [5].
Our aim in this paper is to prove necessary (and also sufficient) conditions

for an (LF)-space to be regular. They must be considered as extensions of the

following well-known characterization of regular (LB)-spaces: an (LB)-space

E = ind„ E„ is regular if and only if for all n £ N there is m > n such

that Bn c Bm (the closure taken in E). We will also recover the necessary

condition (wQ) of Vogt [17]. Our proof is different from Vogt's. Moreover
the consideration of closures permits also to give sufficient conditions, which

are equivalent to the necessary ones for concrete (LF)-spaces of sequences and

continuous functions. Our main result is the following theorem which improves

all the known results.

Theorem 1. Let E = ind„En bean (LF)-space. Consider the following condi-

tions:

(1) There is an increasing sequence (U„)„en of absolutely convex closed 0-

neighbourhoods U„ in En such that

(l.a)   V«3m > n: U„ c Um , the closure taken in E,

(l.b)   V«3m > n : if A c U„ is bounded in E, then A is bounded in Em .

(2) E is regular.
(3) The following two conditions are satisfied by the neighbourhoods

(U„,k)n.keN '■

(3.a)   V«3m > «V73L: U„,l C Umj, the closure taken in E,
(3.b)   V«3w > n, k: if A c Un^ is bounded in E, then A is bounded in

Then (1) implies (2) and (2) implies (3).

Proof. All the closures in this proof are taken in E.

(1) => (2). Let A be a bounded subset of E. By a result of Makarov (see
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ej. [14, 8.5.20]), there is v £ N with A c vTTv . By (l.a) we find p > v with

Uv c Ufi. We apply (l.b) for n = p to find m. We have v~xA c Uß and

i/~'.4 is bounded in E. By (l.b) A is bounded in Em .
(2) =*• (3). We assume without loss of generality that 2U„tk+x c Unk f°r

all n, k. We prove (3.a) by contradiction. If (3.a) is not satisfied we have

3nV7n > n3l(m): Un,m+L is not contained in LUmj/(m) for all L £ N.

For each L £ N we select xm,L e Un,m+L with xm,¿ £ LUmj(m) and we

define 2? := {xm, ¿ ; m, L £ N} . We show that B is bounded in E. In fact, if
U is a closed absolutely convex 0-neighbourhood in E, there is k £ N with
[/„, £ C U. This implies xm, ¿ e £/ for all m> k and all L e N. On the other

hand, if 1 < m < k, xm t ¿ e i/„ ^ except for a finite number of L 's. This

implies that B is bounded in 7s. Since E is regular, B must be bounded in

some Em , hence 5 is absorbed by Umjim), a contradiction.

We also prove (3.b) by contradiction. If it does not hold, there is n £ N such

that
Vw > riik3A c U„ tk bounded in E but not bounded in Em.

Without loss of generality we assume n = 1. Then for all k £ N there is a

bounded subset Ak of E with Ak c Ux ̂ and there is l(k) £ N such that Ak
is not absorbed by Uk+Xj(k). We select (xkj)jeN c Ak with xkj £ jUk+xj(k)

for each j £ N. The set A := {xkj: k, j £ N} is bounded in E. Indeed, if
U is a closed absolutely convex 0-neighbourhood in E, there is fc(0) e N with

U\,k{0) c U, hence xk<J £ U if k > k(0). Moreover {xkj ; 1 < k < k(0), j £
N} c Ax U • • ■ U^4jt(o)—i is bounded in E. By construction A is not bounded in

each Em . This contradicts the regularity of E.   D

The implication "(1) implies (2)" in the theorem above improves [16, The-

orems 4 and 5]. Our next corollary follows from the implication "(2) implies

(3.a)" in Theorem 1.

Corollary 2. If E = ind„ En is a regular (LF)-space, then for every n £ N there
is m > n such that if B is a bounded subset of En, its closure in E is bounded

in Em.

An (LF)-space (E, t) = ind„(7i„, t„) is said to satisfy condition (M) of Re-
takh if there is an increasing sequence (t/„)„€N of 0-neighbourhoods U„ in

(E„, tn) such that

V«3m > riip >m:tn and tm induce the same topology on U„.

We can assume without loss of generality that U„ is closed in (E„,tn) for each
n £ N. This condition is thoroughly discussed in [17], where (LF)-spaces which

satisfy condition (M) are called acyclic. Acyclic (LF)-spaces are important in
connection with limit and well-located subspaces of (LF)-spaces and their appli-
cations to convolution equations. See [17]. Vogt [17] introduced the following

condition (wQ), necessary for regularity, which is easy to evaluate in concrete
examples. The (LF)-space E = ind„ En is said to satisfy condition (wQ) if

V«3w > n, kil, p > m3L,S: UnjknUß,L cSUmJ.

Every (LB)-space satisfies condition (wQ).
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Observation. (1) The following conditions are equivalent for an (LF)-space E —

ind„ En : (i) E satisfies condition (wQ); (ii) for every n there are m> n and

k such that for each p> m, every bounded subset of Eß which is contained in

Un,k is also bounded in Em . Moreover condition (3.b) in Theorem 1 implies

(ii). Accordingly we obtain a different proof of [17, 4.7]: every regular (LF)-

space satisfies condition (wQ).
We prove the equivalence of (i) and (ii). We only have to show that (ii)

implies (i). Given n, we choose m and k as in (ii) and suppose there are /

and p suchthat Un>kC\Uß,L is not contained in SUm¡ for all L,S. For each

L £ N we select x¿ £ (U„yk n UßtL)\LUmj . Then {xL ; L £ N} is bounded in
Eft, it is contained in U„,k , but it is not bounded in Em . A contradiction.

(2) If the (LF)-space E = ind„ En satisfies condition (M), then it also satisfies

condition (1) of Theorem 1. Indeed, let (Un)„€n be the increasing sequence of

En-closed neighbourhoods Un in E„ given by condition (M). By [17, 2.11], we

may assume that if m > n is selected as in (M), then E and Em induce the

same topologies on Un . To check (l.a), given n , we select m as in (M). If x

belongs to Un (closure taken in E), there is a net (x,) c Un converging to x
in E. Thus (x,) is a Cauchy net in Un for the Em -topology. This implies that

x¡ converges to x in Em , hence x e Um . Now we prove ( 1 .b) and, given n ,

we select again m > n as in condition (M). Assume A c U„ is bounded in E
but not bounded in Em . We can find a sequence (xk) in A and a sequence

(Xk) tending to 0 in the scalar field such that Xkxk does not tend to 0 in Em .

This contradicts (M), since Xkxk goes to 0 in E.

It is easy to see that the three conditions in Theorem 1 are equivalent for
an (LB)-space E. In fact they are equivalent to the following condition: for

all n there is m > n such that the closure of Bn in E is contained in Bm.

In the rest of the article we will show that they are also equivalent for Köthe
(LF)-spaces of sequences, for weighted (LF)-spaces of continuous functions and

for (LF)-spaces of Moscatelli type.
We will let X denote a locally compact Hausdorff topological space. For

every n £ N, Vn = (vnk)km is a sequence of strictly positive continuous

functions on X. We denote by 'V the sequence (Vn)n€N , and we assume that

the following two conditions are satisfied:

(1) v$,k(x)<vn>k+l(x) Vn,/ceN Vxel,
(2) v„,k(x)>vn+x,k(x) Vn,fceN Vxel.

For each n £ N, we define the following weighted Fréchet spaces of continuous

functions:

CVn(X) := {f£C(X);Vk £ N: supty*(x)|/(x)| < °°}>
xex

C(Vn)o(X) := {f£C(X);Vk £ NVe > 0 3/CT c X compact:

vn¡k(x)\f(x)\<eVx£X\K}.

We assume without loss of generality that (Unik)keN ,

Un,k := {f£CVn(X); supu„,*(x)|/(x)| < 1}   for k £ N,
xex

forms a basis of 0-neighbourhoods in the space CV„(X) for each «eN. The
weighted (LF)-spaces of continuous functions [2] are defined by

TC(X):=indnCVn(X)   and   %C(X) :=ind„C(Vn)0(X).
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If X = N endowed with the discrete topology is considered as an index set
and 1 < p < oo, we can define the Köthe (LF)-spaces of sequences [17] by

Ep(T):=indnEp with

El := {x = (x/)(€N ; Vfc € N 5>„,fc(/)|x,|)' < 00}

endowed with the canonical topology.

The sequence 'V is said to satisfy condition (wQ)^ (cf. [17]) if

inlm > n, kip >m,BL, Six £ X :

vm,i(x) < Smax(vn,k(x), «„.¿(x)).

Proposition 3. The three conditions in Theorem 1 are equivalent for Köthe

(LF)-spaces of sequences Ep(^) and for weighted (LF)-spaces of continuous
functions TC(X) and %C(X).

Proof. First we consider the case of "VC(X). Suppose that it satisfies condition
(3) of Theorem 1. Condition (3.b) and [2, 1.2] imply that 'V satisfies condition

(wQ)^- (see observation (1) above). By [2, 2.4] this implies that <VC(X) is

regular and, by the remarks after Definition 2.1 in [2], 'V satisfies the following

stronger condition

(wQ*) 3(k(v))vmin3m > nip >m,l3L,S:

We write w„ :=minx<v<nvvMv) and U„ := {f £ CVn(X); suvxeXwn(x)\f(x)\
< 1} for all n £ N. Then the sequence (U„)„en satisfies (l.a) and (l.b) by
(wQ*) and (the proof of) [2, 2.6].

Now we assume that %C(X) satisfies condition (3) of Theorem 1. It is easy

to see that (3.b) implies that *V satisfies condition (wQ)^ . To conclude, by
the observation (2) above and [2, 3.3], it is enough to show that J^ satisfies the

countable regularly decreasing condition (CRD) of [2, 3.2(5)]. Now the proof

of the implication "(12) implies (1)" in [2, 3.3] permits the conclusion, since

condition (3.a) implies the claim in part (b) of that proof.

Finally the proof in the case of Köthe (LF)-spaces of sequences Ep(^) is

very similar to the proof of the case of (VC(X).   D

We recall the definition of an (LF)-space of Moscatelli type associated with
iocjcl [6] (see [13] for the case of an arbitrary normal Banach sequence

space L instead of /^.) We fix two Fréchet spaces Y c X with continuous

inclusion and we set E„ := ¡oo((X)k<n , {Y)k>„), which is a Fréchet space for

the canonical topology. We define E := ind„ E„. In [6, Prop. 6] it is proved

that E is regular if and only if Y admits an X-closed O-neighborhood. We

have

Proposition 4. The three conditions of Theorem 1 are equivalent for (LF)-spaces

of Moscatelli type.

Proof. Let E be the (LF)-space of Moscatelli type associated with l^, Y c X.
The proof for arbitrary L instead of /oo is similar. We assume that E has

condition (3) in Theorem 1. We first show that there is a O-neighbourhood V

vmj<S max
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in Y whose closure in X is contained in Y. If this is not the case, we find a

basis of O-neighbourhoods (K„)„eN in Y such that for every m £ N there is

xm G Vm\Y, the closure taken in X. We set

xm:=(omJxm)jeN£(¡)XcE   formeN

N

Then xm $ Em but xm £ VmrñJZ(Y) for each m £ N, the closure taken in

E. This contradicts (3.a) for n = 1. In particular we have shown that E is

regular by [6, Prop. 6].
Next, to prove (1), we select an X-closed absolutely convex 0-neighbourhood

F in 7 such that every X-bounded subset of V is also T-bounded (cf. [6,
Lemma 5]) and we define

H-l

%:=0IxFNnUy)   for all n £ N.
fc=i

It is easy to see that % is closed in E and that the sequence (%)«€N is
increasing. This implies (l.a). To check (l.b) we fix n £ N and a bounded
subset sá of E such that si c %n ■ Since E is regular, s/ is bounded in

some Em with m> n . From this it easily follows that s/ is in fact bounded

in E„.   D
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