A COUNTEREXAMPLE TO THE "FINE" PROBLEM IN PLURIPOTENTIAL THEORY

URBAN CEGRELL AND EVGENY A. POLETSKY

(Communicated by Eric Bedford)

ABSTRACT. In this paper we prove that pointwise values of the non-regularized pluriharmonic measure are not capacities. This answers the question raised by E. Bedford and U. Cegrell.

The purpose of this note is to give a counterexample to a problem posed in [1, p. 84] and [2, p. 52].

Let D be a domain in \mathbb{C}^n , $A \subset D$, and $z \in D$. Then the function

 $\omega(z, Aa, D) = \sup\{u(z) : u < 0 \text{ is plurisubharmonic on } D \text{ and } u \le -1 \text{ on } A\}$

is called the *pluriharmonic measure of* A in D.

The "fine" problem is to decide if the set function taking A to $-\omega(z, A, D)$ is a Choquet capacity on subsets of D. The axioms to be checked are:

(1) If K_i is a decreasing sequence of compact sets in D, then

$$\lim_{j\to\infty}\omega(z, K_j, D) = \omega\left(z, \bigcap_{j=1}^{\infty}K_j, D\right).$$

(2) If A_i is an increasing sequence of subsets of D, then

$$\lim_{j\to\infty}\omega(z\,,\,A_j\,,\,D)=\omega\left(z\,,\,\bigcup_{j=1}^{\infty}A_j\,,\,D\right).$$

It is not hard to see that the first axiom is true, since we are looking at the unregularized pluriharmonic measure. Also it was proved in [3] that (2) is true if the sets A_j , $j \in \mathbb{N}$, and $A = \bigcup_{i=1}^{\infty} A_i$ are compact.

Using some ideas from [4], adapted to this concrete situation, we are going to construct an F_{σ} -set A for which (2) is false, thus giving a counterexample to the "fine" problem.

Received by the editors May 2, 1994.

¹⁹⁹¹ Mathematics Subject Classification. Primary 32F05; Secondary 31C10, 31C15.

Key words and phrases. Plurisubharmonic functions, capacities.

Let

$$D = \{ z = (z_1, z_2) \in \mathbb{C}^2 : ||z||^2 = |z_1|^2 + |z_2|^2 < 4 \},\$$

$$\gamma_0 = \left\{ (e^{i\theta}, 0) \in \mathbb{C}^2 : \frac{\pi}{2} \le \theta \le \frac{3\pi}{2} \right\},\$$

$$\gamma_j = \left\{ (e^{i\theta}, 2^{-j}e^{i\theta}) \in \mathbb{C}^2 : -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \right\},\$$

$$A_k = \bigcup_{j=0}^k \gamma_j, \qquad A = \bigcup_{j=0}^\infty \gamma_j.$$

Theorem. $\lim_{k\to\infty} \omega(0, A_k, D) > \omega(0, A, D) = -1$.

Proof. Let u < 0 be a plurisubharmonic function on D such that $u \le -1$ on A. We fix $\varepsilon > 0$ and let $V = \{z \in D: u(z) < -1 + \varepsilon\}$. If j is sufficiently large the circles $S_j = \{(\zeta, 2^{-j}\zeta): |\zeta| = 1\}$ are in V. Thus $u(0) \le -1 + \varepsilon$ by the maximum principle. Therefore $\omega(0, A, D) = -1$.

Denote by $\Gamma_0 = \{(z_1, 0) \in D\}$ and $\Gamma_j = \{(z_1, 2^{-j}z_1) \in D\}$. Then Γ_0 , Γ_j , $j \in \mathbb{N}$, are complete pluripolar sets in D, and $\gamma_0 \subset \Gamma_0$, $\gamma_j \subset \Gamma_j$, $j \in \mathbb{N}$. We claim that there is a constant a, 0 > a > -1, such that for ||z|| = 1/16 we have $\omega(z, A, D) \ge a$.

Note first that if $z \in D$ and $z \notin \bigcup_{j=0}^{\infty} \Gamma_j$, then $\omega(z, A, D) = 0$. Consider the function $v(z) = \omega(z, K, R)$ where R is the disk in C of radius 3 centered at 0 and $K = \{e^{i\theta}: -\pi/2 \le \theta \le \pi/2\}$. Since K is polynomially convex,

$$a=\inf_{|z|\leq 1/4}\omega(z, K, R)>-1.$$

Therefore, $v_j(z) = v(z_1(1+2^{-j})-z_2) \ge a$ when $z = (z_1, z_2) \in \Gamma_j$, $j \ge 1$, and $||z|| \le 1/16$. It is easy to check that $v_j = -1$ on γ_j . When j = 0 we consider $v_0(z_1, z_2) = v(-z_1)$. Clearly v_0 satisfies the properties above.

Suppose that $z_0 \in \Gamma_m$ and $||z_0|| = 1/16$. Then $z_0 \notin \Gamma^m := \bigcup_{j \neq m} \Gamma_j$, so since each Γ_j is a complete pluripolar set, for every $\varepsilon > 0$ we can find a negative plurisubharmonic function g on D such that $g = -\infty$ on Γ^m but $g(z_0) > -\varepsilon$. Since $g(z) + v_m(z) \leq -1$ on A, we see that $\omega(z_0, A, D) \geq a - \varepsilon$ and, since $\varepsilon > 0$ is arbitrary, $\omega(z_0, A, D) \geq a$.

We now prove that

$$\omega(0, A_k, D) \geq a$$

for any k. Since A_k is compact in D,

 $\omega(z, A_k, D) = \sup\{u(z) : u < 0 \text{ is plurisubharmonic and continuous in } D$ and $u \le -1$ on $A_k\}$.

Therefore, for every $\varepsilon > 0$ there is a continuous plurisubharmonic function uon D such that $u \le 0$ on D, $u \le -1$ on A_k , and $u(z) \ge a - \varepsilon$ when ||z|| =1/16. Define h(z) = u(z) when $||z|| \ge 1/16$ and $h(z) = \max(u(z), a - \varepsilon)$ when ||z|| < 1/16. Then h(z) is negative and plurisubharmonic on D and $h \le -1$ on A_k . Thus $\omega(z, A_k, D) \ge h(z)$, so in particular $\omega(0, A_k, D) \ge$ $h(0) \ge a - \varepsilon$, which completes the proof of the theorem. \Box

References

- 1. E. Bedford, Survey of pluripotential theory, Several Complex Variables (J. E. Fornaess, ed.) (Proceedings of the Mittag-Leffler Institute, 1987–1988), Princeton Univ. Press, Princeton, NJ, 1993, pp. 48–97.
- 2. U. Cegrell, Capacities in complex analysis, Vieweg, Braunschweig and Wiesbaden, 1988.
- 3. <u>Capacities and extremal plurisubharmonic functions on subsets of \mathbb{C}^n , Ark. Mat. 18 (1980), 199-206.</u>
- 4. E. A. Poletsky, Analytic geometry on compacta in \mathbb{C}^n , Math Z. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UMEA, S-901 87 UMEA, SWEDEN *E-mail address*: urban.cegrell@mathdept.umu.se

215 CARNEGIE HALL, SYRACUSE UNIVERSITY, SYRACUSE, NEW YORK 13244 E-mail address: eapolets@mailbox.syr.edu