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Abstract. In this paper, we state conditions sufficient for the existence of con-

ditional expectations. Given a measure space (X,t,p) anda a-subalgebra

si C Z, we give conditions on si which insure that for every real-valued im-

measurable function / there exists a si -measurable function E(f) such that

f gfdß = f gE(f) dp. for every j/-measurable function g for which the left

integral exists. These conditions entail a notion of "fineness" of the subalge-

bra si and a "completeness" property of {X, si , p.). We then introduce a

notion of generalized conditional expectation which requires only the former

condition.

1. INTRODUCTION

In this paper we present a natural extension of the concept of conditional
expectation in which the integrability properties of the functions to be condi-

tioned play no role. Our work differs markedly from previous extensions, such

as that of Brunk [2], in which the main theme was a broadening of the class of
measure spaces under consideration. We do concern ourselves with maintaining

a high degree of generality, and the restrictions placed on the measure spaces
admitted are rather minimal.

Given a measure space (X, Z, p) and a tr-subalgebra s/ c I, we seek

conditions on s/ under which every Z-measurable function /: X —> R is s/-
conditionable in the sense that there exists a stf-measurable function E(f) such
that

Jgfdp = JgE(f)dp

for every s/ -measurable function g for which the integral on the left exists.

Any such function E(f) is called a conditional expectation of / relative to
the o--subalgebra s/ . We establish sufficient conditions for the existence of

conditional expectations involving the concepts of localizability and totality of
the cr-subalgebra si in X. In Section 4, we drop our localizability assumption
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and demonstrate that some notion of conditional expectation exists provided
only that the <r-subalgebra si is total in Z.

2. DEFINITIONS AND NOTATION

Throughout this paper (X, Z, p) will denote a complete measure space and
si a (7-subalgebra such that the restriction p& of p to si is complete. The
collection of real-valued si -measurable functions will be written as I? (si),
where functions which are equal a.e.- p are regarded as equal. We write LP+(si)

for the subcollection of L°(si) consisting of nonnegative functions. For each
/ e £+(Z), we define a measure v = v{ on si by

v(A) -¡Jdp
for every A e si . The collection of all si -measurable sets of finite /¿-measure
is denoted sio.

Definition 1. A a-subalgebra si of Z is said to be total in Z if for each B e Z

p(B) = sup{//(5 n AQ) : AQ e si0}.

Definition 2. If A is a measure on si , we say that A is accessible with respect
to p if for each A e si

k(A) = sup{A(^o) : A0 C A, A0 € s/Q}.

For each Z-measurable function /, the support of / is defined as {x e
X: f(x) # 0} and is denoted by supp(/). The extended reals will be denoted
by R.

3. Localizability and conditional expectation

Lemma 3, whose proof of straightforward, expresses the relationship between
the totality of si in Z and the accessibility of the measures Vf with respect

to ps, .

Lemma 3. The a-subalgebra si is total in Z if and only if for each /eL+(Z)
the corresponding measure Vf on si is accessible with respect to p& .

Lemma 4. Suppose si is total in Z and (X, si , p& ) is localizable. Then
for any f e £+(Z) there exists a nonnegative, (extended) real-valued, si-
measurable function %(f) such that (X,si, (fdp)&) = (X,si, %(f)dps¿).

Proof. By Lemma 3, the measure Vf corresponding to / is accessible with

respect to pj , and the function f (/) is the Radon-Nikodym derivative ^ .

See [1].
If si and / satisfy the hypotheses of Lemma 4, set %o(f) = Xs^(f) where

S = Sf = {£(f) < oo}. We remark that the measure A i-> ¡A %o{f) dp is the

semi-finite part vQ of vf.

Theorem 5. Suppose si is a complete a-subalgebra of Z such that si is total in
Z and (X, si , ptf) is localizable. Then there exists a conditional expectation

operator E: L°(Z) -> L°(X, si , p& , R) such that for each f e L°(Z) we have

j gfdp=     gE(f)dps
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for every g e LX(X ,si , (\f\dp)ss ) ■ The operator E is faithful in the sense that

if fe 1° (I) and E(f) = 0, then / = 0.

Proof. Suppose si and / satisfy the hypotheses of the theorem, and let g e
Lx(X, si, (\f\dpU). Then

j g\f\dp = j gg(\f\) dp = j g%o{\f\) dßsi.

Consider the space (X, si, v0) = (X, si, %o{\f\)dptf). Since £o(|/|) is finite-
valued and (X,sf , ßtf) is semi-finite and localizable, (X,si, u0) has these
properties as well. Define a linear functional Tf on Ll(X ,si, vq) by

Tf(g) = I   gfdp.
JS\n

Note that

\Tf(g)\ < f   |*| l/l dp = / \g\mf\) dpsi = 11*11,0-

By the Riesz Representation Theorem, there exists a i^o-unique

<pfeL°°(X,sf,v0),

of norm less than or equal to one and vanishing on X\supp(£ó(|/D) > such that

rf(g) = Jg<pfib(\f\)dß*.

Set Ex(f) = <pfi?o(\f\), E2(f) = xs<f%{\f\) = oo . Zsf/|, and E(f) = Ex(f) +

Ei(f) = 0/ + Zsfa W(\f\) for every / e L°(Z).
If / e L%(Z) with E(f) s 0, then Slfl = X, and *(/) = «&(/) = £(/) =

0. For any A0 e si0 we have ¡nfdp = ¡%A%(f)dp = 0. Since / € L°+(I)
and si is total in Z, it follows that / = 0.

The following example demonstrates that the definition of conditional ex-
pectation given (implicitly) in Theorem 5 differs from the classical notion as
presented in [4].

Example 6. Consider the probability space (R2, Z2, p) where Z¿ denotes the

Lebesgue measurable subsets of Rfc and p is defined by

fttA) = / Me-MO+M)
Ja  4

for every A e Z2. Set si = {R x B: B e lx} and define /: R2 -► R by
f(x, v) = x. According to [4], / is not conditionable in the classical sense.
However, using our definition, / is conditionable with E(f) = 0. In our
notation, we have

vm(A) = yMe-MO+M)   and   g e Lx (R2, si, vlfl)

if and only if g(x, y) = g(y) and * e Lx (R, Z,, ejfirfy). But r7(g) = 0 for
all such *, and hence tp¡ = 0. Thus / is, in a sense, orthogonal to si .
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4. Generalized conditional expectation

In this final section, we drop our assumption that (X, si , pA) is localizable
while retaining our assumption that si is total in Z. Under these conditions,

for each Z-measurable /, there exists a net of si -measurable functions which
serves as a generalized conditional expectation is a sense made precise below.

Let sia = {A e si: A is of a -finite p^ -measure}. Throughout this section,
/ will represent a fixed but arbitrary real-valued Z-measurable function. As

above, we define a measure v = v\f\ on si by v(A) = JA \f\ dp. For each Aa e

sia we define measures pAa and vAa on si by setting pAa(A) = p(AnAa) and

vAa(A) = u(AnAa) for every A e si . By the Radon-Nikodym Theorem, for

each Aa esia there exists a nonnegative, extended real-valued, si -measurable

function g?(\f\, Aa), vanishing off Aa and uniquely determined on Aa , such

that

vaM)= I %(\f\,Aa)dp
Ja

for every Aesi . Equivalently, (X, si , vAc) = (X, si , §'(|/|, A„)dp). Now

setting SA° = {F(|/|, Aa) < 00} and §o(|/|, Aa) = Xs^(\f\, Aa), we have

Lx(uAo) = Lx(go(\f\,Aa)dp).

For each Aa esia , define a measure v\ on si by v^(A) = JA §5(1/1, A„) dp.

If Aa , A'a 6 si„ , then for any si -measurable A c A„ n A'a we have

/ %(\f\,Aa)d/i = v%(A) = v\(A) = [ êo(\f\,A'a)dp,
Ja Ja

and it follows that ifo(\f\, Aa) and Üó(\f\, A'a) agree on Aa nA'a . So for any
countable subcollection {A"} of sia , we have

XA^M\f\,[}Aka) = U\f\,Ana).

Next, for each Aa e sia define FA° on Lx(vA ) by

r""(*)= / gfdp.

Now

\TA'(g)\< [    \g\\f\dp= [\g\dv°Aa = \\g\lo ,
JsA° J A"

so by the Riesz Representation Theorem there exists a (p(f, Aa) e L°°(vA ), of

norm at most one, vanishing off and uniquely determined on Aa , such that

r^(*) = Ig(p(f, A„)dv% = jgcp(f, Aa)Ho(\f\,Aa)dp.

If Aa, A'a e sia and Aesi with A c A„ n A'a, then for any g e Lx (v°A) with

* = 0 off A, we have

jg<p(f, Aa)Wo(\f\,Aa)dp = TA°(g) = r<(g) = jg<p(f, A'a)gb(\f\,A'a)dp,

and we see that <p(f, Aa) = <p(f, A'a) on AanA'a. Set EAa(f) = tp(f, Aa) x
§ó(|/|, Aa) for every Aa e sia . In the terminology of [3], {EAa(f): Aa e sia}

is a measurable quasifunction relative to the family {pAa : Aa esia} of measures
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on (X, si). If {Ana} is any countable subcollection of s/a and Aa = [}Ana ,

we have

XasEAc(J) = EAn(f).

If g e Lx(v), then supp(*/) is a a -finite set and since si is total in Z, we
can choose a sequence {Aft} of elements of sio such that {XA"gf} converges

to gf in measure. Hence

I gfdp = lim J xa* gf dp = lim J gE^ (/) dp = J gEAa (/) dp

where Aa = \J Aß .
The preceding discussion is summarized in the following theorem.

Theorem 7. Suppose (X, Z, p) is a measure space and si is a total a-sub-

algebraofL. Then for each real-valued 'L-measurable function f there exists a

sia-net {EAa(f)} of real-valued si-measurable functions such that

Igfdp = lim J gEAo (f) dp

for every si-measurable g for which the left integral exists.

The net {EAa(f)} is a generalized conditional expectation for / relative to
si . We mention in closing that the family sia can be replaced with sio > or, if
we make reference to Theorem 5, the collection s/¿> = {A e si : (X, si , pA)

is localizable}. In the first case, {EAa(f)} is a cross-section as defined in [5] or

[6].
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