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Abstract. This paper focuses on a multiplicative property of the Berezin sym-

bol A , of a given linear map A : %? t-> %?, where %? is a functional Hubert

space of analytic functions. We show AB = AB for all B in 3S{Sf) if and

only if A is a multiplication operator Mv , where <p is a multiplier. We also

present a version of this result for vector-valued functional Hubert spaces.

1. Introduction

Let « be a fixed positive integer and let Q be a region in C" . A functional
Hubert space ^ is a Hubert space of analytic functions on Q such that the
point evaluations are bounded, linear functionals. By the Riesz-representation

theorem there exists, for each z in Q, a unique element Kz of ßf such

that f(z) = (f,Kz) for all / in MT. The function K on Q x Q, defined
by K(z, w) = Kw(z), is called the reproducing kernel function of 2?. Let

kz — pSr be the normalized reproducing kernel function. For a given linear

map A: £? h-> %?, the Berezin symbol A (see [1]) of a map A of %? into itself

is defined by

A(z) = (Akz,kz).

It is known that the map A >-> A is injective (see [3]). A function g> defined on

Q is a multiplier of %? if q> • f is in %?, for all / in %?. Let 38(%e) denote
the set of all bounded, linear operators from %? into %?. The multiplication

operator M9 : %? >-> %? defined by M9f = q> • f is in 38(%?), when tp is a
multiplier of X.

2. The multiplicative property of the Berezin symbol
ON A functional Hilbert space

Theorem 1. Let A be a bounded operator on £?. Then

AB(z) = Ä(z)B(z)
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for all B in 38'(ß?) if and only if A is a multiplication operator, My, where

(p is a multiplier. Moreover, <p = A.

Before proceeding with the proof, we need the following:

Lemma 1. When <p is a multiplier ofßff', Mf(z) — <p(z).

Proof.  M^z) = (Mvkz, kz) = (q>kz, kz) = <p(z).

Lemma 2. The Berezin symbol of f ® g, for f, g in ß?, is

llAz||

Proof. For / and * in ß? and z in Q,

K7    K7
{f ® g){z) = {{f ® g)

11**11 11**11
l—(Kz,g)(f,Kz)

ll*z
By the reproducing property of the kernel function, we have

(f®g)(z) = ^¡-2f(z),        f,qeßf.

Proof of Theorem 1. Suppose AB(z) = Ä(z)B(z) for all B in &(ß?).  Let
B = f ® g for / and * in ß?. Then, by Lemma 2,

Jiz)

II*
By the hypothesis, we have

AB(z) = (Af®g)(z) = J±±L(Af)(z).

Z)Mf)(z) = -^r%Ä(z)f(z),
\\KZ\\2K  J,K '     \\KZ\\2'

which reduces to

(Af)(z)=Ä(z)f(z)

for all / in ß?. Hence A = M~.J A

Conversely, if A is a multiplication operator, M<¡, , where <p is a multiplier,

M^B = (M,Bkz, kz) = <p(z){B.^){*]

for all B in &(ße). By Lemma 1, we have

M^B(z) = Mv(z)B(z)

for all B in &(ß?).

Corollary 1. Let B be in &(ß?). Then

AB(z) = Ä(z)B(z)

for all A in 38 (ß?) if and only if B = M*, where y/ is a multiplier.

Proof. The assertion follows from Theorem 1 and the fact that T*(z) = T(z),

for all T in
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The Hardy space H2 consists of the complex-valued analytic functions on the

unit disk D such that the Taylor coefficients are square summable. A calculation

shows that Kz = -^=-- has the reproducing property (see [4]). Let P denote the

orthogonal projection of L2(f9D) onto H2, and let tp be a bounded measurable
function. Then the Toeplitz operator, Tv , induced by g> is defined by T^f -

P(<pf), for all /in//2.

Corollary 2. Let A be a bounded operator on H2. Then

AB(z) = A(z)B(z)

for all B in 38(H2) if and only if A isa Toeplitz operator, Tç, induced by q>

in H°° . Moreover tp — A.

Proof. The multiplication operators on H2 are the analytic Toeplitz operators.
We should mention that Corollary 2 is also true if one replaces H2 by the

Bergman space or any of the weighted Bergman spaces. (For analytic Toeplitz
operators on weighted Bergman spaces see [6].)

3. The multiplicative property of the Berezin symbol
on the analytic reproducing kernel space, ß? = ß?Q ® ̂

Let Jo be a functional Hilbert space of (scalar-valued) analytic functions
on fí with the reproducing kernel function Kz, for each fixed z in A. Let

^ be a separable Hilbert space, and let ße be the functional Hilbert space of
fé'-valued functions, ßf = ß^®^. The reproducing kernel function of ße,

3z:W^ße,is defined by 3z(u) = Kz®u, where u is in ^.

The evaluation functional Ez : ß? »-► ^, defined by Ezf = f(z), for z in

Q, is bounded (see [2], Lemma 3.2). For f eßf, u in W, we have

(f,E*zu)jr = (f(z),u)v.

We also have the reproducing property of the kernel function, that is

(f,3z(u))jr = (f(z),u)w.

Therefore, E*u- 3z(u), for all u in &. By the reproducing property of the

kernel function, we have ||3z(w)||2 = Ä^z(z)||w||2, where u is in W, and hence

P2\\ = y/K&) =\\EZ\\.
Let Xz — pSr be the normalized reproducing kernel function, and let A be

a bounded linear operator on ße. Then the Berezin symbol A of A is defined
by

Ä(z) = 3?z* AXZ.

Lemma 3. An operator A is a multiplication operator if and only if, for each

fixed z in Q, A*E* =£*0(z)* for some operator <P(z) in 38&). Moreover,

in this case, A is the operator of multiplication by the function z \->Q>(z).

Proof. Let z be fixed in fí. Suppose A is a multiplication operator, M<¡,,
induced by <t>: Q -> ̂ (g7). We observe that

EzM*f = Af*/(z) = ®(z)f(z) = <î>(z)Ezf   for all / in ßf.

Then we have EZM^ = Q>(z)Ez, for some operator O(z) in 38&).
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Conversely, let A be a bounded operator on ße such that A*E* = E*<b(z)*
for some operator O(z) in 38 &). For u in ^, we have

</, ¿P^u)^ . (Af, E*zu)jr = ((Af)(z), u)v   for all / in 3T.

On the other hand, for u in W, we have (/, £*<P(z)*w) = (0(z)/(z), w), for

all / in ße. Then ((Af)(z), u) = (0(z)/(z), u), for all / in JT and « in
W. Therefore, (Af)(z) = <D(z)/(z), for all / in X.

Theorem 2. Let A be a bounded operator on ße. Then

AB(z) = A(z)B(z)

for all B in 3B{MT) if and only ifA = M*, where <D: Q •-> .#(«').

Proof. We observe that EzM^f = *(z)/(z), for all / in ßf. Then EZM®E*
= 0(z)£z.E; and EzMqBE¡ = <b(z)EzBE*, for all B in ^(¿T). Since

EZE* = Kz(z)fy , we have A/* = <P(z) and

_. F r/t*      _        _
M*B(z) = O(z)   2    / = M«,(z)£(z)   for all 5 in ^(¿F).

IP*II

^ Conversely, suppose that /I  is a bounded operator such that AB(z) —

A(z)B(z) for all B in 38(ße). Then from the definitions, we get

EZABE* = ^r-^EzAE*zEzBE*z    for all fi in 38(ße).
Il-^zll

For « and v in ^, we have

IF AF* \        ~
(EzABE*zu, v) = (-I—LEzBE*u, v\ = (A(z)EzBE*u, v).

Then we have

(BE*zu, A*E*zv) = (BE*u, E*zA(z)*v).

For each fixed nonzero u, BE* u runs through all vectors in ße as B runs

through all elements of 38(ß?). Thus we see that A*E* = E*Ä(z)*, for all z

in Q. Therefore A is a multiplication operator, M~, by Lemma 3.

Let us note that if we take ^ to be C and define 3?z = kz <g> 1, the sufficiency

proof of Theorem 2 will also work for Theorem 1, the scalar-valued case.

Let N = {0, 1,2,...} denote the set of nonnegative integers. The set N"
is partially ordered by setting I = (ix, i2, ... , in) > (jx, j2,... , j„) = J if

and only if ik > jk for k = 1, 2, ... , n.   If z = (zx, z2,... , z„) is in

Q, then we set zl = z\ • z'22.zlnn.   We denote by H2(n) ® W, where

H2(n) - H2 ® H2 ® • • • ® H2 (n copies), the set of all vector-valued analytic

functions /: D" ►-► ^ with power series expansion f(z) = S/eN" z'vi > w^m

v¡ in & and z in D", such that ¿3/eN" llalli < °° •
The space H2(n)®W is a Hilbert space with the reproducing kernel function,

3Z: W h-> H2(n) <8> fê, for z in D" , defined by 3z(u) = Kz®u, where u is

in ^ and Kz(w) = 2w6N" ̂ 'w1 is the reproducing kernel function for H2(n)

(see [5]). Let H°°(n)(3?(&)) denote the Banach space of all bounded analytic

functions <D: D" .-> 38(%) with the norm ||0||oo = sup{||<P(z)||, for z e D"} .
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For every O in H°°(n)(38i^)), we can define the analytic Toeplitz operator

T<5> in 38(H2(n)®^) as follows:

(7W)(z) - <t>(z)f(z),        z in D", / in H2(n) ® «?.

For the boundedness of the map T® see [2].

Corollary 3. Let A be a bounded operator on H2(n) ® fë. Then

AB(z) = Ä(z)B(z)

for all B in 38(E2(n)®^) if and only if A^T^, where <D ¿sin H°°(n)(^(W)).
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