THE BEREZIN SYMBOL AND MULTIPLIERS OF FUNCTIONAL HILBERT SPACES

SEMRA KILIC

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. This paper focuses on a multiplicative property of the Berezin symbol \widetilde{A} , of a given linear map $A\colon \mathscr{H} \mapsto \mathscr{H}$, where \mathscr{H} is a functional Hilbert space of analytic functions. We show $\widetilde{AB} = \widetilde{AB}$ for all B in $\mathscr{B}(\mathscr{H})$ if and only if A is a multiplication operator M_{φ} , where φ is a multiplier. We also present a version of this result for vector-valued functional Hilbert spaces.

1. Introduction

Let n be a fixed positive integer and let Ω be a region in \mathbb{C}^n . A functional Hilbert space $\mathscr H$ is a Hilbert space of analytic functions on Ω such that the point evaluations are bounded, linear functionals. By the Riesz-representation theorem there exists, for each z in Ω , a unique element K_z of $\mathscr H$ such that $f(z)=\langle f,K_z\rangle$ for all f in $\mathscr H$. The function K on $\Omega\times\Omega$, defined by $K(z,w)=K_w(z)$, is called the reproducing kernel function of $\mathscr H$. Let $k_z=\frac{K_z}{\|K_z\|}$ be the normalized reproducing kernel function. For a given linear map $A\colon \mathscr H\mapsto \mathscr H$, the Berezin symbol $\widetilde A$ (see [1]) of a map A of $\mathscr H$ into itself is defined by

$$\widetilde{A}(z) = \langle Ak_z, k_z \rangle.$$

It is known that the map $A\mapsto\widetilde{A}$ is injective (see [3]). A function φ defined on Ω is a multiplier of $\mathscr H$ if $\varphi\cdot f$ is in $\mathscr H$, for all f in $\mathscr H$. Let $\mathscr B(\mathscr H)$ denote the set of all bounded, linear operators from $\mathscr H$ into $\mathscr H$. The multiplication operator $M_{\varphi}\colon\mathscr H\mapsto\mathscr H$ defined by $M_{\varphi}f=\varphi\cdot f$ is in $\mathscr B(\mathscr H)$, when φ is a multiplier of $\mathscr H$.

2. The multiplicative property of the Berezin symbol on a functional Hilbert space

Theorem 1. Let A be a bounded operator on \mathcal{H} . Then

$$\widetilde{AB}(z) = \widetilde{A}(z)\widetilde{B}(z)$$

Received by the editors November 22, 1993 and, in revised form, March 18, 1994 and May 12, 1994; the contents of this paper were presented to the AMS at a Special Session of the meeting in Dayton, Ohio, October 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46E22; Secondary 47B35, 47B38.

Key words and phrases. Berezin symbol, multiplier, functional Hilbert spaces, multiplication operators, Toeplitz operators.

for all B in $\mathscr{B}(\mathscr{H})$ if and only if A is a multiplication operator, M_{φ} , where φ is a multiplier. Moreover, $\varphi = \widetilde{A}$.

Before proceeding with the proof, we need the following:

Lemma 1. When φ is a multiplier of \mathcal{H} , $\widetilde{M}_{\varphi}(z) = \varphi(z)$.

Proof. $\widetilde{M}_{\varphi}(z) = \langle M_{\varphi}k_z, k_z \rangle = \langle \varphi k_z, k_z \rangle = \varphi(z)$.

Lemma 2. The Berezin symbol of $f \otimes g$, for f, g in \mathcal{H} , is

$$(\widetilde{f \otimes g})(z) = \frac{\overline{g(z)}}{\|K_z\|^2} f(z), \qquad z \in \Omega$$

Proof. For f and g in \mathcal{H} and z in Ω ,

$$(\widetilde{f \otimes g})(z) = \left\langle (f \otimes g) \frac{K_z}{\|K_z\|} \frac{K_z}{\|K_z\|} \right\rangle$$
$$= \frac{1}{\|K_z\|^2} \langle K_z, g \rangle \langle f, K_z \rangle.$$

By the reproducing property of the kernel function, we have

$$(\widetilde{f \otimes g})(z) = \frac{\overline{g(z)}}{\|K_z\|^2} f(z), \qquad f, q \in \mathcal{H}.$$

Proof of Theorem 1. Suppose $\widetilde{AB}(z) = \widetilde{A}(z)\widetilde{B}(z)$ for all B in $\mathscr{B}(\mathscr{H})$. Let $B = f \otimes g$ for f and g in \mathscr{H} . Then, by Lemma 2,

$$\widetilde{AB}(z) = (A\widetilde{f \otimes g})(z) = \frac{\overline{g(z)}}{\|K_z\|^2} (Af)(z).$$

By the hypothesis, we have

$$\frac{\overline{g(z)}}{\|K_z\|^2}(Af)(z) = \frac{\overline{g(z)}}{\|K_z\|^2}\widetilde{A}(z)f(z),$$

which reduces to

$$(Af)(z) = \widetilde{A}(z)f(z)$$

for all f in \mathcal{H} . Hence $A = M_{\widetilde{A}}$.

Conversely, if A is a multiplication operator, M_{φ} , where φ is a multiplier,

$$\widetilde{M_{\varphi}B} = \langle M_{\varphi}Bk_z, k_z \rangle = \varphi(z) \frac{(Bk_z)(z)}{\|K_z\|}$$

for all B in $\mathcal{B}(\mathcal{H})$. By Lemma 1, we have

$$\widetilde{M_{\varphi}B}(z) = \widetilde{M_{\varphi}}(z)\widetilde{B}(z)$$

for all B in $\mathcal{B}(\mathcal{X})$.

Corollary 1. Let B be in $\mathcal{B}(\mathcal{H})$. Then

$$\widetilde{AB}(z) = \widetilde{A}(z)\widetilde{B}(z)$$

for all A in $\mathscr{B}(\mathscr{H})$ if and only if $B = M_{\psi}^*$, where ψ is a multiplier.

Proof. The assertion follows from Theorem 1 and the fact that $\widetilde{T}^*(z) = \overline{\widetilde{T}}(z)$, for all T in $\mathscr{B}(\mathscr{H})$.

The Hardy space H^2 consists of the complex-valued analytic functions on the unit disk **D** such that the Taylor coefficients are square summable. A calculation shows that $K_z = \frac{1}{1-\overline{z}w}$ has the reproducing property (see [4]). Let P denote the orthogonal projection of $L^2(\partial \mathbf{D})$ onto H^2 , and let φ be a bounded measurable function. Then the Toeplitz operator, T_{φ} , induced by φ is defined by $T_{\varphi}f = P(\varphi f)$, for all f in H^2 .

Corollary 2. Let A be a bounded operator on H^2 . Then

$$\widetilde{AB}(z) = \widetilde{A}(z)\widetilde{B}(z)$$

for all B in $\mathscr{B}(H^2)$ if and only if A is a Toeplitz operator, T_{φ} , induced by φ in H^{∞} . Moreover $\varphi = \widetilde{A}$.

Proof. The multiplication operators on H^2 are the analytic Toeplitz operators. We should mention that Corollary 2 is also true if one replaces H^2 by the Bergman space or any of the weighted Bergman spaces. (For analytic Toeplitz operators on weighted Bergman spaces see [6].)

3. The multiplicative property of the Berezin symbol on the analytic reproducing kernel space, $\mathscr{H}=\mathscr{H}_0\otimes\mathscr{C}$

Let \mathscr{H}_0 be a functional Hilbert space of (scalar-valued) analytic functions on Ω with the reproducing kernel function K_z , for each fixed z in Ω . Let \mathscr{C} be a separable Hilbert space, and let \mathscr{H} be the functional Hilbert space of \mathscr{C} -valued functions, $\mathscr{H} = \mathscr{H}_0 \otimes \mathscr{C}$. The reproducing kernel function of \mathscr{H} , $\mathfrak{I}_z \colon \mathscr{C} \mapsto \mathscr{H}$, is defined by $\mathfrak{I}_z(u) = K_z \otimes u$, where u is in \mathscr{C} .

The evaluation functional $E_z : \mathcal{H} \to \mathcal{C}$, defined by $E_z f = f(z)$, for z in Ω , is bounded (see [2], Lemma 3.2). For $f \in \mathcal{H}$, u in \mathcal{C} , we have

$$\langle f, E_z^* u \rangle_{\mathscr{X}} = \langle f(z), u \rangle_{\mathscr{C}}.$$

We also have the reproducing property of the kernel function, that is

$$\langle f, \mathfrak{I}_z(u) \rangle_{\mathscr{H}} = \langle f(z), u \rangle_{\mathscr{C}}.$$

Therefore, $E_z^* u = \mathfrak{I}_z(u)$, for all u in \mathscr{C} . By the reproducing property of the kernel function, we have $\|\mathfrak{I}_z(u)\|^2 = K_z(z)\|u\|^2$, where u is in \mathscr{C} , and hence $\|\mathfrak{I}_z\| = \sqrt{K_z(z)} = \|E_z\|$.

Let $\mathscr{K}_z = \frac{\Im}{\|\Im_z\|}$ be the normalized reproducing kernel function, and let A be a bounded linear operator on \mathscr{H} . Then the Berezin symbol \widetilde{A} of A is defined by

$$\widetilde{A}(z) = \mathscr{K}_z^* A \mathscr{K}_z.$$

Lemma 3. An operator A is a multiplication operator if and only if, for each fixed z in Ω , $A^*E_z^*=E_z^*\Phi(z)^*$ for some operator $\Phi(z)$ in $\mathscr{B}(\mathscr{C})$. Moreover, in this case, A is the operator of multiplication by the function $z\mapsto\Phi(z)$.

Proof. Let z be fixed in Ω . Suppose A is a multiplication operator, M_{Φ} , induced by $\Phi \colon \Omega \to \mathscr{B}(\mathscr{C})$. We observe that

$$E_z M_{\Phi} f = M_{\Phi} f(z) = \Phi(z) f(z) = \Phi(z) E_z f$$
 for all f in \mathscr{H} .

Then we have $E_z M_{\Phi} = \Phi(z) E_z$, for some operator $\Phi(z)$ in $\mathscr{B}(\mathscr{C})$.

Conversely, let A be a bounded operator on $\mathscr H$ such that $A^*E_z^*=E_z^*\Phi(z)^*$ for some operator $\Phi(z)$ in $\mathscr B(\mathscr E)$. For u in $\mathscr E$, we have

$$\langle f, A^* E_z^* u \rangle_{\mathscr{H}} = \langle Af, E_z^* u \rangle_{\mathscr{H}} = \langle (Af)(z), u \rangle_{\mathscr{C}}$$
 for all f in \mathscr{H} .

On the other hand, for u in $\mathscr C$, we have $\langle f, E_z^*\Phi(z)^*u\rangle = \langle \Phi(z)f(z), u\rangle$, for all f in $\mathscr H$. Then $\langle (Af)(z), u\rangle = \langle \Phi(z)f(z), u\rangle$, for all f in $\mathscr H$ and u in $\mathscr C$. Therefore, $(Af)(z) = \Phi(z)f(z)$, for all f in $\mathscr H$.

Theorem 2. Let A be a bounded operator on \mathcal{H} . Then

$$\widetilde{AB}(z) = \widetilde{A}(z)\widetilde{B}(z)$$

for all B in $\mathscr{B}(\mathscr{H})$ if and only if $A=M_{\Phi}$, where $\Phi\colon\Omega\mapsto\mathscr{B}(\mathscr{C})$.

Proof. We observe that $E_z M_{\Phi} f = \Phi(z) f(z)$, for all f in \mathscr{H} . Then $E_z M_{\Phi} E_z^* = \Phi(z) E_z E_z^*$ and $E_z M_{\Phi} B E_z^* = \Phi(z) E_z B E_z^*$, for all B in $\mathscr{B}(\mathscr{H})$. Since $E_z E_z^* = K_z(z) I_{\mathscr{C}}$, we have $\widehat{M}_{\Phi} = \Phi(z)$ and

$$\widetilde{M_{\Phi}B}(z) = \Phi(z) \frac{E_z B E_z^*}{\|\mathfrak{I}_z\|^2} = \widetilde{M}_{\Phi}(z) \widetilde{B}(z)$$
 for all B in $\mathscr{B}(\mathscr{H})$.

Conversely, suppose that A is a bounded operator such that $\widetilde{AB}(z) = \widetilde{A}(z)\widetilde{B}(z)$ for all B in $\mathscr{B}(\mathscr{H})$. Then from the definitions, we get

$$E_z A B E_z^* = \frac{1}{\|E_z\|^2} E_z A E_z^* E_z B E_z^* \quad \text{for all } B \text{ in } \mathscr{B}(\mathscr{H}).$$

For u and v in \mathscr{C} , we have

$$\langle E_z A B E_z^* u, v \rangle = \left\langle \frac{E_z A E_z^*}{\|E_z\|^2} E_z B E_z^* u, v \right\rangle = \langle \widetilde{A}(z) E_z B E_z^* u, v \rangle.$$

Then we have

$$\langle BE_z^*u, A^*E_z^*v \rangle = \langle BE_z^*u, E_z^*\widetilde{A}(z)^*v \rangle.$$

For each fixed nonzero u, BE_z^*u runs through all vectors in $\mathscr H$ as B runs through all elements of $\mathscr B(\mathscr H)$. Thus we see that $A^*E_z^*=E_z^*\widetilde A(z)^*$, for all z in Ω . Therefore A is a multiplication operator, $M_{\widetilde A}$, by Lemma 3.

Let us note that if we take \mathscr{C} to be C and define $\mathcal{X}_z = k_z \otimes 1$, the sufficiency proof of Theorem 2 will also work for Theorem 1, the scalar-valued case.

Let $\mathbf{N} = \{0, 1, 2, \ldots\}$ denote the set of nonnegative integers. The set \mathbf{N}^n is partially ordered by setting $\mathbf{I} = (i_1, i_2, \ldots, i_n) \geq (j_1, j_2, \ldots, j_n) = \mathbf{J}$ if and only if $i_k \geq j_k$ for $k = 1, 2, \ldots, n$. If $z = (z_1, z_2, \ldots, z_n)$ is in Ω , then we set $z^I = z_1^{i_1} \cdot z_2^{i_2} \cdot \cdots \cdot z_n^{i_n}$. We denote by $H^2(n) \otimes \mathcal{C}$, where $H^2(n) = H^2 \otimes H^2 \otimes \cdots \otimes H^2$ (n copies), the set of all vector-valued analytic functions $f: \mathbf{D}^n \mapsto \mathcal{C}$ with power series expansion $f(z) = \sum_{I \in \mathbf{N}^n} z^I v_I$, with v_I in \mathcal{C} and z in \mathbf{D}^n , such that $\sum_{I \in \mathbf{N}^n} \|v_I\|_{\mathcal{C}}^2 < \infty$.

The space $H^2(n) \otimes \mathscr{C}$ is a Hilbert space with the reproducing kernel function, $\mathfrak{I}_z \colon \mathscr{C} \mapsto H^2(n) \otimes \mathscr{C}$, for z in \mathbf{D}^n , defined by $\mathfrak{I}_z(u) = K_z \otimes u$, where u is in \mathscr{C} and $K_z(w) = \sum_{I \in \mathbb{N}^n} \overline{z}^I w^I$ is the reproducing kernel function for $H^2(n)$ (see [5]). Let $H^{\infty}(n)(\mathscr{C})$ denote the Banach space of all bounded analytic functions $\Phi \colon \mathbf{D}^n \mapsto \mathscr{B}(\mathscr{C})$ with the norm $\|\Phi\|_{\infty} = \sup\{\|\Phi(z)\|$, for $z \in \mathbf{D}^n\}$.

For every Φ in $H^{\infty}(n)(\mathscr{B}(\mathscr{C}))$, we can define the analytic Toeplitz operator T_{Φ} in $\mathscr{B}(H^2(n)\otimes\mathscr{C})$ as follows:

$$(T_{\Phi}f)(z) = \Phi(z)f(z), \quad z \text{ in } \mathbf{D}^n, f \text{ in } H^2(n) \otimes \mathscr{C}.$$

For the boundedness of the map T_{Φ} see [2].

Corollary 3. Let A be a bounded operator on $H^2(n) \otimes \mathscr{C}$. Then

$$\widetilde{AB}(z) = \widetilde{A}(z)\widetilde{B}(z)$$

for all B in $\mathscr{B}(H^2(n)\otimes\mathscr{C})$ if and only if $A=T_{\Phi}$, where Φ is in $H^{\infty}(n)(\mathscr{B}(\mathscr{C}))$.

ACKNOWLEDGMENT

I thank my thesis advisor, Eric Nordgren, for his encouragement and support throughout my work. Also, I thank the referee for several helpful suggestions.

REFERENCES

- 1. F. A. Berezin, Covariant and contravariant symbols for operators, Math. USSR-Izv. 6 (1972), 1117-1151.
- 2. R. E. Curto and N. Salinas, Generalized Bergman kernels and the Cowen-Douglas theory, Amer. J. Math. 106 (1984), 447-488.
- 3. V. Guillemin, *Toeplitz operators in n-dimensions*, Integral Equations Operator Theory 7 (1984), 145-204.
- 4. P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, NJ, 1967.
- G. T. Adams, J. Froelich, and V. I. Paulsen, Analytic reproducing kernels and factorization, Indiana Univ. Math. J. 43 (1994), 839-856.
- 6. K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEW HAMPSHIRE, DURHAM, NEW HAMPSHIRE 03824

Current address: Simon's Rock College of Bard, 84 Alford Rd., Great Barrington, Massachusetts 01230-9702