ISOLATED SINGULARITIES OF MONGE-AMPÈRE EQUATIONS

FRIEDMAR SCHULZ AND LIHE WANG

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. In this paper, we give conditions which ensure that isolated singularities of solutions of the elliptic Monge-Ampère equation $\det D^2 u = 1$ are removable.

Introduction

We use the notation D^2u for the matrix of second-order derivatives of the function u = u(x). Furthermore, for a point x in \mathbb{R}^n , |x| is the norm, e_1, \ldots, e_n are the unit vectors in the direction of the coordinate axis, and $B_r = \{x : |x| < r\}$ is the ball of radius r centered at the origin 0.

For the statement of the main theorem of this paper, let u be defined in the punctured ball $B_2 \setminus \{0\}$.

Theorem 1. Suppose that u is a smooth convex solution of the elliptic Monge-Ampère equation

$$\det D^2 u = 1$$

in $B_2\setminus\{0\}$. Then u has a locally Lipschitz continuous extension to B_2 which is smooth if and only if it is C^1 along a line through the origin 0.

This theorem was proven by K. Jörgens [J] in 1955 in the two-dimensional case. Recently, R. Beyerstedt [B] extended Jörgens' theorem to more general Monge-Ampère equations, also in the case n = 2.

We remark that the convexity condition is redundant in the two-dimensional case. In a future work, we intend to show how our multidimensional methods apply to much more general fully nonlinear equations.

1. Convexity

Lemma 2. Every convex function u in $B_1 \setminus \{0\}$ has a convex extension to B_1 . It is therefore locally Lipschitz continuous, and $\frac{\partial u}{\partial e}(0)$ exists for any unit vector e. Furthermore,

$$\frac{\partial u}{\partial (-e)}(0) \ge -\frac{\partial u}{\partial e}(0),$$

Received by the editors May 4, 1994 and, in revised form, May 16, 1994.

1991 Mathematics Subject Classification. Primary 35Q99, 35J60.

Key words and phrases. PDE, nonlinear, elliptic, Monge-Ampère, singularity.

The second author was supported by the National Science Foundation.

 $\frac{\partial u}{\partial e}(te)$ is monotone non-decreasing in t and continuous from the right, i.e.,

$$\lim_{t\to 0^+} \frac{\partial u}{\partial e}(te) = \frac{\partial u}{\partial e}(0).$$

The proof is elementary. The listed properties hold for any $x \in B_1$; and the arguments are simpler, if u is C^1 in $B_1 \setminus \{0\}$. Under this assumption, u is C^1 along the line in the direction e through

the origin, iff

$$\frac{\partial u}{\partial (-e)}(0) = -\frac{\partial u}{\partial e}(0).$$

By thickening the line, one can then argue that this is the case iff $\frac{\partial u}{\partial e}$ is C^0 in B_1 , because $\frac{\partial u}{\partial e}$ is monotone on all lines in the direction e.

The following theorem is of some interest in its own right. For simplicity, we only consider the two-dimensional case, because this C^1 -regularity result is not needed in the proof of Theorem 1.

Proposition 3. Let u be a convex function in $B_1 \subset \mathbb{R}^2$. Suppose that $\frac{\partial u}{\partial (-e_1)}(0) =$ $-\frac{\partial u}{\partial e_1}(0)$ and that u is C^1 in $B_1\setminus\{0\}$. Then $\frac{\partial u}{\partial e}$ is C^0 in the sector $S_t=$ $\{(x,y)\in B_1:y\geq t|x|\}$ for any unit vector $e=(a,b),b\geq 0$, and any t>0. *Proof.* First, by subtracting a linear function, we may assume that u(0, 0) = 0, $\frac{\partial u}{\partial x}(0,0) = 0$, $\frac{\partial u}{\partial e_2}(0,0) = 0$.

By convexity, for $(x, y) \in B_{1/2}, y > 0$,

$$u(x\,,\,y) \leq \left\{ \begin{array}{ll} \frac{xu(x+y\,,0)+yu(0\,,\,x+y)}{x+y} & (x>0)\,,\\ \frac{xu(x-y\,,0)-yu(0\,,\,y-x)}{x-y} & (x<0). \end{array} \right.$$

Note that the function on the LHS extends u(x, 0) and u(0, y) linearly in the directions $e_1 \mp e_2$. Hence

$$\frac{\partial u}{\partial e}(0, 0) \le a \frac{\partial u}{\partial e_1}(0, 0) + b \frac{\partial u}{\partial e_2}(0, 0) = 0$$

for all $e = (a, b), b \ge 0$.

On the other hand,

$$u(0, y) \le \frac{u(x, y) + u(-x, y)}{2}$$

for all $(x, y) \in B_1$, which implies that

$$0 \leq 2b \frac{\partial u}{\partial e_2}(0, 0) \leq \frac{\partial u}{\partial e}(0, 0) + \frac{\partial u}{\partial e^-}(0, 0),$$

where $e^- = (-a, b)$. Therefore

$$\frac{\partial u}{\partial e}(0,0)=0$$

for all $e = (a, b), b \ge 0$. It follows that

$$\frac{\partial u}{\partial (-e)}(0,0) \geq 0$$
,

and in turn that $u \ge 0$ in B_1 .

For t>0, consider the direction $e_t=(a,b)$, b=ta>0. Then, by the monotonicity of $\frac{\partial u}{\partial e_t}$ on all lines in the direction e_t , for any given $\varepsilon<0$, there is a $\delta>0$ such that

$$\left|\frac{\partial u}{\partial e_t}\right| \leq \varepsilon$$

in the parallelogram $\{(x, y) \in B_1 : 0 \le x \le a, tx \le y \le tx + \delta\}$.

A similar argument can be made for e_t^- , which implies that $\frac{\partial u}{\partial e}$ is C^0 in S_t , for any e = (a, b), $b \ge 0$, as required. \square

2. THE COMPARISON PRINCIPLE

We show that u satisfies the comparison principle. In this section, we use the notation $B_r(x) = x + B_r$.

Lemma 4. Let v_1 and v_2 be C^2 in $B_{1/2}(\frac{1}{2}e_1)$ and C^0 in $\overline{B_{1/2}(\frac{1}{2}e_1)}$, which solve the equation

$$\det D^2 u = 1 \quad in \ B_{1/2}(\frac{1}{2}e_1).$$

Assume further that $v_1(0) = v_2(0)$, $v_2 \ge v_1$ on $\partial B_{1/2}(\frac{1}{2}e_1)$, and $v_1 \ne v_2$. Then (a) $v_2 \ge v_1$ in $B_{1/2}(\frac{1}{2}e_1)$.

(b) If we assume further that v_1 and v_2 are C^2 in $\overline{B_{1/2}(\frac{1}{2}e_1)}$, then

$$\frac{\partial v_2}{\partial x_1}(0) > \frac{\partial v_1}{\partial x_1}(0).$$

Proof. (a) follows from the weak maximum principle [GT], Theorem 17.1, page 443, which in turn follows from the classical weak maximum principle [GT], Theorem 3.1.

To prove (b), let $w = v_2 - v_1$. Then

$$\sum_{i=1}^{n} A_{ij}(x) \frac{\partial^2 w}{\partial x_i \partial x_j} = \det D^2 v_2 - \det D^2 v_1 = 0,$$

where $A_{ij}(x) = \partial \det(\theta D^2 v_2 + (1-\theta)D^2 v_1)/\partial u_{ij}$ for some $\theta = \theta(x)$, $0 < \theta < 1$, which depends on $D^2 v_1$ and $D^2 v_2$. Since $[A_{ij}]$ is uniformly elliptic, the classical strong maximum principle [GT], Theorem 3.5, together with the Hopf lemma [GT], Lemma 3.4, yield statement (b). \Box

Lemma 5. Let v_1 and v_2 be as in Lemma 4. Suppose further that v_2 is C^3 in $\overline{B_{1/2}(\frac{1}{2}e_1)}$ and that $v_2(e_1) > v_1(e_1)$. Then $\frac{\partial v_2}{\partial x_1}(0) > \frac{\partial v_1}{\partial x_1}(0)$.

Proof. Let φ_2 be a smooth function such that $\varphi_2=v_2$ on $\partial B_{1/2}(\frac{1}{2}e_1)\cap B_{1/2}(0)$, $v_1<\varphi_2< v_2$ near e_1 , and $v_1\leq \varphi_2\leq v_2$ on $\partial B_{1/2}(\frac{1}{2}e_1)$. Let u_2 be the solution of

$$\begin{cases} \det D^2 u_2 = 1 & \text{in } B_{1/2}(\frac{1}{2}e_1), \\ u_2 = \varphi_2 & \text{on } \partial B_{1/2}(\frac{1}{2}e_1), \end{cases}$$

whose existence follows from [GT], Theorem 17.22, page 473, in combination with Problem 17.11 (ii), page 490. By Lemma 5, $v_2 \ge u_2 \ge v_1$ in $B_{1/2}(\frac{1}{2}e_1)$. Moreover,

$$\frac{\partial v_2}{\partial x_1}(0) > \frac{\partial u_2}{\partial x_1}(0).$$

Hence

$$\frac{\partial v_2}{\partial x_1}(0) > \frac{\partial u_2}{\partial x_1}(0) \ge \frac{\partial v_1}{\partial x_1}(0). \quad \Box$$

Proof of the main theorem. Let v be the solution of

$$\begin{cases} \det D^2 v = 1 & \text{in } B_1, \\ v = u & \text{on } \partial B_1(0). \end{cases}$$

The claim is that u = v. We only show $v \ge u$ by contradiction, since the other part is similar.

Let ε be the minimum such that

$$v \geq u - \varepsilon$$
 in $\overline{B_1(0)}$.

By the assumption, $\varepsilon > 0$ and $v(x_0) = u(x_0) - \varepsilon$ for some $x_0 \in \overline{B_1(0)}$.

We may assume that $x_0=0$, because otherwise the classical strong maximum principle implies that $v\equiv u-\varepsilon$, which is a contradiction. If $x_0=0$, then $\frac{\partial v}{\partial x_1}(0)=\frac{\partial u}{\partial x_1}(0)$, since we may assume that u is C^1 along the x_1 -axis.

However, Lemma 5 now implies that

$$\frac{\partial v}{\partial x_1}(0) > \frac{\partial u}{\partial x_1}(0),$$

which is a contradiction.

REFERENCES

- [B] R. Beyerstedt, Removable singularities of solutions to elliptic Monge-Ampère equations, Math. Z. 208 (1991), 363-373.
- [J] K. Jörgens, Harmonische Abbildungen und die Differentialgleichung $rt s^2 = 1$, Math. Ann. 129 (1955), 330-344.
- [GT] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, Berlin, Heidelberg, and New York, 1983.

MATHEMATIK I, UNIVERSITÄT ULM, D-89069 ULM, GERMANY E-mail address: friedmar.schulz@mathematik.uni-ulm.de

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242

E-mail address: lwang@math.uiowa.edu