ISOLATED SINGULARITIES OF MONGE-AMPÈRE EQUATIONS # FRIEDMAR SCHULZ AND LIHE WANG (Communicated by Palle E. T. Jorgensen) ABSTRACT. In this paper, we give conditions which ensure that isolated singularities of solutions of the elliptic Monge-Ampère equation $\det D^2 u = 1$ are removable. #### Introduction We use the notation D^2u for the matrix of second-order derivatives of the function u = u(x). Furthermore, for a point x in \mathbb{R}^n , |x| is the norm, e_1, \ldots, e_n are the unit vectors in the direction of the coordinate axis, and $B_r = \{x : |x| < r\}$ is the ball of radius r centered at the origin 0. For the statement of the main theorem of this paper, let u be defined in the punctured ball $B_2 \setminus \{0\}$. **Theorem 1.** Suppose that u is a smooth convex solution of the elliptic Monge-Ampère equation $$\det D^2 u = 1$$ in $B_2\setminus\{0\}$. Then u has a locally Lipschitz continuous extension to B_2 which is smooth if and only if it is C^1 along a line through the origin 0. This theorem was proven by K. Jörgens [J] in 1955 in the two-dimensional case. Recently, R. Beyerstedt [B] extended Jörgens' theorem to more general Monge-Ampère equations, also in the case n = 2. We remark that the convexity condition is redundant in the two-dimensional case. In a future work, we intend to show how our multidimensional methods apply to much more general fully nonlinear equations. ### 1. Convexity **Lemma 2.** Every convex function u in $B_1 \setminus \{0\}$ has a convex extension to B_1 . It is therefore locally Lipschitz continuous, and $\frac{\partial u}{\partial e}(0)$ exists for any unit vector e. Furthermore, $$\frac{\partial u}{\partial (-e)}(0) \ge -\frac{\partial u}{\partial e}(0),$$ Received by the editors May 4, 1994 and, in revised form, May 16, 1994. 1991 Mathematics Subject Classification. Primary 35Q99, 35J60. Key words and phrases. PDE, nonlinear, elliptic, Monge-Ampère, singularity. The second author was supported by the National Science Foundation. $\frac{\partial u}{\partial e}(te)$ is monotone non-decreasing in t and continuous from the right, i.e., $$\lim_{t\to 0^+} \frac{\partial u}{\partial e}(te) = \frac{\partial u}{\partial e}(0).$$ The proof is elementary. The listed properties hold for any $x \in B_1$; and the arguments are simpler, if u is C^1 in $B_1 \setminus \{0\}$. Under this assumption, u is C^1 along the line in the direction e through the origin, iff $$\frac{\partial u}{\partial (-e)}(0) = -\frac{\partial u}{\partial e}(0).$$ By thickening the line, one can then argue that this is the case iff $\frac{\partial u}{\partial e}$ is C^0 in B_1 , because $\frac{\partial u}{\partial e}$ is monotone on all lines in the direction e. The following theorem is of some interest in its own right. For simplicity, we only consider the two-dimensional case, because this C^1 -regularity result is not needed in the proof of Theorem 1. **Proposition 3.** Let u be a convex function in $B_1 \subset \mathbb{R}^2$. Suppose that $\frac{\partial u}{\partial (-e_1)}(0) =$ $-\frac{\partial u}{\partial e_1}(0)$ and that u is C^1 in $B_1\setminus\{0\}$. Then $\frac{\partial u}{\partial e}$ is C^0 in the sector $S_t=$ $\{(x,y)\in B_1:y\geq t|x|\}$ for any unit vector $e=(a,b),b\geq 0$, and any t>0. *Proof.* First, by subtracting a linear function, we may assume that u(0, 0) = 0, $\frac{\partial u}{\partial x}(0,0) = 0$, $\frac{\partial u}{\partial e_2}(0,0) = 0$. By convexity, for $(x, y) \in B_{1/2}, y > 0$, $$u(x\,,\,y) \leq \left\{ \begin{array}{ll} \frac{xu(x+y\,,0)+yu(0\,,\,x+y)}{x+y} & (x>0)\,,\\ \frac{xu(x-y\,,0)-yu(0\,,\,y-x)}{x-y} & (x<0). \end{array} \right.$$ Note that the function on the LHS extends u(x, 0) and u(0, y) linearly in the directions $e_1 \mp e_2$. Hence $$\frac{\partial u}{\partial e}(0, 0) \le a \frac{\partial u}{\partial e_1}(0, 0) + b \frac{\partial u}{\partial e_2}(0, 0) = 0$$ for all $e = (a, b), b \ge 0$. On the other hand, $$u(0, y) \le \frac{u(x, y) + u(-x, y)}{2}$$ for all $(x, y) \in B_1$, which implies that $$0 \leq 2b \frac{\partial u}{\partial e_2}(0, 0) \leq \frac{\partial u}{\partial e}(0, 0) + \frac{\partial u}{\partial e^-}(0, 0),$$ where $e^- = (-a, b)$. Therefore $$\frac{\partial u}{\partial e}(0,0)=0$$ for all $e = (a, b), b \ge 0$. It follows that $$\frac{\partial u}{\partial (-e)}(0,0) \geq 0$$, and in turn that $u \ge 0$ in B_1 . For t>0, consider the direction $e_t=(a,b)$, b=ta>0. Then, by the monotonicity of $\frac{\partial u}{\partial e_t}$ on all lines in the direction e_t , for any given $\varepsilon<0$, there is a $\delta>0$ such that $$\left|\frac{\partial u}{\partial e_t}\right| \leq \varepsilon$$ in the parallelogram $\{(x, y) \in B_1 : 0 \le x \le a, tx \le y \le tx + \delta\}$. A similar argument can be made for e_t^- , which implies that $\frac{\partial u}{\partial e}$ is C^0 in S_t , for any e = (a, b), $b \ge 0$, as required. \square # 2. THE COMPARISON PRINCIPLE We show that u satisfies the comparison principle. In this section, we use the notation $B_r(x) = x + B_r$. **Lemma 4.** Let v_1 and v_2 be C^2 in $B_{1/2}(\frac{1}{2}e_1)$ and C^0 in $\overline{B_{1/2}(\frac{1}{2}e_1)}$, which solve the equation $$\det D^2 u = 1 \quad in \ B_{1/2}(\frac{1}{2}e_1).$$ Assume further that $v_1(0) = v_2(0)$, $v_2 \ge v_1$ on $\partial B_{1/2}(\frac{1}{2}e_1)$, and $v_1 \ne v_2$. Then (a) $v_2 \ge v_1$ in $B_{1/2}(\frac{1}{2}e_1)$. (b) If we assume further that v_1 and v_2 are C^2 in $\overline{B_{1/2}(\frac{1}{2}e_1)}$, then $$\frac{\partial v_2}{\partial x_1}(0) > \frac{\partial v_1}{\partial x_1}(0).$$ *Proof.* (a) follows from the weak maximum principle [GT], Theorem 17.1, page 443, which in turn follows from the classical weak maximum principle [GT], Theorem 3.1. To prove (b), let $w = v_2 - v_1$. Then $$\sum_{i=1}^{n} A_{ij}(x) \frac{\partial^2 w}{\partial x_i \partial x_j} = \det D^2 v_2 - \det D^2 v_1 = 0,$$ where $A_{ij}(x) = \partial \det(\theta D^2 v_2 + (1-\theta)D^2 v_1)/\partial u_{ij}$ for some $\theta = \theta(x)$, $0 < \theta < 1$, which depends on $D^2 v_1$ and $D^2 v_2$. Since $[A_{ij}]$ is uniformly elliptic, the classical strong maximum principle [GT], Theorem 3.5, together with the Hopf lemma [GT], Lemma 3.4, yield statement (b). \Box **Lemma 5.** Let v_1 and v_2 be as in Lemma 4. Suppose further that v_2 is C^3 in $\overline{B_{1/2}(\frac{1}{2}e_1)}$ and that $v_2(e_1) > v_1(e_1)$. Then $\frac{\partial v_2}{\partial x_1}(0) > \frac{\partial v_1}{\partial x_1}(0)$. *Proof.* Let φ_2 be a smooth function such that $\varphi_2=v_2$ on $\partial B_{1/2}(\frac{1}{2}e_1)\cap B_{1/2}(0)$, $v_1<\varphi_2< v_2$ near e_1 , and $v_1\leq \varphi_2\leq v_2$ on $\partial B_{1/2}(\frac{1}{2}e_1)$. Let u_2 be the solution of $$\begin{cases} \det D^2 u_2 = 1 & \text{in } B_{1/2}(\frac{1}{2}e_1), \\ u_2 = \varphi_2 & \text{on } \partial B_{1/2}(\frac{1}{2}e_1), \end{cases}$$ whose existence follows from [GT], Theorem 17.22, page 473, in combination with Problem 17.11 (ii), page 490. By Lemma 5, $v_2 \ge u_2 \ge v_1$ in $B_{1/2}(\frac{1}{2}e_1)$. Moreover, $$\frac{\partial v_2}{\partial x_1}(0) > \frac{\partial u_2}{\partial x_1}(0).$$ Hence $$\frac{\partial v_2}{\partial x_1}(0) > \frac{\partial u_2}{\partial x_1}(0) \ge \frac{\partial v_1}{\partial x_1}(0). \quad \Box$$ *Proof of the main theorem.* Let v be the solution of $$\begin{cases} \det D^2 v = 1 & \text{in } B_1, \\ v = u & \text{on } \partial B_1(0). \end{cases}$$ The claim is that u = v. We only show $v \ge u$ by contradiction, since the other part is similar. Let ε be the minimum such that $$v \geq u - \varepsilon$$ in $\overline{B_1(0)}$. By the assumption, $\varepsilon > 0$ and $v(x_0) = u(x_0) - \varepsilon$ for some $x_0 \in \overline{B_1(0)}$. We may assume that $x_0=0$, because otherwise the classical strong maximum principle implies that $v\equiv u-\varepsilon$, which is a contradiction. If $x_0=0$, then $\frac{\partial v}{\partial x_1}(0)=\frac{\partial u}{\partial x_1}(0)$, since we may assume that u is C^1 along the x_1 -axis. However, Lemma 5 now implies that $$\frac{\partial v}{\partial x_1}(0) > \frac{\partial u}{\partial x_1}(0),$$ which is a contradiction. # REFERENCES - [B] R. Beyerstedt, Removable singularities of solutions to elliptic Monge-Ampère equations, Math. Z. 208 (1991), 363-373. - [J] K. Jörgens, Harmonische Abbildungen und die Differentialgleichung $rt s^2 = 1$, Math. Ann. 129 (1955), 330-344. - [GT] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, Berlin, Heidelberg, and New York, 1983. MATHEMATIK I, UNIVERSITÄT ULM, D-89069 ULM, GERMANY E-mail address: friedmar.schulz@mathematik.uni-ulm.de DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242 E-mail address: lwang@math.uiowa.edu