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ISOLATED SINGULARITIES OF MONGE-AMPÈRE EQUATIONS

FRIEDMAR SCHULZ AND LIHE WANG

(Communicated by Palle E. T. Jorgensen)

Abstract. In this paper, we give conditions which ensure that isolated singu-

larities of solutions of the elliptic Monge-Ampère equation det D2u = 1 are

removable.

Introduction

We use the notation D2u for the matrix of second-order derivatives of the

function u = u(x). Furthermore, for a point x in R", jjc| is the norm,

ex,... , e„ are the unit vectors in the direction of the coordinate axis, and

B, = {x: \x\ < r} is the ball of radius r centered at the origin 0.
For the statement of the main theorem of this paper, let u be defined in the

punctured ball 7?2\{0}.

Theorem 1. Suppose that u is a smooth convex solution of the elliptic Monge-
Ampère equation

det7)2w = 1

in B2\{0}. Then u has a locally Lipschitz continuous extension to B2 which is

smooth if and only if it is C along a line through the origin 0.

This theorem was proven by K. Jörgens [J] in 1955 in the two-dimensional
case. Recently, R. Beyerstedt [B] extended Jörgens' theorem to more general

Monge-Ampère equations, also in the case « = 2.
We remark that the convexity condition is redundant in the two-dimensional

case. In a future work, we intend to show how our multidimensional methods

apply to much more general fully nonlinear equations.

1. Convexity

Lemma 2. Every convex function u in ßi\{0} has a convex extension to Bx.

It is therefore locally Lipschitz continuous, and |f(0) exists for any unit vector

e. Furthermore,
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ff (te) is monotone non-decreasing in t and continuous from the right, i.e.,

..     du,t .     du.n.
hm -K-(te) = ^-0).
,-o+ de de

The proof is elementary. The listed properties hold for any x £ Bx; and the
arguments are simpler, if u is C1 in 5^(0} .

Under this assumption, u is C1 along the line in the direction e through
the origin, iff

s&m ■ '>■
By thickening the line, one can then argue that this is the case iff §f is C° in

Bx, because ff is monotone on all lines in the direction e.
The following theorem is of some interest in its own right. For simplicity,

we only consider the two-dimensional case, because this C-regularity result is

not needed in the proof of Theorem 1.

Proposition3. Let u be a convex function in Bx cR2. Suppose that ^¿",(0) =

-f£(0) and that u is C[  in Bx\{0}.   Then ff  is C° in the sector S, =
{(x, y) £ Bx : y > t\x\} for any unit vector e = (a, b), b > 0, and any t>0.

Proof. First, by subtracting a linear function, we may assume that u(0, 0) = 0,

f(0,0) = 0, J|(0,0) = 0.
By convexity, for (x, y) £ Bx/2, y > 0,

j  xu(x+y,01,+yu(0,x+y)       {x > Q) >

Note that the function on the LHS extends u(x, 0) and w(0, y) linearly in the
directions ex =f e2. Hence

|ï(0,0)<^(0,0)+i,g(0,0) = 0

for all e = (a, b), b > 0.
On the other hand,

u(0,y)<u{X'y)+2U{-X'y)

for all (x, y) £ Bx, which implies that

0í24Í£<0'0)£^(0'0) + If(0'0)'
where e~ = (-a, b). Therefore

du

a<,(0,0) = 0
for all e = (a, b),b>0. It follows that

du

d(-e)

and in turn that u>0 in Bx .

(0,0)>0,
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For t > 0, consider the direction et = (a, b), b = ta > 0. Then, by the

monotonicity of f^ on all lines in the direction et, for any given e < 0, there

is a (5 > 0 such that
du   ^

< e
de,

in the parallelogram {(x ,y)£Bx:0<x<a,tx<y<tx + S}.

A similar argument can be made for e¡~, which implies that |f is C° in

St, for any e = (a, b), b > 0, as required.   D

2. The comparison principle

We show that u satisfies the comparison principle. In this section, we use
the notation Br(x) = x + Br.

Lemma 4. Let vx and v2 be C2 in Bx¡2(\ex) and C° in Bx/2(^ex), which

solve the equation

detD2u=l   inBx/2(±ex).

Assume further that vx(Q) = v2(0), v2>vx on dBx/2(\ex), and vx^v2. Then

(a) v2>vx in Bx/2(\ex). _

(b) If we assume further that vx and v2 are C2 in BX/2(\ex), then

if«» > >■
Proof, (a) follows from the weak maximum principle [GT], Theorem 17.1, page
443, which in turn follows from the classical weak maximum principle [GT],

Theorem 3.1.
To prove (b), let w — v2-vx . Then

£ Aij{x)dlc~dT = detD2v2 - detD2vi = °'
i,7=i '     ;

where Au(x) = d det(6D2v2 + (l- 6)D2vx)/dUij for some 6 = 6(x), 0 < 6 <
1, which depends on D2vx and D2v2. Since [A¡j] is uniformly elliptic, the

classical strong maximum principle [GT], Theorem 3.5, together with the Hopf

lemma [GT], Lemma 3.4, yield statement (b).   D

Lemma 5. Let vx and v2 be as in Lemma 4. Suppose further that v2 is C3

in Bxl2(\ex) and that v2(ex) > vx(ex). Then f^-(O) > ff^(0).

Proof. Let q>2 be a smooth function such that <p2 = v2 on dBX/2(jex)f)BX/2(0),

vx < <p2< v2 near ex, and vx < q>2 < v2 on dBx/2(^ex). Let u2 be the solution
of

ídet7)2M2 = l   inBx/2(\ex),

[«2 = ^2 ondBx/2(\ex),

whose existence follows from [GT], Theorem 17.22, page 473, in combination

with Problem 17.11 (ii), page 490. By Lemma 5, v2 > u2 > vx in ^1/2(5^1) •
Moreover,
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Hence

Proof of the main theorem. Let v be the solution of

f det7)2ü = 1   in 73,,

\u = w onôTii(O).

The claim is that u = v . We only show v > u by contradiction, since the other
part is similar.

Let e be the minimum such that

v>u-e   in 73,(0).

By the assumption, e > 0 and v(xo) = w(xn) - e for some xo £ Bi (0).

We may assume that xo = 0, because otherwise the classical strong maximum

principle implies that v = u - e, which is a contradiction. If x0 = 0, then
Jt-(O) = Jj-(0), since we may assume that « is C along the xi-axis.

However, Lemma 5 now implies that

which is a contradiction.   D

&»>>•
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