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ISOLATED SINGULARITIES OF MONGE-AMPERE EQUATIONS

FRIEDMAR SCHULZ AND LIHE WANG

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. In this paper, we give conditions which ensure that isolated singu-
larities of solutions of the elliptic Monge-Ampere equation det D2y = 1 are
removable.

INTRODUCTION

We use the notation D?u for the matrix of second-order derivatives of the
function # = u(x). Furthermore, for a point x in R"”, |x| is the norm,
e, ..., e, are the unit vectors in the direction of the coordinate axis, and
B, = {x: |x| < r} is the ball of radius r centered at the origin 0.

For the statement of the main theorem of this paper, let # be defined in the
punctured ball B,\{0}.

Theorem 1. Suppose that u is a smooth convex solution of the elliptic Monge-
Ampere equation
detD*u=1

in B\{0}. Then u has a locally Lipschitz continuous extension to B, which is
smooth if and only if it is C' along a line through the origin 0.

This theorem was proven by K. Jorgens [J] in 1955 in the two-dimensional
case. Recently, R. Beyerstedt [B] extended Jorgens’ theorem to more general
Monge-Ampére equations, also in the case n = 2.

We remark that the convexity condition is redundant in the two-dimensional
case. In a future work, we intend to show how our multidimensional methods
apply to much more general fully nonlinear equations.

1. CONVEXITY

Lemma 2. Every convex function u in B;\{0} has a convex extension to B, .
It is therefore locally Lipschitz continuous, and 3%(0) exists for any unit vector

e. Furthermore,

ou ou
m(o) 2> —53(0),
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%(te) is monotone non-decreasing in t and continuous from the right, i.e.,

ou
rl—l‘%l %(te) de e
The proof is elementary. The listed properties hold for any x € B, ; and the
arguments are simpler, if 4 is C' in B;\{0}.
Under this assumption, # is C! along the line in the direction e through
the origin, iff

0).

ou ou
a(_e) (0) - 63 (0)'
By thickening the line, one can then argue that this is the case iff g—g is C% in
B, , because ‘9—2 is monotone on all lines in the direction e.
The following theorem is of some interest in its own right. For simplicity,
we only consider the two-dimensional case, because this C!-regularity result is
not needed in the proof of Theorem 1.

Pl'OpOSlthll 3. Let u be a convex function in B, C R?. Suppose that 6(—e (0)

24(0) and that u is C' in B\{0}. Then 3% is C° in the sector S, =
{(x, y) € By: y > t|x|} for any unit vector e = (a, b), b >0, and any t > 0.

Proof. First by subtracting a linear function, we may assume that (0, 0) =0
91(0,0)=0, 662 2400, 0) =
By convexity, for (x, y) € Bl 12,¥>0,

xu(x+y,0)+yu(0, x+y) (x > 0) ,
o<

xX+y
xu(x—y,0)—yu(0,y—x)
= x_y“ =3 (x < 0).
Note that the function on the LHS extends u(x, 0) and #(0, y) linearly in the
directions e; ¥ e, . Hence

(0 0)<a (0 0) + “(0,0):0
()
for all e=(a,b),b20.
On the other hand,

u(O,y) < u(xa y) +2u(_x’ y)

for all (x, y) € B,, which implies that

0<2b (0 0)_ (0 0)+ _(0 0),
where e~ = (—a, b). Therefore
ou
3—5(0, 0)=0
for all e = (a, b), b > 0. It follows that
ou
(e (0 0)>0,

and in turn that ¥« > 0 in B;.
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For ¢t > 0, consider the direction e, = (a, b), b = ta > 0. Then, by the
monotonicity of g—g on all lines in the direction e, , for any given ¢ < 0, there

isa ¢ > 0 such that
ou

de,
in the parallelogram {(x,y)€B;:0<x<a,tx<y<tx+9d}.

A similar argument can be made for e, , which implies that g—g- is CY in
S, for any e = (a, b), b >0, as required. O

<e

2. THE COMPARISON PRINCIPLE

We show that u satisfies the comparison principle. In this section, we use
the notation B,(x)=x+ B,.

Lemma 4. Let v; and v, be C? in By;(ie)) and C° in B,y (ier), which
solve the equation
detD’u=1 in By, (3e).
Assume further that v,(0) = v2(0), v» > v, on 8B, (3e1), and v, #v,. Then
(a) v2 > vy in Bip(Ser).
(b) If we assume further that v, and v, are C? in By (}e), then

T2(0) > gu S0,

Proof. (a) follows from the weak max1mum pnnaple [GT], Theorem 17.1, page
443, which in turn follows from the classical weak maximum principle [GT],
Theorem 3.1.

To prove (b), let w = v, —v,. Then

81}2

zn: A-~(x)62—w = det D*v, — det D*v; = 0

= ij axiaxj = 2 1 =Y,

where A4;;(x) = 8 det(§D?v; + (1 — 8)D*v,)/du;; for some 6 = 6(x), 0< 0 <
1, which depends on D?v; and D?v,. Since [4;;] is uniformly elliptic, the
classical strong maximum principle [GT], Theorem 3.5, together with the Hopf
lemma [GT], Lemma 3.4, yield statement (b). O

Lemma 5. Let v, and v, be as in Lemma 4. Suppose further that v, is C3
in Byjy(3e1) and that va(ei) > vi(er). Then $%(0) > §4(0).

Proof. Let ¢, be a smooth function such that ¢, = v, on B, /2(%e|)nBl 12(0),
V) < 92 < V3 near e;,and v, < ¢; <v; on BB,/Z(%el). Let u, be the solution
of

{ detD>u; =1 in By)y(le)),

=¢2 on 8By y(3e),
whose existence follows from [GT], Theorem 17.22, page 473, in combination
with Problem 17.11 (ii), page 490. By Lemma §, v, > u; > v, in Bl/z(%e.).

Moreover,

3’02 3u2

ax, 0>

ax, O
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Hence
v 1

3’02
o 0) 2 a—xl(O)- o

6142
o, 0)>—=

axl

Proof of the main theorem. Let v be the solution of
{ detD?v =1 in By,
v=1u on 9B;(0).

The claim is that ¥ = v. We only show v > u by contradiction, since the other
part is similar.
Let & be the minimum such that

v>u—¢ in Bi(0).

By the assumption, ¢ > 0 and v(xp) = u(xy) — ¢ for some x, € B,(0).

We may assume that xy = 0, because otherwise the classical strong maximum
principle implies that v = u — ¢, which is a contradiction. If xy = 0, then
2L(0) = ££(0), since we may assume that  is C' along the x;-axis.
However, Lemma 5 now implies that

ov ou
ﬂ(o) > B_xl(o) s
which is a contradiction. 0O
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