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HARDY-BOHR POSITIVITY

J. DEFRANZA AND K. ZELLER

(Communicated by Christopher D. Sogge)

Abstract. We consider two general principles that lead to Hardy-Bohr posi-

tivity. These are applied to give a simple proof that the Cesàro methods of

positive order have Hardy-Bohr positivity.

1. Introduction

For matrix methods of summability A , where A is a regular matrix trian-
gle, determining the summability factors has attracted the attention of many

authors. In the theory of sequence spaces the notion of a sum space and the

so-called Hardy-Bohr positivity play important roles. We consider two general
principles that lead to Hardy-Bohr positivity. In section 3 we show that any
triangle with a diapositive inverse has Hardy-Bohr positivity and apply this to
show that the Cesàro methods (C, a), for 0 < a < 1, have this property. In

section 4 we consider convolution triangles and show that the product of two
convolution triangles with Hardy-Bohr positivity also has Hardy-Bohr positiv-
ity. This result together with the result of section 3 gives Hardy-Bohr positivity

for the Cesàro methods of all orders a > 0. The proof for the Cesàro methods

is significantly easier than any previously given. In section 5 we conclude with

several comments on Nörlund methods, which are not Cesàro-like and have

Hardy-Bohr positivity.

2. Notation and terminology

Throughout we use notation and results given by Wilansky [20] and by Zeller-

Beekmann [21]. Let œ denote the space of all sequences, m the space of
bounded sequences, c the convergent sequences, Co sequences that converge to
0, cs = {x: Yï,n xn is convergent} , l\ - {x: £„ |x„| < oo}, and <p all finitely
nonzero sequences. If A = (ank) is an infinite matrix, the matrix method A
defines a sequence-to-sequence transformation, mapping a sequence s (real or
complex terms) to t

00

tn = (Ax)n = J2 anksk,       n = 0,1,2,....
Ar=0
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The convergence domain cA for the matrix method A consists of those se-
quences 5 for which t — As exists and belongs to c. The /i-limit is defined

for s G cA by A - limsk — limt„ . The method A is conservative provided

c c cA and strictly stronger than convergence if, moreover, c / cA. A con-
servative method is regular provided A - \imsk — \imsk for all sec. The
matrix A is a triangle provided ank — 0 for k > n and a„„ ^ 0 for all n.
Let I denote the triangle of ones, so that ÄL is the series-to-sequence method
associated with A.

If E is an FAT-space containing (¡>, the multipliers on E are defined as

M(E) = {x e <x>: xy e E Vx e E}, where xy denotes the coordinatewise
product. The /-dual of E is F/ = {(/(«?,))£,: / e E'} where E' is the
topological dual of E and e¡ denotes the z'th coordinate sequence. Then E
is said to be a sum space provided E^ = M(E). The notion of a sum space
was defined and studied by Ruckle in [16], [17], [18], and [19]. For example,
let B be a c-reversible, row-finite, spt matrix (i.e., column limits are all one)

such that l\ ç cb or cb has AD (i.e., (p is dense). Then cb is a sum space if
and only if cb has 5-sectional boundedness if and only if cb has 5-sectional

convergence [16], [8]. In particular, if A is a regular triangle, then B = AT. is

a c-reversible, row-finite, sp, matrix such that l\ ç cb . In [22], Zeller showed
that if B — (C, a)X, a > 0, then Cb has 5-sectional convergence and hence

the series-to-sequence Cesàro methods of order a > 0 are sum spaces. If a
sequence ß has the property that £« ßnSn is summable B whenever £„ s„

is summable A we say ß is a summability factor of type (A, B) and write
ß e (A, B). For a triangle A = (ank) (sequence-to-sequence method) let AI. =

(ä~„k) be the corresponding series-to-sequence method where ank — Y?j=k a»¡ ^

k < n and a~nk — 0 if k > n . An ordered pair of triangles [A, B] belongs to
the class SP, or satisfies the Hardy-Bohr criteria, if the conditions

oo

ßn =d + ̂ 2äjnyj,
j=n

ßn = 0(ann¡bnn)

where a" is a constant and y = (y;) e A (a* and y depend on ß) are necessary
and sufficient for ß € (A,B). It follows from [15], [7], [13], and [14] that
[(C, a), (C, /?)] e 5f, Va, ß > 0. Many authors have considered the prob-

lem of identifying pairs of methods in the class J?. In [9] the observation is

made that for a regular triangle A , [A, A] e 2C if and only if cA£ is a sum
space. Moreover, the regular triangular methods A for which [A, A]eJ¿? are

precisely those methods for which the summability factors represent the contin-
uous linear functionals on cAz. A regular triangle A is said to have Hardy-Bohr

positivity, or HB-positivity, provided

k

Y^a-j' - a~_\ t j)än!äkl > 0,    V0 < ; < k < n,
i=j

where A~x = (a~kl). If A has HB-positivity, then the series-to-sequence con-

vergence domain cal is a sum space [9]. Let XQ , a > 0, be the convolution

method generated by p(x) = 1/(1 - x)Q . In [12] it is shown that Xa has HB-
positivity, and from this one easily argues the HB-positivity of (C, a). In this
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article, we establish the HB-positivity of IP for 0 < a < 1 using Theorem 1,

whereas, the HB-positivity of Ia for a > 1 then follows from Theorem 2. See

[12], [1], [10], [2], [3], [4], [5], [6], and [21].
For a triangle A and B = AI. we let Dr denote the diagonal matrix with

the rth row of B on the diagonal. That is dkk = brk for all k > 0. Then A
having HB-positivity is equivalent to

BDrB~x>0,    Vr.

In the next two sections we give two general principles leading to HB-positivity

together covering the Cesàro methods and yielding a simple proof.

3. Diapositive inverse

A triangle A = (ank) is said to be diapositive provided a„„ > 0 for all n > 0

and ank < 0 for n ^ k . See [21] and [23].

Theorem 1. Let A be a regular triangle and B = AI. If A~l is diapositive,

then A has HB-positivity.

Proof. First we observe that A > 0 since A~x is diapositive (use geometric
series or recursion). Hence in each row of B the elements decrease to 0 (and
are eventually all equal to 0). Next we consider BDrB~xA = BDrI~x. Then

the elements of row m of this matrix are given by

bm,(A,o - bm, ibr, i, bm¡\brj -bm,2br,2,...,

and since BI~ ' = A , the elements in row m are given by

dr, obm , 0 + ßm, obr, 1 , Or, 1 bm, i + üm > i br, 2 , . .. .

The terms arkbmk for r, k > 0 constitute the matrix ADm . Multiplying by

A~x we are led to
ADmA~x >0

where the inequality is true for the following reasons. The elements of row r

of this latter matrix are of the form

ar, Oao~, O^m , 0 + ' ' ' + ar, r^ o^m , r >   ßr, 1 ßi , i ¿m, 1 + - ' - + &r, rO-r   \ bm , r , ■■ ■ ■

In AA~l = / > 0, modified by the terms of B, the influence of the negative

terms is diminished in comparison to the positive term when multiplied by

the decreasing factors of Dm . Similarly, the terms amtkbr<k+\ constitute the

matrix A times Dm shifted and when multiplied on the right by A~x the

nonnegativity follows as above.   D

As an application of Theorem 1, since Ia for 0 < a < 1 has a diapositive

inverse, the methods have HB-positivity and hence we have a simple proof that

the Cesàro methods of order a, 0 < a < 1, also have HB-positivity.

4. Convolution triangles

Given a suitable sequence p = (pk) the triangle A = (ank) = (p„-k), n,k>
0, is called a convolution triangle (or Toeplitz matrix) [11]. The product of two
convolution triangles is another convolution triangle generated by the Cauchy
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product of the two original generating sequences. For the convolution triangle

A define the function p by

oo

p(x) = Y¿pi<xk-
k=0

Let
p(x)

)
k=0

W = ?T=^ = 5>**'(1-x)

where Pk — Y^k=oPk ■ Such a convolution triangle A has HB-positivity if and
only if the coefficients of the power series

P(x)P(y)

P(xy)

are nonnegative. That is the series is absolutely monotone [1]. Let

AI  ■>      i ~x
A(x) = ——-.

p(x)

Then HB-positivity follows immediately from

V   y> i,j,k=0

oo

=   Y   PjPkAiX'+kyl+J,

i, j,k=0

and letting m — i + k, n = i + j,

oo      (min(m,n) \

Q=  Ë  1    £   Fm_iF„_i(a,--a/_,)>x'V
m,n=0 (      1=0 J

where a(x) = l/p(x). This is precisely the condition for HB-positivity [12].

Theorem 2. If S and T are convolution triangles with HB-positivity, then ST

has HB-positivity.

Proof. If the functions for S and T are p and q respectively, then the func-

tion associated with ST is simply pq. The criterion together with the com-
mutivity of P and Q leads to the condition that

P(x)P(y) Q(x)Q(y)
P(xy)       Q(xy)

is absolutely monotone.   D

As an application of Theorem 2 we have Ia for a > 1 has HB-positivity

and hence as before the Cesàro methods of order a > 1 have HB-positivity.
This follows from Theorem 1 and Theorem 2 and transfinite induction.

5. Remarks

The Nörlund methods provide additional interesting non-Cesàro-like trian-

gles with HB-positivity. In [10], the Nörlund method Np generated by p(x) =
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(1 + x)/(l - x) is shown to have HB-positivity, so that c^z is a sum space

and, moreover, [Np , Np]e^f so that the summability factors are given by the

classical conditions. As in the case of Ia and (C, a), if the convolution trian-

gle generated by the function p(x) has HB-positivity, then the Nörlund mean

generated by p(x) will also have HB-positivity. Arguing as in Theorem 2, if a

convolution triangle generated by p(x) has HB-positivity, then the convolution
triangle generated by p(x)/(l - x)a , a > 0, will also have HB-positivity. In

particular, the Nörlund methods generated by (1 + x)/(l - x)Q , a > 1, have

HB-positivity. In a similar manner, if M and N are positive integers with

TV > 2M - 1, then the Nörlund method generated by

p(x) = (l+x)M/(l-x)N

has HB-positivity. Computer analysis suggests this latter result is best possible.
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