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Abstract. The term "finitely graded" is introduced here to refer to graded

modules which are nonzero in only finitely many graded pieces. We consider

the question of when the local cohomology modules of a graded module are

finitely graded. Using a theorem of Faltings concerning the annihilation of local

cohomology, we obtain some partial answers to this question. These results are

then used to compare the depths of the Rees algebra and the associated graded

ring of an ideal in a local ring.

1. Introduction

Let R be a commutative local Noetherian ring of positive Krull dimen-
sion and let i be an ideal of R. Two important graded rings which can be

formed from R and I are the Rees algebra of i, R[It] = 0„>oi"i", and

the associated graded ring of I, gr¡(R) = 0„>o^"/^"+1 • In recent years

there has been considerable interest in the question of when gr¡(R) being
Cohen-Macaulay implies that R[It] is Cohen-Macaulay. Since dim R[It] =

dimi? + 1 = dimgr/(i?) + 1 (provided dimi?/i < dimi?; see [V]), this ques-

tion can be rephrased in the following way: if gn(R) is Cohen-Macaulay, when

is depthm R[It] - depthm gn(R) + 1, where m is the homogeneous maximal
ideal of R[It] ? Answers to this question have been given in [AHT], [GH], [GS],
[JK], [SUV], and [TI]. All of these papers indicate that if gn(R) is Cohen-
Macaulay, then some additional assumptions on the ideal I are needed to con-

clude depthm R[It] = depthm grj(R) +1. However, S. Huckaba and the present

author ([HM1], [HM2]) show that depthw R[It] = depthm gn(R) + 1 whenever
depthm grr(R) < depthR. In particular, if R is Cohen-Macaulay and gr¡(R)
is not Cohen-Macaulay, then

depthm R[It] = depthm gr¡(R) + 1.

In this paper, we show that a similar result (Theorem 3.4) holds for the depth

with respect to any homogeneous ideal containing IR[It].
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Theorem 3.4. Let J be a homogeneous ideal of R[It] which contains IR[It].
Then

(a) depth, gr¡(R) < depthy R[It],
(b) depth/ gr¡(R) < depthynÄ R, and
(c) if depthy gr¡(R) < depthynÄ R, then depth^ R[It] = depth } gr¡(R) +1.

The proof of this theorem relies on the intricate relationship between the local
cohomology of R[It], gr¡(R) and R. A key step in the proof is determining for
which integers i the modules Hj(R[It]) and H'j(gr¡(R)) are finitely graded,

that is, are zero in all but finitely many graded pieces. In the case J is the

homogeneous maximal ideal, this can be done using local duality (see [HM2]).

In this paper we use a theorem of Faltings on annihilation of local cohomology to
determine the smallest integer i such that Hj(M) is not finitely graded, where

J is any homogeneous ideal and M any finitely generated graded module of a
graded ring G (Corollary 2.8). In the last section we apply Corollary 2.8 to the
graded rings R[It] and gr¡(R) to prove Theorem 3.4.

All rings in this paper are assumed to be commutative with identity. With
few exceptions, we adopt the same notation and conventions as in [HM2]. For

basic definitions and results on local cohomology, we refer the reader to [Gr] or
[GW]. We will make frequent use of the fact that if R is a Noetherian ring, I
is an ideal of R, and Af is a finitely generated i?-module, then depth; M =

min{/ G Z | H¡(M) ¿ 0} . In particular, depth/ Af = oo if I = R or M = 0.

2. Finitely graded local cohomology

Throughout this section, G will denote a nonnegatively graded Noetherian

ring. We call a graded (7-module M finitely graded if Mn = 0 for all but
finitely many n , where Mn denotes the nth graded piece of Af. We make a
couple elementary observations:

Remark 2.1. If Af is a finitely graded (7-module, then G+ c \/AnnG Af. If Af
is finitely generated, then the converse is true.

Remark 2.2. If Af is a finitely graded (/-module, then H\(M) is finitely graded
for all i and all homogeneous ideals I of G.

Proof. By (2.1), G+ c \/AnnG M, so by passing to G/ AnnGAf we may assume

G is finitely graded. Hence, the localization of M at any multiplicatively closed

set of homogeneous elements is finitely graded. Since H\(M) can be computed

by taking homology of an appropriate Cech complex, we see that H\(M) is
finitely graded.

The converse to Remark 2.2 is not true even if Af is finitely generated.

However, the converse does hold in the case Go is local and Af is finitely

generated. See Corollary 2.6 and the ensuing remarks.

For a given graded (/-module Af and homogeneous ideal I of G, an inter-
esting (yet difficult) problem is to determine the integers i for which H'¡(M)

is finitely graded. In the next proposition, we give a partial solution to this
problem by pinpointing the smallest / suchthat H¡(M) is «oí finitely graded.

In preparation for the proof of this result, we establish the following notation:

gi(M) := suv{k e Z>o | H}(M) is finitely graded for all i < k}
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and

t¡(M) := sup{fc g Z>o | G+ c ^AxmG H\(M) for all i < k}.

Here, Z>o denotes the set of nonnegative integers.

Proposition 2.3 (cf. [TI], Lemma 2.2). Let M be a finitely generated graded
G-module and I a homogeneous ideal. Then g¡(M) — t¡(M).

Proof. By Remark 2.1, gi(M) < t¡(M). To show t¡(M) < g¡(M) we make
several reductions. First, we may assume that G+ <£ sJAxmG M. For if G+ C

\/AnnG Af, then by Remarks 2.1 and 2.2, g¡(M) = oo . Let Pi,..., P, be the
associated primes of Af which do not contain (7+ , and let x be a homogeneous
element of G+ not contained in any P¡ for i - I, ... , r. Then x is superficial
for Af ([ZS]); that is, (0 \m x) is finitely graded. Now consider the exact
sequence

0 —» (0 :M x) —* Af — Af/(0 :M x) —» 0.

By Remark 2.2, g¡((0 :M x)) - oo, and consequently i/((0 :M x)) - oo. From

the long exact sequence on local cohomology, we see that

g!(M) = g,(M/(0:Mx))   and   t,(M) = t,(M/(0 :M x)).

Thus, by replacing Af by Af/(0 \m x) , we may assume that x is not a zero-

divisor on Af. Also, since x e G+ , there exists e > 1 such that xe annihilates

H',(M) for all i < t¡(M). So by replacing x with xe, we can assume that

xHj(M) = 0 for all i < t,(M).
We now show that //(Af) < gi(M). We'll use induction to prove that if

0 < k < t¡(M), then k < gi(M). If k = 0 there's nothing to show, so suppose

0 < k < t¡(M) and k - 1 < g¡(M). Let i = degx and consider the short exact

sequence

0 —► M(-i) -A M — M/xM —► 0.

From the long exact sequence on local cohomology, we have that k - 1 <

//(Af) - 1 < t\(M/xM). By induction, k - 1 < g¡(M/xM). In particular,

Hk~2(M/xM) is finitely graded. Therefore

0 -^ Hk~x(M)„ -£+ Hk~x(M)n+l

is exact for all but finitely many n . But xHk~x(M) = 0. Hence Hk~x(M) is

finitely graded and k < gi(M).

We now recall a theorem of Faltings concerning the annihilation of local

cohomology. Let S be a Noetherian ring, Af a finitely generated 5-module
and I, J two ideals of S. Define

s(I, J, M) := sup{fc G Z>o | J c y/AnnsHi(M) for all / < k}.

Faltings ([F], Satz 1) proves that if S is the homomorphic image of a regular

ring, then
s(I, J, M)=      min     {depthAf„ + ht(q/p)}.

p,?€Spec(5)
Pl>]

qDl+p

If the set over which this minimum is taken is empty, we set s (I, J, Af ) = oo.

The following proposition shows that if S, M, and I are all graded, then
only the homogeneous primes of S are relevant in computing s(I, J, M). Let

HSpec(G) denote the set of all homogeneous primes of G.
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Proposition 2.4. Let G be a Noetherian graded ring which is the homomorphic

image of a regular ring. Let I be a homogeneous ideal of G, J any ideal of G
and M a finitely generated graded G-module. Then

s(I, J,M)=       min      {depthMp + ht(q/p)}.
p,<?€HSpec(G)

P7>J
q^I+p

Proof. Let s(I, J, M) - depth Afp + ht(q/p) where p jb J and q D I +
p. Suppose p is not homogeneous. Let p* be the ideal of G generated
by all the homogeneous elements of p. Then depthMp = depthMp. + 1

and ht(q/p) = ht(q/p*) - 1 (see [GW], for example). Thus, s(I, J, M) =
depth Afp. + ht(q/p*). Of course, p* ^> J and q d I + p*. Since q must be
minimal over I + p*, q is homogeneous.

Combining Propositions 2.3 and 2.4, we obtain the following corollary.

Corollary 2.5. Let G be a nonnegatively graded Noetherian ring which is the

homomorphic image of a regular ring. Let I be a homogeneous ideal of G and
M a finitely generated graded G-module. Then

gl(M) =       min      {depth Afp + ht(q/p)}.
p,qeHSpec(G)

P7>G+
qDI+p

We now prove a partial converse to Remark 2.2.

Corollary 2.6. Let G be a nonnegatively graded Noetherian ring such that G0

is local. Let I ^ G be a homogeneous ideal of G and M a finitely generated
graded G-module. Then gi(M) = oo if and only if M is finitely graded.

Proof. If Af is finitely graded, then g¡(M) = oo by Remark 2.2. To prove the

converse, we first note that by passing to the ring G — G ®Go Go (where Go
is the completion of Go with respect its maximal ideal), we may assume that

Go (and hence G ) is the homomorphic image of a regular ring. Now suppose

p G HSpec(G) and p D AnnG Af. Then depth Afp < oo . Using Corollary 2.5
and the assumption that gi(M) = oo, we see that p D G+ or p +1 = G.

But p +1 is contained in the unique homogeneous maximal ideal of G, so we
must have that p D G+ . Thus, G+ c VAnnG Af and Af is finitely graded by
Remark 2.1.

We remark that the above corollary does not hold if Go is not local. For

example, let R be any regular ring which is not connected and J = (e) where
e is a nontrivial idempotent of R. Let G = R[Jt] and I — JG. Then one
sees that gi(G) — oo (by using Corollary 2.5, for instance), but G is not finitely
graded.

3. Applications to the Rees algebra and the associated graded ring

Let R be a Noetherian ring and I an ideal of R. In this section, we
apply the ideas developed in the previous section to establish some equali-

ties and inequalities between depths of R, gn(R) and R[It] with respect to
any homogeneous ideal of R[It] containing IR[It] (Theorem 3.4). Here, we

will view R and gn(R) as graded i?[i/]-modules, where R = R[It]/ItR[It]
and gr,(R) = R[It]/IR[It].   Note that for any ideal J of R[It] we have



FINITELY GRADED LOCAL COHOMOLOGY 3605

that depth/i? = depthynÄi? and depth, gr¡(R) = depthjgr¡(R), where / =

(J + IR[It])/IR[It].
The following two lemmas will be needed in the proof of Proposition 3.3.

Proofs of these facts can be found in [HM2].

Lemma 3.1. Let S — R[It] and G = gr¡(R). Suppose p e Spec(S), p D IS,
p jt> S+. Then depth Sp = depth Gp + 1.

Lemma 3.2. Suppose R is catenary, and let px c p2 C q be primes of R. Then

for any finitely generated R-module M

depth Afp, + ht(q/px) > depth AfP2 + ht(q/p2).

The next proposition is a generalization of Proposition 3.2 of [HM2]. It
serves as the cornerstone for the proof of Theorem 3.4.

Proposition 3.3. Suppose that R is the homomorphic image of a regular ring and
I is an ideal of R. Let S = R[It] and G - gr¡(R). Let J be a homogeneous
ideal of S which contains IS. Then

gj(S) = gj(G) + 1.
Proof. Since R is the homomorphic image of a regular ring, so is S and we
may use Corollary 2.5. We first show that gj(S) < gj(G) + 1. This is trivial if
gj(G) - oo, so we assume that gj(G) < oo. Then gj(G) = depthGp +ht(q/p)

for some p, q e HSpec(S) with p jt> S+ and qD J +p. As Gp^0, pD IS.
By Lemma 3.1,

gj(S)< depth Sp + ht(q/p)

= depXhGp + l+ht(q/p)
= gj(G) + L

It now suffices to show that gj(S) > gj(G) + 1. Again, this holds trivially if
gj(S) — oo, so we assume that gj(S) < oo. Thus, gj(S) = depthSp + ht(q/p)

for some p, q e HSpec(S) such that p j> S+ and q D J +p.

Claim. There exists p' e HSpec^) such that q D p' D (IS, p) and p' ¿> S+.

Proof. Let q0 = qflR. By passing to the ring S®R Rqo = Rqo[Iqot], it suffices
to prove the claim in the case #o is the unique maximal ideal of R. Since the

statement is trivial if q 3> S+ (take p' = q ), we may assume q is the unique
homogeneous maximal ideal of S. Suppose the claim is false. Then (S+)q c

^/(IS ,p)q . Since p and IS are homogeneous, this implies S+ c \/(IS, p).

Therefore, I" - In+X + pn for n sufficiently large (where p = 0j?„i" ). By

Nakayama's lemma, /" = pn for sufficiently large n and hence p D S+, a

contradiction. This proves the claim.

By Lemma 3.2, gj(S) < depthSp- + ht(q/p') < depthSp + ht(q/p) = gj(S).
Thus, by replacing p with p', we may assume p D IS. By Lemma 3.1,

gj(S) = depth Sp + ht(q/p)

= depth Gp + l+ht(q/p)

>gj(G) + l.

Before proving our main result, we make the trivial observation that gj(M) >
depthy Af for any finitely generated graded i?[f r]-module Af and homogeneous
ideal J of R[It].
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Theorem 3.4. Let (R, m) be a local ring, I an ideal of R and J a homoge-

neous ideal of R[It] which contains IR[It]. Then

(a) depth, gn(R) < depth/ R[It],
(b) depthy gr¡(R) < depthynÄ R, and
(c) // depthy gn(R) < depth7n/? R, then depthy R[It] = depthy gn(R)+l.

Proof. Let 5 = R[It], G = gr¡(R), s = depthy R[It], g = depthy gr,(R) and
r = depthynÄ R. By passing to the /rc-adic completion of R, we may assume R
is the homomorphic image of a regular ring. Consider the following two exact

sequences:

(3.5) 0^S+—>S^R^0,

(3.6) 0—^IS^S^G^O.

Using the bottom sequence, we obtain that

(3.7) H'j(IS)„ Si H'j(S)„       for i < g - 1 and all n.

Using the top sequence and the fact that Hj(R)n — 0 for all i < r or n # 0,

we obtain that

(3.8) Hj(S+)n^H'j(S)n       for all / < r or « ^ 0.

Since IS Si S+(l), we see that

(3.9) Hj(IS)n Si H'j(S+)n+x       for all i, n.

Therefore,

Hj(S)„ Si H'j(S)n+x      for all i < g - 1 and n¿-l.

But gj(S) = gj(G) + 1 > g + 1 which implies that H'j(S) is finitely graded for

all i < g. Hence, H'j(S) = 0 for all /' < g - 1, and so g < s.
To prove (b), suppose that r < g. Since g < s, we know that Hj(S) = 0.

Applying this to the long exact sequence on local cohomology arising from (3.5),
we get that Hj+x(S+)0 ¿ 0. By (3.9), this means that Hr/x(IS)-X ^ 0. Using

(3.6) and the fact that r < g, we see that

(3.10) 0 —♦ Hj+x(IS)n —» Hrj+x(S)n

is exact for all n. In particular, Hj+x(S)-X / 0. Combining (3.8), (3.9) and

(3.10), there exists an injective map Hr/x(S)n -► Hj+x(S)n-X for all n < -1.

Thus, Hj+x(S) is not finitely graded. Therefore,

gj(S) <r+ 1 < g + 1 < gj(G) + 1,

contradicting Proposition 3.3. Hence, g <r.
Finally, we suppose that g < r. Then from (3.6) we know there exists an

injective map H'j(IS)n -+ H'j(S)n for all / < g and all n . Using (3.5) and our

assumption that g < r, we see that Hj(S+)n = H'j(S)„ for all /' < g and all

n . Thus, there exist injective maps

Hj(S)n+\ -* H'j(S)„

for all i < g and all n. Since gj(S) = gj(G) + 1 > g+l, Hj(S) = 0 for
all i < g.  Thus s > g + 1.  But from the exact sequences (3.5) and (3.6),
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we get that H'j(G) = H'JnR(R) for i < s -2. Soif s > g + 2, then g = r,
contradicting that g < r. Therefore, s = g + l.

Remark 3.11. The proof shows that Theorem 3.4 holds when R is any Noethe-

rian ring (not necessarily local) which is the homomorphic image of a regular
ring.
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