
proceedings of the
american mathematical society
Volume 123, Number 12, December 1995

THE TEICHMULLER FLOW IS HAMILTONIAN

HOWARD MASUR

(Communicated by Albert Baernstein II)

Abstract. It is shown that the Teichmuller flow on the cotangent bundle over

Teichmuller space coincides with the Hamiltonian flow defined by the function

which gives the length of a cotangent vector.

Introduction

Suppose Ai is a smooth manifold with local coordinates (qx, ■■■ , qn) ■ Then

the set of 1 forms dqx, ... , dqn form a basis for the cotangent space at each

point and so any cotangent vector v* can be written as pxdqx +... +pndqn for

coefficients px, ... , p„ . Then (qx, ... , q„, px,... , pn) are symplectic coor-

dinates for the cotangent bundle CTM. Any smooth function H : CTM —► R
defines Hamilton's equations:

dqi/dt = dH/dpi

and

dpi/dt = -dHj/dqi.

The corresponding flow is called the Hamiltonian flow. Suppose M has a

Riemannian metric and H(v*) = \v*\2/2 where |u*| is its length. It is a classical
result [2, p. 53] that the Hamiltonian flow and the geodesic flow on CTM

coincide.
In this paper we consider the Teichmuller space Tg of closed Riemann sur-

faces of genus g > 2. It is a fundamental result that Tg is a complex manifold

and that the cotangent space at a point X e Tg is the vector space Q(X) of
holomorphic quadratic differentials on X. The Teichmuller space also comes

equipped with the Teichmuller metric which is not Riemannian, but rather a

Finsler metric, which means it is defined by a norm on the tangent space and a
dual norm

||0||= [ \<t>(z)dz2\
Jx

on the cotangent space Q(X). Thus the standard equations of Riemannian ge-
ometry are not available. Nonetheless the geodesies in this metric are well un-
derstood. The geodesies are determined by the family of Teichmuller extremal
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maps defined by a fixed quadratic differential and a 1 parameter family of real

numbers. At the level of the cotangent bundle S this leads to a flow called the

Teichmuller flow. The question then arises whether this flow is Hamiltonian

for the corresponding length function

as in the classical case.
An immediate difficulty arises from consideration of quadratic differentials

with higher order zeroes. A result of Royden's [7] says that the vector field

(dH/dPi,-dH/dqi)

is not Lipschitz at quadratic differentials with zeroes of order at least 3. Thus

the Hamiltonian system may not admit a unique solution. Because of this

difficulty we define €x c ¿f to be the subset of quadratic differentials with

only simple zeroes. This is a dense subset of ¿f and is known as the principal
stratum. The Teichmuller flow preserves Sx. Our Theorem states

Theorem. The Hamiltonian flow is C°° on Sx and coincides with the Teich-

muller flow. On S - Sx, the Teichmuller flow satisfies Hamilton's equations.

In the next section we will show that the flows are C°° on &x. We will then

introduce coordinates for Tg that allow us to show that Hamilton's equations

are satisfied along the Teichmuller flow lines in ¿fi. Continuity will allow us to

conclude that the Teichmuller flow on ¿f - €x also satisfies Hamilton's equa-

tions. In particular this means that at a point on a lower dimensional stratum,

the Hamiltonian vector field is tangent to that stratum. However we do not
know if the Hamiltonian system is C1 along that stratum and therefore do

not know if there are other solutions to the Hamiltonian system other than the
Teichmuller flow.

Coordinates for Teichmuller space

A Riemann surface X can be described by a family {UM, zß}, where the
Uß form an open cover of X and zß : Uß —► C are homeomorphisms such

that Zf¿ o z~l is analytic whenever defined. The maps zM are called local

uniformizers. A holomorphic quadratic differential (p(z)dz2 on X assigns to

each local uniformizer zß a holomorphic function <f>ß(zß) such that in the

overlap

(f>ß(zß)dz2ß = <pv(zv)dz2v.

Associated to a quadratic differential are the horizontal and vertical trajectories.
These are the arcs along which <f)(z)dz2 > 0 and <j>(z)dz2 < 0 respectively.

The set of horizontal and vertical trajectories forms the horizontal and vertical
foliations. We denote the latter by v(<f>). A quadratic differential <f> also defines

a metric \<pxl2(z)dz\ which is locally Euclidean except at the zeroes of <p which

are singularities of the metric. The set of all quadratic differentials on X forms
a complex vector space Q(X) of dimension 3g - 3. As I varies over the
Teichmuller space Tg , these vector spaces fit together to form a bundle ¿f over

Tg . A Beltrami differential on X assigns to each uniformizer z a measurable

function p(z) such that

i \d2
^z)Tz
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is invariant under changes of coordinates. Then \p(z)\ defines a function on
X. There is a pairing between Q(X) and the space M(X) of L°° Beltrami
differentials on X given by

(d,,p) =Re / (pp.
Jx

The infinitessimally trivial Beltrami differentials M0(X) are those p for which

(4>, p) = 0 for all <p e Q(X). It is a classical result in Teichmuller theory that

Tg is a complex manifold, the tangent space at X is M(X)/M0(X) and Q(X)

is the cotangent space at X. We let n : ¿f -» Tg be the natural projection.
Each (¡> e S determines certain topological data k = (kx, ... , k„ ; e = ± 1 )

where kx, ... ,kn are the orders of the zeroes: e = +1 if <f> is the square of an

abelian differential; e = -1 if it is not. A stratum ¿f* consists of all quadratic
differentials determining the data k . The principle stratum &x corresponds to
k = (1,...,1;-1) and its complement has codimension 1.

The quantity

/ \<K*)dz2\
Jx

which defines the Teichmuller cometric is also the area of the quadratic differ-

ential. The geodesies in the Teichmuller metric are defined by the Teichmuller

maps. For each (¡> e Q(X) and t e R the Teichmuller map f^j maps X to a

new Riemann surface Xt. There is a quadratic differential </>, on Xt with the

property that /, sends horizontal trajectories of </> to horizontal trajectories of
<¡>t expanding lengths by a factor of e' and sends vertical trajectories to vertical
trajectories contracting lengths by the same factor e'. We can take </>t so that

H(<t>,) = H(<f>). It also sends zeroes of (f> to zeroes of (fit of the same order.
At the level of the cotangent bundle if this gives a flow <fr -> (p, called the
Teichmuller flow and the flow preserves each stratum @K . These flows have

been studied in [5], [8], and [6].
For any 4>o in the principle stratum Sx we may triangulate the underly-

ing surface so that the edges of the triangulations are geodesic segments with

respect to the metric \<t>o(z)x/2dz\ and the vertices are zeroes of </>o ■ (A canon-
ical triangulation is given in [6].) Each <p near (¡>0 in Sx has a corresponding
triangulation by geodesic edges. For 0 in a neighborhood of </>o we may con-
tinuously choose a branch of (px/2 along each edge. To each directed edge e is
associated a holonomy vector hol(c) whose components

hol,(c)= ¡Rt(<pxl2dz)
Je

and

hol2(c)= ¡\m(ç>xl2dz)
Je

are called the horizontal and vertical components of e. The holonomy vectors
of a set of 6 g - 6 edges serve as analytic coordinates for Sx near 4>0 ■ The area
of a triangle in R2 is an analytic function of the coordinates of its vertices.
Therefore H is an analytic function on Sx and Hamilton's equations must

have a unique solution in a neighborhood of a point in $x .
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In the holonomy coordinates the Teichmuller flow (4>, t) —► 4>t is given by

(hol, (ex), hol2(C)), ... , hol, (e6g-6), hol2(e6g_6), t)

(1.1) -► (e'holi(ci),c-'hol2(ci), ... , e'hol(e6g^6), c_'hol2(c6^_6)),

and thus is analytic.

Now fix fa e ¿fi which determines the flow line </>, 6 Sx . Let X, be the
corresponding Teichmuller geodesic through X0 . The proof that Hamilton's

equations are satsified along <f>, depends on finding a useful set of coordinates
in a neighborhood U of X,. Recall that v(<p) denotes the vertical measured
foliation of the quadratic differential <p.

Proposition 1. There are C°° coordinates (qx, ... , q^g-e) in a neighborhood

U of Xt such that
(1) for fixed qx, each point with coordinates (qx, ... , <76g-ó) has a quadratic

differential 4> such that H(tf>) = 1 and v((j>) - e^v((f>o);
(2) for fixed (q2, ... , qeg-è), the points with coordinates (qx,q2, ... , q6g-e)

parametrize a Teichmuller geodesic with qx as arclength parameter.

Proof. Let F = v (</>0) be the vertical foliation of <¡>q . We let

EF = {<t> e & : v((j>) = F}.

Then EF n Sx is locally described near 4>o by a set of equations

holi(c,) = constant

and thus is a smooth submanifold of €x . In particular H restricted to EF C\SX
is smooth. Moreover by the Main Theorem of [4] the projection

n : Ef —> Tg

is a local diffeomorphism at 0o • (The Main Theorem of [4] says that the
map is a homeomorphism. The proof uses the inverse function theorem. The
fact that the derivative at <j>o is an isomorphism is proved in Lemma 4.4 and

Proposition 4.16.) Then EFp[$x nü_1(l) is a smooth submanifold of éfi near

r/>o which maps diffeomorphically onto its image N^ which is a codimension

1 submanifold of Tg. Find local coordinates (q2, ... , qeg-6) for A^0, with
0 corresponding to Xq . We now define a map / from a neighborhood of 0

in i?6^-6 into Tg. Given (qx, q2, ... , q(>g-¿) let X e A^0 have coordinates

(qi, ■ ■ ■ , qeg-e) and let <f> e EF n @x n H~x(l) be such that n(</>) = X. Then
let 4>Qi be the quadratic differential found by flowing time qx from <f>. Set

f(q\, •■■ , qeg-e) = n((/)q¡).

If we can show that / is a local diffeomorphism, then (qx,... , q6g-è) will

serve as local coordinates for Tg near Xt. Since v(<j>qx) = e9,v((f>o), these
coordinates will satisfy (1) and (2). To see that / is smooth note that / can
be written as a composite

(q\, ■■•   , q6g-6) -* (Q\ > <t>) -* <t>q, -» n(<l>qx )

of smooth maps. We now show that Df is an isomorphism at 0 and then

apply the inverse function theorem.

First we note that for / > 2, p¡■ = Df(0)(d/dq¡) are independent vectors in

the tangent space to N^ at Xq . Thus we need to prove that px - Df(0)(d/dqx)
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is a nonzero vector that is not tangent to A^0. But px is a unit vector tangent

to the Teichmuller geodesic determined by <f>o • Thus px = Á and so

(<t>o, Pi) = 1.

We now rely on a result from [3]. We introduce a function G : Tg —> R. For
each X e Tg by the Main Theorem of [4] there exists a unique ip e Q(X) such

that v(y/) = F. Define

G(X) = log\\y/\\.

Then

G~x(G(Xo)) = G-](log\\\<t>o\\) = G'x(0) = JV

Then ([3], Theorem 5, p. 217) G is smooth and the derivative of G at X in
the direction of p is given by the formula

DG(X)[p] = 2(y/,p) = Re [ 2p<p.
Jx

Since G = 0 on A^0,

<0o, ß) = 0

for all p tangent to /V^ . Since (<po, px) = I, px is not tangent to A^0.   D

Proof of Theorem

We begin by proving that Hamilton's equations are satisfied along each

Teichmuller geodesic in the principle stratum @x. Introduce the coordinates
(q\ > • • ■ > q(,g-è) in a neighborhood of Xq given by Proposition 1. They define

symplectic coordinates

(<?1 , •••  , q6g-6, P\ , •••  ,P6g-6)

for € in a neighborhood of 0O • First let <£ e £> n @x nü~'(l). Then
?r(0) has coordinates (0, q2, ... , ^-ó) • An argument similar to that given
in Proposition 1 shows that the coordinates of (f>q¡  are

(2.1) (qx,... ,q6g_6,l,... ,0).

For by construction, the q coordinates are qx, ... , q6g-6 ■   For each t let

F¡ = v((f>t) = e'v(())). For each X e Tg let

Gl(X) = log\\ip\\,

where y/ e Q(X) is the unique quadratic differential such that v(ip) = Ft.

Then Gt — 0 on the fiber {(#i, ... , q6g-e) '■ <7i = t}, so

(<t>, ,fi) = 0

for all p tangent to the fiber or, in other words for i > 2,

(<f>,,d/dq,) = 0.

This implies 0, = rdqx for r e R. Since ô/ô^i is tangent to the Teichmuller

geodesic in the direction of positive time, in fact r > 0. However since px =

d/dqx is a unit vector in the Teichmuller metric, H(dqx) = 1. Since H(<f>,) =
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1, 0, - dqx and so 0, has coordinates (t,q2,... , q6g-6, 1,0... , 0), prov-
ing (2.1). We also note that

u  -  *^'    Tu-mi
Now let 0o,/ be the path through 0O, so by (2.1) it has coordinates

(r,0,... ,0,1,0,... ,0).

Then along 0O,;,

(2.2) dqi/dt = 1, dpx/dt = 0, dq¡/dt = dp¡/dt = 0, i¿l.

Since H(<t>Qi ) = 1 where 09l has coordinates (qx, q2, ... , q6g-6, 1, • • • , 0),

(2.3) dH/dqi(t,0,... ,0, 1,0,... , 0) = 0.

Since #((1+5)00,,) = (±^H(4>o,t) = ^f-, we have

(2.4) dH/dpx(t,0,... ,0,1,0,... ,0) = ±d{l+s)\o) = \.

Finally we apply a formula of Royden's [7]. For x, W £ Q{X)>

¿llx + ̂ ILL(0)=R*L4\dt   w "";xrw

This is applied with

X = 0(U = (i,O,... ,0, 1,0,... ,0)

and

^ = ¿<7, = (í,0,... ,0,0,... , 1,... ,0).

Since 1100,,11 = 1 and tJ&jt = H\ = d/dqx, for i > 2,

dH/dPi(t,0,... ,0,1,0,... ,0) = ^-1100,,+5^/||(5 = 0)

(2.5)
Re Jdqipx = (dqi,d/dqx) = 0.

We conclude from (2.2) and (2.3)-(2.5) that Hamilton's equations are satisfied

along 0o, t-
To finish the proof of the Theorem we need to discuss the lower dimensional

strata SK . We begin by recalling some results proved in [4]. Suppose q0 e &K

is a quadratic differential on the Riemann surface X. Let A?0 be the sheaf of

germs of vector fields % such that

Qo(X,X) = constant.

For k > 2 let Pk be the set of polynomials of the form

zk + ak_2zk~2 + ... + ao,

and Sk the set of polynomials of the form

ak_2zk-2 + ... + ao,

the tangent space to Pk at zk . Suppose 0o has zeroes of order kx, ... ,k„.
In a neighborhood of the zero of order k¡ there are coordinates z such that
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0o = zk,dz2. Let U a be small neighborhood of 0o in S. There is an analytic

map

f:U^f[Pki
i

classifying the deformations of the zeroes of 0o . Then SK is defined near 0o

by
/-'(z\... ,zk").

If 0o is not the square of an abelian differential, then by [4], Proposition 4.7,

the derivative of / is onto 0 Ski and there is an exact sequence

0 - HX(X, AJ -, Tqß - 05fc, - 0.

If 0o is the square of an abelian differential, choose a small circle y¡ about

the zero and define a map a,■■ : U —> C by 0 -* / <f>xl2dz. Here the branch

of 01/2 is chosen to be near zk'l2 for 0 near 0O . Then [4], Lemma 4.8, says

that the map / is a submersion onto the submanifold defined by the equation
53 a, (0) = 0. Now there is an exact sequence

0 - Hx(X,Aqo) - Tqß - Q)Ski , -» C -+ 0.

In either case the implicit function theorem says that ¿fK is an analytic sub-

manifold of S ; T^Jg = Tfa@K e Ski in the first case, and T^ß = T$ßK e S
where S is codimension 1 subspace of ® Ski in the second.

Proposition 2. The Teichmuller flow restricted to &K is real analytic.

Proof. We may triangulate the underlying surface of 0o so that the edges are
geodesic segments joining the zeroes of 0o and the triangles have no zeroes in
their interior. Let p be the dimension of &K . There is a choice of p edges
e¡ of the triangulation such that the holonomy vectors holi (ex ), hol2(^i ), ... ,
holi(ep), \io\i(ep) serve as local coordinates for @K near 0o . The Teichmuller
flow preserves (SK and in terms of the holonomy vectors it is described by ( 1.1 ),

so is analytic.   D

We continue with the proof of the Theorem. Choose 0 near 0o which

has simple zeroes and such that the critical vertical trajectories of 0 in each
neighborhood of the zeroes of 0o form a connected set of edges e¡. Again let

/ : ¿f -+ fi Pki De the map classifying the deformations of the zeroes of 0o.

We may express

nm) = II(2 - r^dz2 = (zk+a*-'zk~' + ■■■ )dzl-

Let Ps be the family of polynomials

Ps = Y[{z -sx''n) = zk+ sak_¡zk-¡ + ... ,

which converge to zk as 5 —► 0. It is easy to check by a change of variables
that this family also has the property that the critical vertical trajectories also
form a connected set of edges e¡. Moreover the holonomy vector hol¡(s) of e¡

at time s satisfies
holj(sX) _    5j_ (î/2+l)

hoh(s2)     V
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which says in particular that the change in holonomy vector is by a constant

factor independent of e¡. From this we see that

nn                         r    TsholM     y    (fc/2+1)
(2.6) hm M.—t-—— = hm ^-J—,- = oo.

s->o  holi(s)      i—o      Is

Let 4>s —► 0o a family of quadratic differentials so that

f((f>s(z))=ps(z).

We may find a set e, <s, i = 1, ... , 6g - 6, of edges of (f>s whose holonomy

vectors serve as local coordinates for S near 05 such that for / < p the edges

eis converge to the edges e¡ of 0o that determine local coordinates for (SK

and for i > p are vertical edges in the neighborhood of the zeroes of 0o.

Now for each 5 and t consider the flow <f>s —> 05,,. Since Teichmuller maps

contract the holonomy of the vertical edges e¡lS, i > p+1, in the neighborhood
of the zeroes by a constant factor independent of the edge e¡¡s, there must be

s' = s'(s, t) such that

/(&,,) =Ps>-

Let vSJ be the tangent vector to the flow <f>s —► 0^, at <f>s,t. Then Df(vSJ)

is tangent to the family ps at 5 = s'. By (1.1) at time s' we have

(2 ?) DholiWiDAvs.t)) = _e-t
holjs'

and this is independent of s ; in particular this quantity does not go to infinity

as i->0. The tangent vector Df(vSJ) is a multiple X(s') of the tangent vector

to the family ps at s', and comparing (2.6) and (2.7) we see that X(s') ->0 as
s -* 0. Thus Df(vSJ) -» 0 as 5 —> 0 for each t and we conclude that as s -+ 0

any convergent subsequence of tangent vectors to the flow at (pSJ converges to

a vector tangent to the stratum (SK ; namely an element of HX(X, Aqo). We

may interpret such an element as infinitessimal change in the holonomy of the
edges e¡. Since hol¡(s) -» hol¡(e) for i < p , by formula (1.1), the limit must
be tangent to the flow through 0o . In other words the tangent vector

(dqx/dt, ... ,dp6g-6/dt)

to the flow at 4>SJ converges to the tangent vector to the flow through 0O at

time í as i-»0. The vector field

(ÔH/dPi, -dH/dq,)

is continuous on € ([7]). Since Hamilton's equations are satisfied along the

flow through ips, by continuity they are satisfied along the flow through 0O .   D

From the work of [5], [6], and [8], €x has an absolutely continous measure

p invariant under the Teichmuller flow and invariant under the action of the
mapping class group Mod(g). In the local coordinates defined by holonomy

vectors {holx (e,), hol2(ej)} , j = 1, 6g - 6 , the measure is described by

dp = d holx(ex) Aúf hol2(ex) A... Ad hol2(eeg-e).

Corollary. We have dp = dqxA...A dq„ A dpx ... A dpn .

Proof. The measure dqx A ... A dqn A dpx... A dp„  is absolutely continous

with respect to p. Each measure is invariant under the Teichmuller flow on
¿fi/Mod(g). Since p is an ergodic measure for the flow [5], [8], the measures

must be equal.   D
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