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Abstract. The degree of a structure si is the Turing degree of its open dia-

gram £»(j/) , coded as a subset of a>. Implicit in the definition is a particular

presentation of the structure; the degree is not an isomorphism invariant. We

prove that if a Boolean algebra si has a copy of low 2 degree, then there is a

recursive Boolean algebra 33 which is isomorphic to si . This builds on work

of Downey and Jockusch, who proved the analogous result starting with a low i

Boolean algebra.

0. Introduction

Each structure considered here has a recursive universe. For a countable
structure sé in a recursive language, the degree of the structure is the Turing

degree of its open diagram, D(sé), under some effective coding as a subset
of oí . Implicit in the definition is a particular presentation of the structure
under consideration; the degree is not isomorphically invariant. In this paper
we consider a specific case of the general question: For a structure sé of degree

d, when does sé necessarily have a recursive copy? For an excellent discussion

of general background in this area, and related questions, see [D-J]. We will

here discuss some of the specific background for our question.

We will use the abbreviations BA for Boolean algebra and r.e. for recusively
enumerable. A degree d is low„ if d(n) = 0(n), where d(n) is the degree of

the fl-th jump of a set D of degree d. A degree is low if it is low i . A degree d

is highn if d w = 0 ("+1). Note that we do not restrict ourselves to degrees <

0 ', as is common in the definition of low „ and high „ . For a linear ordering

Sf, Intalg( S? ) denotes the BA generated by left-closed, right-open intervals in
J?. For a BA sé , At( sé ) denotes the set of atoms of sé . Recursion-theoretic
notation is standard, as in [R], and the general reference on BAs is [M-B].

Feiner, in [F], constructed an r.e. BA with no recursive copy. His quite

complicated construction had the stronger property that the r.e. BA constructed

was not isomorphic to any low „ BA for any n . Was this a necessary condition

to avoid a recursive copy? Or, in other words, if sé is a BA of low „ degree, does
sé necessarily have a recursive copy? This question was answered affirmatively

for n = 1 by Downey and Jockusch in [D-J]. This paper provides an affirmative

answer for n = 2. The question remains open for n > 2.
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With respect to high „ degrees, we note that it follows from the extensions

of Feiner's work in [T2] that for any high „ degree d, there is a BA of degree d
with no recursive copy.

1. Main result

Theorem 1. Let sé be a BA such that D(sé) is of low 2 degree. Then sé has
a recursive copy.

This theorem extends the following result.

Theorem 2 (Downey-Jockusch, [D-J]). Let sé be a BA such that D(sé) is of
low degree. Then sé has a recursive copy.

The constructions of Theorems 1 and 2 are done via linear orderings, based
on the following:

Fact. Given a BA sé of degree d, there is a linear ordering J? of degree d such
that sé is isomorphic to Intalg (SC). This fact is based on the effectivity of

the argument that every countable BA is isomorphic to an interval algebra (see
[M-B]). It's also easy to see that for an ordering Sf of degree d, Intalg(^ ) is
of degree d.

For an ordering Sf, a, b £ Sf and a < b, (a, b) is an adjacency of J?
if there is no c £ J¿? such that a < c < b. We write adj(a, b) if (a, b) is
an adjacency of 5C. Note that for sé isomorphic to Intalg (5?), atoms of sé

correspond to adjacencies of £?.
In passing to the framework of linear orderings, Downey and Jockusch actu-

ally proved the following result (see the proof of Theorem 1, [D-J]).

Theorem 3 (Downey-Jockusch). Let Sf be a linear ordering with D(¿¿f) £ A^

and adj¿? a A^ predicate. There is a recursive linear ordering J? such that

Intalg(^) is isomorphic to Intalg(^).

For any low structure, its existential diagram is recursive in 0'. Thus a low
linear ordering ¿¿? satisfies the hypothesis of Theorem 3, and it is clear that
Theorem 3 implies Theorem 2.

To prove Theorem 1, we will also pass to the framework of linear orderings

and work with a low 2 linear ordering Sf x such that Intalg( -S^t ) is isomorphic

to our low 2 BA sé . Making use of a more extensive table of information

available at the A^ level, we will be able to construct a A^ ordering S? 2 with a

A2 adjacency relation such that Intalg(^2 ) is isomorphic to Intalg(^i ). We
then apply Theorem 3 to Sf2 to recover the desired recursive BA.

With respect to constructing an ordering which satisfies the hypotheses of
Theorem 3, note that if Sf is a A2 ordering, then to insure that adj% is also

A^ , it will be enough to enumerate the adj^ relation at the A§ level. This is

easy to see since ->adj is clearly Z2 if the ordering is A2 .
The constructions in Theorems 1 and 2 make use of the following result of

Remmel ([Re], Theorem 1.2).

Theorem 4 (Remmel). Let 38, f be countable BAs, such that 33 is a sub-
algebra of W, 38 has infinitely many atoms, each atom of 38 is the join of

finitely many atoms of W, and for each c £ At( W ) there is a b £ At( 38 )
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with c<b. Suppose further that W is generated by 38 U At(W). Then 38 is
isomorphic to &.

For any BA sé , if 38 is the BA generated by sé and the addition of n

atoms, n<oi, then 38 is naturally isomorphic to the product algebra sé x 2"

(2n denotes the finite algebra generated by n atoms). It follows from a theorem

of Vaught ([M-B], Proposition 6.6) that if sé is countable with infinitely many

atoms, then sé is isomorphic to 38 . Thus we may strengthen Theorem 4 by

replacing the condition "for each c £ At( W )..." with the weaker condition

that all but finitely many atoms of ^ lie below atoms of 33 . We will assume
the strengthened version.

Theorem 4 allows us a certain freedom in putting new elements into a given

linear ordering without changing the isomorphism type of the corresponding

Boolean algebra. For our purposes, it is safe to assume that our Boolean algebras

have infinitely many atoms; any countable algebra with only finitely many atoms

is either finite or can be expressed as the disjoint union of a finite element and
an atomless element, and hence is isomorphic to Intalg( n + r\ ) for some n,

with t] denoting the order type of the rationals. Clearly, any finite algebra has

a recursive copy, and the existence of a recursive copy in the latter case follows

from the existence of a recursive copy of n.

In view of Theorem 3 and its subsequent comments, it is now clear that to
prove Theorem 1, it is sufficient to prove Theorem 5 below.

Theorem 5. Let Z? be a low2 ordering. There exists a A^ ordering Z? such

that adj is a 1% predicate, and Intalg( J? ) is isomorphic to Intalg( & ).

Proof. If 5? is low 2, then the X2 diagram of Jz? is A3. Thus the following

relations on Z? are A3 :

(1) x<y.
(2) adj(x, y) := [x < y & Vz(x <z<y=>z = xorz=y)].

(3) P~(x) := Vy < x(3z(y < z < x)), or, " x is a left-hand limit point",
P+(x) := Vy > x(3z(y > z > x)), or, " x is a right-hand limit point".

(4) dn(x,y) := V«, v (x < u < v < y => ->adj(u,v)), or "[jc,y]  is

dense".

We will make use of these to construct É1 and h : Sf —> Z? satisfying the
hypotheses of the following lemma. The lemma is an easy consequence of the
strengthened version of Theorem 4 referred to above. The construction will be
a finite injury construction at the A2 level.

Lemma 6. Let Z£ and Z? be orderings such that Z? has infinitely many ad-

jacencies, and ZZ? has a first element and a last element. Suppose there is a

function h: Z£ —> Z£ with the following properties:

(i)   h is one-to-one and order preserving.

(ii) If (a, b) is an adjacency in 5f, then (h(a), h(b)) is finite in Z£.

(iii) If a is the first element of Z¿f, then {x £ Z£ : x < h(a)} is finite.

If b is the last element of Z?, then {x £ Z? : x > h(b)} is finite.

(iv) If c £ J? -rng(h), then there exist a, b £ ¿¿? such that exactly one
of the following holds:
(1) h(a) < c < h(b) and adj(a, b) holds in Z?,
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(2) c < h(a) and a is the first element of Jz?,

(3) h(b) < c and b is the last element of Z?.

Then Intalg( J? ) is isomorphic to Intalg( J? ).

For our given ordering, as D( y )" € A^ , we can find a A3 function g such

that g(k) yields the open diagram of the structure ¿2? augmented with symbols

for the predicates ( 1 )-(4) and restricted to the first k +1 elements of Z¿f. Thus
g(k) is a (Gödel number for a) finite set of sentences. By the Limit Lemma there

is a AÍ) approximating function L, such that lim5 L(k, s) = g(k). We can

assume that for fixed s and k < s, L(k, s) ç L(k+1, s). We let Ls = L(s, s).

Without loss of generality we can make two more assumptions about L.

First, we assume L¡ is consistent in the sense that there is a structure sés =

(A, <, adj, dn, P+, P~) such that < is an ordering, the additional predicates

are as defined earlier, and sés (= Ls. Second, we assume that L(m, s) gives the

complete atomic type of an, ax, ... , am in the expanded language.

We will use subscripts to denote the various approximations. Corresponding

relations on Z? will be denoted by adj, P+ , P~ , and dn .
Let S? = {ao, ax, ...} , and let 38 = {bo, bx, ...} be a new set of con-

stants from which we will build Z£. Assume that ao, ax are the first and last

elements of Z£ respectively. Let Z? s denote the set {ao,ax, ... , as}. We

will construct, at stage s, recursively in L, for some t > s, a finite ordering

Z?s, and hs : Z? t —> J?% . We will also enumerate part of the relation adj .

At stage 0, let h(ao) = bo, h(ax) = bx. We will only change the map

on these elements under the following conditions—we will consider ao ; the

argument for ax is similar. Note that we can assume -<adjs(ao, ax) holds for

all 5 and -*dns(ao, ax) holds for all s. Suppose for some s, Ls indicates that

adj(ao, a¡) holds for some i. We may enumerate adj(h(ao), h(a¡)), and then
for t > s, have Lt indicate P+(ao), that is, that ao has no successor. There

will be a string h(ao) — xx < x2 < ■■ ■ < xk , which is maximal with respect to

the property that adj(x,, x,+x) holds for i < k. We would now set A (an) = xk ,

cancelling h(aj) for all j such that h(aj) < xk . If, for some q > t, we find
some m such that adjq(ao, am) holds, we can simply add a successor. Such

changes will happen only finitely often, so that (iii) of the lemma will hold.

To continue the construction we will have two types of requirements which

we will identify respectively with elements am £ 2C and bk £33 , prioritized

in decreasing order according to the list a0, b0, ax, bx, ... .

Let us first establish the following conventions. For u, v £ Z£ , we write

u < v if u < v and for all c £ Z?, c < u or v < c. We say u, v are

attached if there are xx < x2 < ■ ■ ■ < xk £ Z£ such that u — xx, v = xk

and adj(x¡, x¡+x) holds for i < k; bk is correctly attached if there is some

a, £ L suchthat bk is attached to h (a¿) and a, never again receives attention.

Elements of Z£ which satisfy condition (iv) of the lemma are said to be bound.

The requirements are

• a,„ : h(a,„) is defined.

• bk : bk £ É' -rng(h) => 3a £ Z¿?   such that bk is attached to h(a).

We will also insist that at each stage our definition of h preserves the follow-

ing conditions, with respect to the approximation L, we are following at that
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stage:

- If a¡ <, üj holds, then h(a¡) < h(üj).
- If adjt(a¡, üj) holds, then (h(a¡), h(üj)) receives no new elements.
- If h(a¡) < h(a¡) and these elements are attached, then [a¡, üj] must

appear to be a finite chain of adjacencies of length at most the length
of [h(ai),h(aj)].

- If P,+ (a¡) holds, then there must not exist any enumerated adjacency

of the form (h(a,), bk).
- If P,~(ai) holds, then there must not exist any enumerated adjacency

of the form (bk , h(a¡)).
- If dnt(a¡, üj) holds, there may not be any enumerated adjacencies in

the interval [h(a¡), h(a¡)].

Comment. The first two conditions to be preserved clearly relate to assuring that

h and Z? satisfy (i) and (ii) of the lemma. The remaining four are concerned

with satisfying (iv) of the lemma. Since we will also be enumerating adj,

preservation of limit points and density under h will be necessary to achieve

(iv) as we will have enumerated adjacencies in Z£ -rng(h) to account for.

With regard to the third condition, we note that the predicate " \[a¡, aj\\ = k "

is Aj1 because the 2Z2 diagram of ZZ? is A^, and thus a A!} approximation
exists. We could, therefore, formally introduce a recursive sequence of such

predicates, one for each k, if desired. Satisfaction of requirement bk does not

leave bk bound, however if we can show that bk will be correctly attached to

h(a¡) for some i, then bk will be bound when the true predecessor or successor

of a¡ appears.
Define ts = t if we are following Lt at stage s.

Requirement am requires attention at stage s if h(am) is not defined.

Requirement bk requires attention at stage s if bk is not equal to or attached

to any element currently in the range of h.

When we define hs(a¡) = bk , this is done with the priority of the requirement
which needed attention.

Stage 0. Let r0 = 0 • As described earlier, we let h(ao) = b0, h(ax) = bx.

Stage s, s > 0. Let t = ts = ts_x + 1. Cancel all mappings h(am) such

that the definition is inconsistent with Lt according to our list of conditions
to be preserved. If two defined values jointly create an inconsistency, cancel

the one of lower priority. These inconsistencies arise from changes in the A2
approximations to <, dn, P+, and P~ . Now choose c with highest priority
which requires attention. We follow the appropriate strategy as described below.

Strategy for c = am . As we described the strategy for m = 0 and m = 1
in our earlier discussion of stage 0, we assume m > 1. Cancel all mappings
defined with lower priority than am . Thus m is the least number such that
h(am) is undefined. By virtue of our choice of am , there are i, j such that

a¡ <t am <t üj , h(a¡) and h(üj) are defined with higher priority than am , and
for any c with a¡ < c < a¡, h(c) is not defined. Also, there are no values h(an)
defined with higher priority such that h(a¡) <h(a„) < h(aj), as our cancellation

makes h appear to be order-preserving.

By hypothesis, -^adjt(at, af) holds. First, suppose that h(af) is attached to
h(aj). By the choice of m and the third condition above, there exists some

x, h(a¡) < x < h(aj), such that we can set h(am) = x and preserve the third
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condition. Choose such an x and define h(am) = x.

If h(a¡) is not attached to h(aj), we proceed as follows. If there are no

unbound elements in (h(a¡), h(üj)), let bk be the first unused constant, set

h(am) = bk , and h(a¡) <bk < h(a¡). If adjt(a¡, am) holds, set adj(h(a¡) ,bk);

if adjt(am , üj) holds, set adj(bk ,h(afj).
If there are unbound elements in (h(a¡), h(a¡)), we will try to bind them as

follows, considering three cases.
Case I. Either adj,(a¡, am) or adjt(am , aj) holds; assume the former, and

if ->adjt(a¡, am) holds, we can apply a similar argument to (am, aj). Let

xx < x2 < ■■■ < xk be those unbound elements in (h(a¡), h(üj)) with xk

the greatest element which is not attached to h(üj). Set h(am) = xk, and

adj(h(a,), xx), adj(x¡, xi+x) for i < k . If adjt(am, üj) holds, set adj(u, v)

for all u, v such that xk < u -< v < h(aj). Note that these elements will now

be bound if this is the last time am receives attention.

Suppose that neither adjt(a¡, am) nor adjt(am, a¡) holds. We have one of

the next two cases depending on whether or not we think am is a limit point.

Case II. Either -iPt~(am) or ->Pf(am) holds; we'll consider the former and

act in a symmetric way if P(~(am) holds. We now believe that am has an

immediate predecessor; this offers us a place to attach elements. If, for each
c £ (h(a¡), h(üj)), c is attached to either h(a¡) or h(a¡), we choose a new

constant bk, and set h(am) - bk and u -< bk for greatest u which is attached
to h(a,). Otherwise let Xi < x2 < ••• < xk be the unbound elements in

(h(a,), h(aj)) with xx the least which is not attached to h(a¡) and xk the

greatest which is not attached to h(üj). Set h(am) = xk and adj(x¡, xi+x) for
i < k. Thus there are no unattached constants in (h(a,), h(üj)).

Case III. Suppose PZ(am) and Pt+(am) both hold. We cannot attach un-

bound constants now, but if there are enumerated adjacencies in (h(a¡), h(üj))
which are not attached to either h(a¡) or h(a¡), they must be put into the

appropriate subinterval in order to preserve the condition regarding density. If

there are no such enumerated adjacencies in (h(a¡), h(üj)) to worry about, let

k be least such that h(a¡) <bk < h(aj) and bk is unattached, or such that bk
is the first unused constant, and set h(am) = bk. In the latter case, choose x

and y in [h(a¡), h(Oj)] with x the greatest element which is attached to h(a,)

and y the least element which is attached to A (a,-). Set x < bk < y.

Otherwise, suppose there are u,v in (h(a¡), h(üj)) suchthat adj(u,v)

holds and u, v are not attached to either h(a¡) or h(aj). Then -idnt(ai, af)

holds, hence either -idntia¡, am) holds or ->dnt(am, üj) holds; as before we

will assume the former. Let x be the greatest element in (h(a¡), h(üj)) which

is not attached to h(aj). If there is no c < x such that a'dj(c, x) holds, set
h(am) = x ; otherwise let bk be the first unused constant, and set h(am) = bk ,

x -< bk.
Strategy for c = bk. We are assuming that bk is not attached to anything

in the range of h . Cancel all values of h defined with lower priority than bk .
There are i, j such that h(a¡) < bk < h(aj), h(a¡) and /z(a,) are defined with

higher priority than bk , and (h(a,), h(üj)) contains nothing else defined with
higher priority than bk . Such /' and j exist because of our stage 0 definition
of h and the limited conditions under which that mapping could change.
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If ->P,+ (ai) holds, we attach bk to h(a¿) by setting adj(u, v) for all u,v £

^such that h(a¡) < u -< v < bk . If P,+ (a¡) holds and ->P¡~(aj) holds, act
symmetrically.

Suppose Pt+(a¡) and P,~(aj) both hold. If there are no enumerated adjacen-
cies in (h(a,), h(aj)), then we search in Lr, increasing in r > t, for the first

m such that a¡ <r am <r üj . Either the search will halt and we reset ts = r,

and h(a,„) = bk , or for some r we will discover new inconsistencies between

Lr and our currently defined map. In the latter case we proceed to stage s+l,

letting ts+\ = r.

If there are enumerated adjacencies in (h(a¡), h(üj)), then we can assume

that -<dnt(ai, üj) holds. Let x and y be the least and greatest elements re-
spectively of (h(a¡), h(üj)) - rng(h). Conduct a search in Lr, r > t, for the

first m such that a, <r am <r a¡ and -iPr+(am) or ->P~(am) holds. The exis-

tence of the enumerated adjacencies implies that either the search will halt and

we will set h(am) = x or h(am) = y as appropriate, also setting adj(u, v) for

all u and v such that x < u -< v < y, or for some r we will discover new

inconsistencies and start the next stage as above.

This describes the construction. It remains to argue that all requirements are

eventually satisfied. From our discussion of stage 0, it's easy to see that this is

true for ao, bo, ax and bx. Action for these elements also makes it clear that

at a given stage s, we will eventually settle on a highest priority requirement
for attention.

By induction, suppose that for i < k, a, and b¡ have received attention for

the last time. The finite nature of our A2 approximations makes it clear that

ak will require attention only finitely often, and will be satisfied after the last
such time.

Considering bk, assume that for i < k, j < k, a¡ and b¡ have received
attention for the last time. Reconsidering the strategy for bk , action taken for

bk will involve a search for a suitable preimage either for bk , or for some c

to which bk is attached. From the hypothesis that higher priority requirements
will never again require attention, it follows that a suitable preimage am exists.

If am is the first such for which the approximations settle down, we will have

bk correctly attached to h(am), as this mapping is established with priority
bk . Clearly, being correctly attached implies that am has a predecessor or a

successor, and bk will be bound when that element last receives attention.

Finally, we claim that the enumerated adjacencies of J? give all the adja-

cencies of Jj?. Suppose (u, v) is an adjacency of Z£. Clearly, if u and v
are both in rng(h), then (u, v) is the image of an adjacency of S? and so

will be enumerated. Suppose exactly one of u and v, say u = A(a,), is in

rng(h). If -tP+(a,) holds, then adj(u, v) will be enumerated when we last

act for a¡ and its successor. If P+(a¡) holds, then when v receives attention

it will be attached to h(ak) for some k with a¡ < ak , and (u,v) cannot be

an actual adjacency. Suppose (u, v) is a true adjacency and neither u nor

v is in rng(h). Let a,, a¡ be such that a, < a¡, u is correctly attached
to h(a¡) and v is correctly attached to /z(ay). If (u, v) is a true adjacency,

then (h(a¡), h(üj)) is finite, thus (a,, a¡) must be finite, and adj(u, v) will be

enumerated when the intermediate adjacencies of (a,, a7) are recognized and

attended to.
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Let h — lim5 hs, and Z£  =\Z)Z£S. These satisfy the hypotheses of Lemma

6.
This completes the proof of Theorem 5 and also of Theorem 1.
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