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AFFINE SURFACES WHOSE GEODESICS
ARE PLANAR CURVES

LUC VRANCKEN

(Communicated by Christopher Croke)

Abstract. We study the geometry of nondegenerate affine surfaces M2 in R4 ,

with respect to the Burstin-Mayer, the Weise-Klingenberg and the equiaffine

transversal plane bundle. A classification is obtained of the surfaces whose

geodesies with respect to the induced connection are planar curves.

1. Introduction

In this paper, we study nondegenerate affine surfaces M2 in R4 . For such

surfaces there exist infinitely many canonically determined (and in general dif-
ferent) affine transversal planes (see [SV]). Among this family there are three

which have been closely studied in the literature, namely the Burstin-Mayer

transversal plane bundle ([BM]), the Weise-Klingenberg transversal plane bun-

dle ([K]) and the equiaffine transversal plane bundle, which was introduced

in [NV]. For more details and a geometric motivation of this last transversal
bundle we refer to [NV] and [DMVV]. Here, we prove the following theorem.

Main Theorem. Let M2 be a nondegenerate affine surface in R4 . Denote by V1

(resp. V2 and V3) the connection induced by the equiaffine transversal plane

bundle (resp. the Burstin-Mayer transversal plane bundle, the Weise-Klingenberg

transversal plane bundle). Then the following conditions are equivalent:

( 1 ) The V ' -geodesies of M are planar curves.

(2) The V2-geodesics of M are planar curves.

(3) The V3-geodesies of M are planar curves.

(4) M is affine equivalent with either one of

x(u, v) = (u, v, \(u2 - v2), uv)   and   x(u,v) = (u,u2,v,v2).

2. The affine metric and the different transversal plane bundles

Here, we describe how to obtain the different transversal plane bundles. For
details, we refer to [NV] and [SV]. Consider R4 with its standard affine con-
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nection D and its parallel volumeform œ given by the determinant. Let M2

be a surface in R4 and a a transversal plane bundle. We denote by £1 and t\2

two local vector fields which form a local basis of a. Then for tangent vector

fields X and Y to M, we have the following unique decompositions:

(2.1) DXY = V XY + hx(X ,Y)t\x+h2(X ,Y)t\2,

(2.2) Dxtx =-SxX + tj (JT)i, + t2(X)^2 ,

(2.3) 7)^2 = -S2X + t2(X)£, + t2(X)6.

We call V the affine connection induced by the transversal plane bundle a.

The cubic forms C1 and C2 are defined by

Cl(X, Y,Z) = (Vxhx)(Y, Z) + r\(X)hx(Y, Z) + rx2(X)h2(Y, Z),

C2(X, Y,Z) = (Vxh2)(Y,Z) + t2(X)hx(Y, Z) + x\(X)h2(Y, Z).

Then, if M is nondegenerate, we can use D and a> to define a metric g on

M (see [NV]). If g is definite, if necessary by interchanging two coordinates

in R4 , we may assume g is positive definite.
Let u = {Xx, X2} be an orthonormal frame, i.e., g(X,■, Xj) = (e)'o¡j, for

i, j £ {1,2}, where e = 1 if g is positive-definite and e = -1 if g is

indefinite. Then, in any transversal plane bundle a, there exists a unique local
basis {¿¡i ,c¡2} of a such that

a)(Xx,X2,ix,c;2)=l,

hx(Xx,Xx) = l, hx(X2,X2) = -e,    hliXx,X2) = 0,

h2(Xx,Xx) = 0, h2(X2,X2) = 0,      h2(Xx,X2)=l.

In order to simplify expressions, we write C'jkl = C'(Xj, Xk, X¡), where

i, j, k, / G {1, 2} and u = {Xx, X2} is a local orthonormal basis, with corre-
sponding transversal basis {£1, £2} • From [NV] and [SV], we have the following

characterisations of the different transversal plane bundles:
1. The equiaffine transversal plane bundle (aeq) is determined by

eC122 - Cm - 2C2li = 0,       C2XX + eC222 + eCxxx + Cx22 = 0,

C211 - eC222 + 2C122 = 0,       C2XX — eCl22 - Cnl +eC222 = 0.

2. The Burstin-Mayer transversal plane bundle (ctbm) is determined by

2C2n +eC222 + Cx22 = 0,       eCH1 + C122 + C2XX +eC222 = 0,

2eC,22 + Cxxx - C2XX =0,       eC122 + Cxxx - eC222 - C2XX = 0.

3. The Weise-Klingenberg transversal plane bundle (owk) is determined by

C222 = zCxxx,    CX22 = -C2XX,    C2xx=eCx22,    Cxxx =-C222.

From the above characterisations it follows that if there exists a transversal

plane bundle a such that C1 = C2 = 0, then a = <Teq = <tBm = 0wk •

3. Proof of the main theorem

Let M2 be a nondegenerate surface in E4 . We start by taking an arbitrary

transversal plane bundle o which induces a connection V on the surface, and

we assume that the V-geodesics are planar curves.
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Lemma 3.1. Let p £ M2. For every vector v, we have

hx(v , v)C2(v, v , v) - h2(v, v)Cx(v , v,v) = 0,

hx(v, v)Sxv + h2(v, v)S2v is a vector in the direction of v.

Proof. Let p £ M2 and let y be the V-geodesic through p in the direction of
a non-zero vector v . Then

Dyy' = hx(y',y')^+h2(y',y')i2,

D7,(Dy,y')= -hx(y', y')Sxy'- h2(y', y')S2y'

+ Cx(y',y',y'Xx + C2(y',y',y')^2.

Since / is a tangent vector, the fact that y is planar implies that /, Dy*y'

and DyiDyy' are linearly dependent. Hence

h\y', y')C2(y', y',y')-h2(y', y')Cx(y',y', y') = 0,

and -hx(y', y')Sxy' - h2(y', y')S2y' is a vector in the direction of y'.   D

We now take a local orthonormal basis u = {Xx, X2}. We write c = cost

and s = sin t if M2 is positive definite and c = cosh t and s = sinh t if M2
is indefinite. Then for any vector field X = cXx + sX2, the previous lemma

implies that

(3.1) hx(X, X)C2(X, X, X) - h2(X, X)CX(X, X, X) = 0,

(3.2) g(hl(X, X)SxX + h2(X, X)S2X, X1) = 0,

where X1 = -esXx + cX2. We first look at (3.2). This gives us that

0 = c4g(SxXx,X2) + s4g(SxX2,Xx)

+ cis(-eg(SxXx ,XX) + g(SxX2, X2) + 2g(S2Xx, X2))

+ c2s2(-eg(SxX2 ,XX)- eg(SxXx, X2) - 2eg(S2Xx, Xx) + 2g(S2X2, X2)

+ csi(g(SxXx ,XX)- Eg(SxX2, X2) - 2eg(S2X2, Xx).

Since the above equation has to be valid for all values of t, we deduce that

(3.3) g(SxXx,X2) = 0,        g(S2Xx,Xx) = eg(S2X2,X2),

(3.4) g(SxX2,Xx) = 0,        g(S2Xx,X2) = g(S2X2,Xx),

(3.5) -eg(SxXx ,XX) + g(SxX2, X2) + 2g(S2Xx, X2) = 0.

Of course (3.3) up to (3.5) remain valid for every orthonormal basis u =

{Xx, X2} with corresponding transversal basis {Çx ,£2}.
Similarly, using (3.1), we obtain that

(c2 - es2)(c3C2xx + 3c2sC2x2 + 3cs2C222 + s2C¡22)

- 2cs(c3C,111 + 3c25C,'12 + 2>cs2C\22 + i3C2'22) = 0.

Since the above equation has to be valid for all values of t, we get that

CU1=0, Q22 — 0' C222 = -3eC112,

C,22 = 2C112,       C112 =-2eC122,       Cm = -3eC,22.
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We now restrict our attention to the case that a is either aeq , or trBM , or
(7WK • By combining the above formulas with the equations characterising these

affine transversal planes, it follows in each of the three cases that C and C2

vanish identically. Therefore all three transversal planes coincide and we get the

equivalence of (1), (2) and (3). So, in order to complete the proof of the Main

Theorem, we may assume that a = aeq and C1 and C2 vanish identically.

This means that we can use the formulas of Section 8 of [NV]. In particular, we

use the orthonormal frame u = {Xx, X2} constructed in [NV, p. 162]. For this

frame all t 's vanish identically, as well as V\ Xj = 0, for all i,;"€{l,2}.

Equations (8.16) up to (8.19) imply that the shape operators Sx and S2 satisfy

SXXX = XXXX + X2X2, S2XX = —eX2Xx + XXX2,

SXX2 = — eX2Xx + XXX2,       S2X2 = —eXxXx — eX2X2.

Substituting these equations in (3.3) up to (3.5), we get that Xx = X2 = 0. Hence

Sx = S2 = 0, which since all t 's are zero, implies that Çx and Ç2 are constant

vector fields in R4 . So, since VXX¡X2 = VXX2XX(= 0), there exist coordinates u

and v such that

ou ov

Therefore, if we denote the immersion of M2 into R4 by x, we get that

Xuu = Cl , Xuv = Ç2 , Xvv = —£C,X.

Since ii and t\2 are both constant vector fields, integration gives that up to an

affine transformation x(u, v) = (u, v, \(u2 - ev2), uv). If M2 is definite the
proof is completed. In the indefinite case, after an affine transformation we can

rewrite the above example as

x(u, v) = (u + v , u-v, \(u + v)2, \(u-v)2).

A change of variables now completes the proof.
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