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ABSTRACT. Nonisomorphic 3-groups of distinct nilpotency class are constructed
with isomorphic Burnside rings.

1. THE RESULT

W. Burnside in 1911 (see [4, p. 236 ff]) introduced a ring associated to permu-
tation representations of a finite group G which is now called the Burnside ring
Q(G) of G. Indeed, let M, ..., M, be a set of representatives of the transitive
permutation representations of G. Then every finite G-set M decomposes as
a disjoint union of transitive G-sets, so that we can write M = A\ M| +-- -+, M,
for nonnegative integers A; . Moreover, if M and N are two G-sets, then there
is a natural action of G on the cartesian product M x N and, by the above,
this can be written as an integral linear combination of the M;. Allowing neg-
ative coefficients (i.e. using the usual Grothendieck construction), this yields a
ring-structure on the set of all (generalized) permutation representations of G.

The isomorphism problem arises naturally. Indeed, let G and H be fi-
nite groups and assume that their Burnside rings Q(G) and Q(H) are ring-
isomorphic. What can be said about G if we know H (see the survey article
[8] for the analogous problem for group rings). As the additive group of Q(G)
is free abelian, freely generated by the representatives of transitive G-sets, we
see that the number ¢ of conjugacy classes of subgroups of G and H are
equal. Beyond this trivial remark, a celebrated result of A. Dress [5] says that
the solubility of H implies solubility of G. Furthermore, a number of other
properties can be read off. However, see [9].

The ring Q(G) is determined by the table of marks M(G) of G (see [7,
Chapter 3]). Thus, for the isomorphism problem for Burnside rings, it is of
interest to see what properties can be read off from M(G). Note that the table
of marks of G determines the poset #(G) of conjugacy classes of subgroups
of G (see [7, p. 120]). The latter contains much less information about G. In-
deed, all groups of order pq have order-isomorphic posets of conjugacy classes.
However, it was shown in [1] that #(G) = #(H) and H a noncyclic p-group
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implies that |G| = |H| and if H is abelian or metacyclic, then G and H are
isomorphic (see [1] and [3]). Also, the result proved in [2] can be viewed in this
context. Indeed, finite groups were classified with precisely one conjugacy class
of nonnormal subgroups, and a trivial consequence of this result is that groups
of equal order with this property are isomorphic.

It has been conjectured that Q(G) = Q(H) and H a p-group implies that G
and H are of equal nilpotency class. The objective of this note is to construct
a counterexample for this. Indeed, we shall prove:

Theorem. Let G = (x,y,z|x’ =)y’ =2 =[x, z]=[y,z] =1, [x,y] = 2)
and H=(x,y,z|x* =y’ =2"=[y,z]1=1,[x, z] = 23, [x, y] = z). Then
Q(G) = Q(H). Moreover, |G| =729 = |H| and G is nilpotent of class two and
H is of class three.

In particular, the nilpotency class of a p-group cannot in general be read off
from its Burnside ring (at least for p = 3). It seems likely that the analogous
construction works for all primes p > 5. However, it is not clear how to modify
the groups for p = 2. Also, it is not known to us whether ¢(G) < 2 implies
any bound for the class ¢(H) of H.

2. THE ISOMORPHISM

First of all, the groups G and H have been shown in [3] to have isomorphic
posets of conjugacy classes, so that they were natural candidates to try. The
tables of marks for G and H were calculated using the following sequence of
GAP commands:

X := AbstractGenerator(“x”) ; ;

y = AbstractGenerator(“y”); ;

z := AbstractGenerator(“z”); ;

G :=Group(x,y, z);;

G.relators =[x"9,y79,z79, x" — 1%z —1lxxx*z,

Yy —lxzo—1xy*xz, x " — 1%y~ —lxxxyxz"—1];

D := OperationCosetsFpGroup(G , Subgroup(G, {y]));

pp = TableOfMarks(p) ; ;

LogTo(*M(G)”); ;

DisplayTom(pp) ;

LogTo (); ;

and

a := AbstractGenerator(“a”

b := AbstractGenerator(“b”) ; ;

¢ := AbstractGenerator(“c”); ;

H := Group(a, b, c);;

H.relators :=[a~9,b79,¢~9,b~—1xc~—1xbxc,

a~—1xb~—1lxaxbxc™—1,a~-1xc"—1xa*xc™-2];

q := OperationCosetsF pGroup(H , Subgroup(H , [b))); ;

qq = TableOfMarks(q) ; ;

LogTo(“M(H)); ;

DisplayTom(qq);

LogTo(); ;

This produced in files M(G) and M(H) two 87 x 87 lower triangular matri-
ces that describe the multiplication of the corresponding Burnside rings in terms
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of the representatives of conjugacy classes of subgroups that will be numbered
by 1...87. Instead of the LogTo and DisplayTom commands we could also
use for example

ppp := MatTom(p); ;

PrintTo(*M(G)”, ppp); ;

Clearly, a permutation 7 of the conjugacy classes of subgroups of H does
not affect the ring structure of Q(H), and our problem was reduced to finding
a suitable permutation matrix P related to n such that PTM(H)P = M(G).

To boil down the possibilities for = for a systematic search, we used the
following properties for G and M(G):

(a) Using CAYLEY at Bologna University, we determined that the automor-
phism group of G is of order 2*-3° and that G has an automorphism ¢ of
order 8. As G is a two generator 3-group, a result of Burnside [4] on coprime
automorphisms says that ¢ acts as an isomorphism of order 8 on the Frattini
quotient G/®(G) = Z3 ® Z3 of G. Hence Aut(G) acts transitively on the set
of maximal subgroups of G and so without loss of generality, the representative
83 corresponding to one of the maximal subgroups of G may be assumed to
be fixed.

(b) If the n x n matrices M(G) and M(H) satisfy

(1) M(G) = PTM(H)P

where P is a permutation matrix, then for all mixed products of the form
q(A, AT) := Ak (4™)T ... 4k(4™)T the analogous relation holds

(2) a(M(G), M(G)") = PTq(M(H), M(H)")P.

To determine P with (1) we can consider for example g¢;(4, A7) := 43 or
q2(A, AT) := A>AT and determine properties that must hold for all permutation
matrices (2). A solution P of (1) must satisfy such properties, too. Note
that the matrices ¢;(M(G), M(G)T) have more distinct elements with lower
frequency. Thus an inspection of ¢;(M(G), M(G)T) provides information
about permutations satisfying (1).

(c) For given n x n matrices A and B we look for a permutation 7 that
satisfies 4 = PTBP. Each matrix 4 and every element s = 4; ; of A give
rise to a graph G,(s) defined by the knots P,,..., P, and the set of edges
{(P;, Pj)| if A; ; = s}. Permutations applied to 4 permute the knots of G4(s)
in the same way. Hence, G4(s) and Gp(s) differ only by the permutation x.
Comparing these two graphs we can extract information about 7. As a trivial
example let us consider the case that s appears only once in 4 and B. Then
G4(s) is given by one edge {(P;, P,)} and Gg(s) by {(P, Pn)}. Hence, we
can deduce that n satisfies n(k) =i and n(m)=j.

Combining (a), (b), and (c) one can determine sufficiently many properties
of permutation matrices P that satisfy (1). To compute the matrices g(4, A7)
and the related graphs G, 47)(s) we used MATLAB. We determined one pos-
sible permutation 7 that transforms the matrix M(H) into the matrix M(G).
This permutation 7 is given by

(25, 26)(30, 32)(44, 45)(50, 51)(56, 57)(66, 77, 72)
(62,71, 65,76, 70, 82, 80, 75, 69, 81, 64, 74, 68, 79, 63, 73, 67, 78).
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