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ADDING SMALL SETS TO AN N-SET

ZUZANA BUKOVSKÁ AND LEV BUKOVSKY

(Communicated by Andreas R. Blass)

Abstract. Pseudo Dirichlet and N-sets are small sets of reals defined in the

theory of trigonometric series. We prove that by adding a set of cardinality

smaller than p to an N-set one obtains again an N-set. This is a strengthening

of Arbault-Erdös' theorem about adding countable sets to N-sets. A similar

result holds true for pseudo Dirichlet sets.

0. Introduction

Pseudo Dirichlet, N and No are notions of smallness that arose in the theory
of trigonometric series, m and p are cardinals between Hi and the continuum
that play a role in many recent consistency and independence results in the set
theory. The necessary definitions are given in Sections 1 and 2.

It turned out that the classical result of J.Arbault [Ar] saying that every count-

able subset of the unit interval is an No-set can be extended by replacing "count-

able" by "of cardinality smaller than m " (N. N. Kholshchevnikova [Kh]) or even

by "of cardinality smaller than p " (Z.Bukovská [Bl]). Another famous result

about small sets of trigonometric series theory is the theorem of Arbault-Erdös
that by adding a countable set to an N-set one obtains an N-set.1 We show (see

Theorem 1 below) that also in this case the word "countable" can be replaced

by the words "of cardinality smaller than p ". Moreover we show that a similar

result for pseudo Dirichlet sets (Theorem 2 below) follows from theorems 3 and
10 of [Bl].

Both J.Arbault [Ar] and N.Bary [Ba] ask whether the result about adding

countable sets to an N-set can be extended for some uncountable set. The
presented result shows that the question cannot be answered in a decisive way.

We describe the answer to this question in two different models of the set theory
ZFC.
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'J.Arbault in [Ar] proves this theorem with a remark that P.Erdös already has proved it inde-

pendently without publishing. However, the notes of Arbault about Erdös' proof are sufficient for

reconstructing it. The complete proof of P.Erdös is given in [Z,pp.237-238].
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One can construct a model of ZFC in which the size c of the continuum

is any prescribed regular cardinal (say c = #2 or c = #w+i ) and the so-called
Martin Axiom holds true (see [Je,pp.232-241]). Consequently, in this model,

p = c and thus, by adding a set of cardinality smaller than c (especially by

adding a set of cardinality Ni ) to an N-set you obtain again an N-set.
On the other hand, one can construct a model of ZFC in which the size of the

continuum is again arbitrarily large, but there exists a Lebesgue non-measurable

set of cardinality Ni (see [Je,p.568]). Since every N-set has Lebesgue measure

zero, this set is not an N-set and adding it to an N-set does not produce an N-set

either.

1. Some set theory

We shall use the standard set-theoretic terminology and notation as intro-

duced e.g. in [Fr,Je] (with slight differences, namely D.Fremlin uses inverse

ordering of forcing).
By 1^1 we denote the cardinality of the set X. N denotes the set of all

natural numbers (including 0). If s/ is a family of subsets of a set A, then we

define
non(^) = min{|*| ; X C A & X £ s/}.

A subset X of a partially ordered set ¿P, < is said to be centered if for any

finite system xi, ... , x„ of elements of X, there is an x e 3s such that x < x,
for all i = 1,...,« . A partially ordered set 3s ,< is a-centered if 3* is a

union of countably many centered subsets. A subset s/ ç 3s is dense in 3s

if for every x e 3° there exists a y < x, y e s/ . We shall suppose that the
considered partially ordered sets do not have minimal elements. A subset &

of 3° is called a filter if for any x, y e *§ there exists a z e "§ such that
z <x, z <y, and, if x e & and x < z, then also zef.

The cardinal p (see e.g. [vD,Fr]) is the minimum number of dense subsets in

a (x-centered partially ordered set such that no filter meets them all. M. G. Bell

[Be] provides a simpler, equivalent, combinatorial description of the cardinal

P-

2. Some trigonometric series theory

Let us recall that a sequence of real-valued functions {fn}%L0 quasinormally

converges to a function /ona set X if there exists a sequence of positive reals

ien}T=o converging to zero such that

(Vx G X)(3k)(Vn > k) | fn(x) - f{x) |< e„.

The quasinormal convergence was introduced and studied in [B2,CL] (Á.Császár

and M.Laczkovich call it equal convergence).
We recall some notions and results of trigonometric series theory (for a recent

survey of related notions and results see [BL,KS]). A subset A of the unit

interval [0,1] is called a Dirichlet set (a pseudo Dirichlet set) if there exists
an increasing sequence Wl^Lo °f natural numbers such that the sequence

sinnknx, k = 0, 1, 2, ... , converges uniformly (quasinormally) to zero on

A . The notion of a Dirichlet set is a rather classical one (see e.g. [KJ]). The
notion of a pseudo Dirichlet set has been explicitly introduced in [Bl] under

the name D-set and then by S.Kahane [KS].
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A subset A of the unit interval [0,1] is called an ~N-set if there are non-

negative reals a„, n = 0, 1, 2,... , such that

(1) ^a„ = +oo

and
oo

(2) ^2 an I sin nnx |< +00   for every x G A.

Now, we use the ideas of the proof qiven by R.Salem [Sa] as modified by
N.Bary. We follow N.Bary [Ba,Kh.XIII,§8]. Let A be an N-set, a„,n =
0,1,..., being non-negative reals such that (1) and (2) hold true. We can

assume that 0 < a„ < 1 for every n , a0 = 1. Put

(3) S„ = ¿a,
í=0

and

(4) Qn = |.

Then the sequence {Sn}^Lo is increasing and
00

(5) ]Té>„ = -hx>.

Using some rather elementary facts from the infinite series theory, one can find
an unbounded non-decreasing sequence {a«}£L0 of natural numbers such that

00

(6) £ -£r < +°°-
«=o5„ *

Denote

(7) in = -j;-

We shall use these sequences in the proof of the main result of the paper.
The starting point for both proofs of Arbault-Erdös' theorem is a result of

R.Salem [Sa] about adding a single point to an N-set, which is based on a

classical result from the number theory.

Proposition 1. For any reals X\, ... , xm and any e > 0 there exists a natural

number k £ 0 such that

<*> k<(iy

and

(9) I sinknx, |< 2ne  for i = 1, ... , m.

The theorem is an easy consequence of the classical Dirichlet-Minkowski the-

orem about Diophantine approximations (see e.g.[Ba,Bl,Ca]; note that | sin nx \
is not greater than nx "the distance of x to the nearest integer").

Let us recall another well-known fact, which we shall need for the proof of

Theorem 2.
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Proposition 2. If A is a Dirichlet set, xe [0, 1], then also ^fu{x} is a Dirichlet

set.

A proof based on the Dirichlet-Minkowski theorem can be found e.g. in [Li].

3. Adding a set of cardinality < p to an N-set

The following theorem is the main result of this paper.

Theorem 1. Let A ç [0, 1] be an N-set. If B ç [0, 1] is a set of cardinality
less than p, then AuB is an N-set too.

Before proving the theorem we introduce some notation and prove some
auxiliary results.

Assume that A is an N-set and that a„ , Sn , gn , qn, e« , " = 0, 1,... , are

such as in Section 2 (i.e. conditions (l)-(7) hold true). For any finite subset T

of B we denote

FT = {[«, k] e N x N ; 0 < k < Sn &

& \T\ <qn & (| sinA;«7rx |< 2nen for every x e T)}.

Let us remark that Ft Q Fs whenever S ç T.

The following rather simple result expresses the main idea of Salem's proof

[Sa].

Lemma 1. If T is a finite subset of B, then for every n suchthat qn > \T\ there

exists an integer k such that [n, k] e FT.

Proof. Assume that \T\ < q„ . Then by Proposition 1, for m = \T\ and e = e„

there exists a positive natural number k < (i)m such that

| sinknnx \< 2nen

holds true for every x e T. By (7) and (8) we have

*s(¿)"s(¿r=s- qed-

The set-theoretical essence of Theorem 1 is hidden in the following lemma.

Main Lemma. If \B\ <p, then there exist a set W ç N and a function X defined
on W with values positive integers such that

(10) (VA: e W)X(k) < Sk ,

(11) £ftt = +oo
kew

and for every finite T ç B there is an m such that

(12) [k,X(k)]eFT

for every k eW, k> m.

Proof. We define a partially ordered set 3°, < as follows (compare [Fr,pp.2-3]

or [Vo,p.239]).
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A couple [t, T] belongs to 3s iff t is a function defined on a finite subset

dom(i) of N with values positive integers, such that t(k) < Sk for every k e

dom(t) and T is a finite subset of B . The order of 3* is defined by

[t\, Tx] < [t2, T2] = (dom(*2) Ç dom(/,) & (Vfc e dom(i2)) fi(fc) = h(k)

& (VfcGdom(í,)-dom(í2))[ife,ri(fc)]€Fr2 & r2ç7ï).

Since the set

&t = {[t, T] e 3° ; T is a finite subset of 5}

is centered, the set 3s being a countable union of «^ 's is er-centered. For a

natural number m and a real x G i? we denote

¿fm = {[i,r]G^;    £   &>m},
í:€dom(í)

Sfx = {[t,T\e&',xeT}.

It is easy to see that Sm and 3ÎX are dense in ^ .
Since the set

{&,„■, meN} (j{3?x;xe B}

has cardinality smaller than p, by the definition of p there exists a filter & ç 3°

that meets each ¿fm and each 3lx .

We denote
IF = {k G N ; (3[t ,T]e&)k€ dom(t)}.

If [ii, T\\, [t2, T2] g ^, then there exists a couple [i, S] G ̂  such that
[•s, S] < [tj, T] for z = 1, 2. By the definition of the order < we obtain that

ti(k) = s(k) = t2(k) for k G dom^) n dom(i2) ■ Therefore, we can define the

function X as follows: for k G W we set

X(k) = n       if t(k) = n for some [t,T]e &.

Evidently, for every k G W we have X(k) < Sk . Thus (10) holds true.
By the choice of &, for arbitrary m e N we have Sm n ^ ^ 0 . Therefore

Z^eir É?í: > >". As m was arbitrary, (11) holds true.
Now, let T be a finite subset of B . Since ^ n^ ,¿ 0 for every x e T and

^ is a filter, there exists a couple [s, S] G S? such that T CS. Let m G N be

greater than every i G dom(s). If k > m, k e W, then k e dom(w) for some

[u, U\e&,[u, U]<[s,S]. Then X(k) = u(k) and

[k,u(k)]€FsCFT.

Thus, (12) holds true.   Q.E.D.

Proof of Theorem 1. Let W, A be as in the Main Lemma. We show that

(13) £ Qn I sin«A(«)^x |< +00
new

for every x G A U 5 .

If x G A, then

Qn | sinnA(«)7tx | < QnX(n) | sin«7rx |

< QnSn | sin«7tx |= a„ I sin«7TX I

for every n eW. Thus, (13) is true by (2).
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Now, let x G B. By the Main Lemma there exists an integer m such that
for every n > m, n G W, we have

| sinnA(«)7rx |< 2ne„.

Then

q„ | sin«A(rt)7rx |< 2n—5-¡-

Sn+q"
and (13) holds true by (6).

The integers nX(n), n G W, are not necessarily increasing, but only a finite
number of them can be equal to any given integer. Rearranging the series (13)
by setting

ei = £{0« ; nX(n) = k)

(and Q'k = 0 if there is no n such that nX(n) = k ), we obtain the trigonometric
series

oo

y^ gk sin knx

¡fc=0

converging absolutely on A u 5 with a divergent sum of coefficients.   Q.E.D.

4. Adding a set of cardinality < p to a pseudo Dirichlet set

We recall two results proved in [Bl]. Theorem 3 of [Bl] can be shortly

formulated as follows.

Proposition 3. A set is pseudo Dirichlet if and only if it is a union of an increasing
sequence of Dirichlet sets.

The next proposition is Theorem 10 of [Bl].

Proposition 4. Let {Bs, s e S} be a family of Dirichlet sets. If \S\ < p and for

every finite TCS the union \JseTBs is a Dirichlet set, then the union \Js€SBs
is a pseudo Dirichlet set.

Using Propositions 2 - 4 we prove

Theorem 2. If A is a pseudo Dirichlet set and B c [0, 1] has cardinality less
than p, then also Ali B is a pseudo Dirichlet set.

Proof. Since A is a pseudo Dirichlet set, by Proposition 3 there are Dirichlet
sets Ao ç A\ Q •■■ C A„ C ■■■ such that A - \J^=0^« • Denote by & the set
of all finite subsets of B. For neN and leJ we denote

Bn,T = AnUT.

By Proposition 2, every B„T is a Dirichlet set. One can easily see that the

family {B„ t T ; [n, T] e N x ^"} satisfies the assumption of Proposition 4.
Therefore the union

(J Bn,T = AUB
[n,T]€Nx^"

is a pseudo Dirichlet set.   Q.E.D.

5. Some problems

According to what has been said in the introductory part, the question of

N.Bary [Ba] "is there an uncountable set such that by adding it to any N-set one

obtains again an N-set?" can be naturally modified as follows:
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Problem 1. What can you say about the smallest cardinal k such that there are

an N-set A and a set B of cardinality k such that AuB is not an N-set?

Theorem 1 says that k > p.

Let us denote by JP the set of all N-subsets of the unit interval, and similarly
Jio for an No-set (an N0-set is an N-set with a„ = 0, 1 ; see e.g. [Ar,Ba,Bl,BL,

KS]) and 3°3 for pseudo Dirichlet sets. By the result of [Bl] mentioned in
the introduction (which is also a simple consequence of Theorem 2) we have

p < non^-gr) < non(^o) < non(^).

Problem 2. Can any of these inequalities be replaced by the equality?
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