NONLINEAR DEGENERATE ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH CRITICAL GROWTH CONDITIONS ON THE GRADIENT

KWON CHO AND HI JUN CHOE

(Communicated by Barbara Lee Keyfitz)

ABSTRACT. We consider a nonlinear degenerate elliptic partial differential equation $-\operatorname{div}(|\nabla u|^{p-2}\nabla u)=H(x\,,\,u\,,\,\nabla u)$ with the critical growth condition on $H(x\,,\,u\,,\,\nabla u)\leq g(x)+|\nabla u|^p$, where g is sufficiently integrable and p is between 1 and ∞ . Our first goal of this paper is to prove the existence of the solution in $W_0^{1\,,\,p}\cap L^\infty$. The main idea is to obtain the uniform L^∞ -estimate of suitable approximate solutions, employing a truncation technique and radially decreasing symmetrization techniques based on rearrangements. We also find an example of unbounded weak solution of $-\operatorname{div}(|\nabla u|^{p-2}\nabla u)=|\nabla u|^p$ for $1< p\leq n$.

1. Introduction

We show the existence of solutions to the following degenerate elliptic partial differential equations:

$$(1.1) -\Delta_p u \equiv -\operatorname{div}(|\nabla u|^{p-2}\nabla u) = H(x, u, \nabla u)$$

where u is in $W_0^{1,p}(\Omega)\cap L^\infty(\Omega)$. We suppose that $H(x,s,\xi)$ is a Carathéodory function and satisfies a critical growth condition

$$(1.2) |H(x, s, \xi)| \le g(x) + |\xi|^p$$

for all $s \in \mathbb{R}$, $\xi \in \mathbb{R}^n$ and a.e. $x \in \Omega$, where $g \in L^q(\Omega)$, $q > \max\{1, \frac{n}{n}\}$.

A main step is to obtain the uniform L^{∞} -estimates for the solutions of suitable approximate equations, using the truncation technique and the radially decreasing symmetrization techniques based on rearrangement properties ([3], [6]). This method has been successfully applied to strongly elliptic equations by Ferone and Posteraro ([3]). Such an estimate allows us to prove the existence

Received by the editors January 28, 1994 and, in revised form, June 10, 1994.

¹⁹⁹¹ Mathematics Subject Classification. Primary 35J70, 35A05; Secondary 35A25.

Key words and phrases. Existence, degenerate, critical growth condition, rearrangements, spherical symmetric unbounded solution.

This paper was supported by KOSEF, GARC-KOSEF at SNU, and NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1993.

of solutions of (1.1) ([1]). The smallness condition on the measure of Ω and some norm of g are essential in the L^{∞} -estimates.

In section 3 we find some examples of unbounded weak solutions in $W_0^{1,p}$ when $H(x, s, \xi)$ is $|\xi|^p$. Since g of (1.2) is identically zero in this case, a bounded weak solution also exists on any bounded domain by Theorem 2.2. Here we find a spherical symmetric unbounded solution on $B_R(0)$ for R < 1for all p and n such that 1 .

Boccardo, Murat and Puel have shown the existence of the $\,W_0^{1\,,\,2}\cap L^\infty\,$ solutions of $-(a_{ij}u_{x_j})_{x_i} + a_0u = f(x, u, \nabla u)$ with $|f| \le C_0 + b(|u|)|\nabla u|^2$ where a_{ij} is bounded measurable, $a_0 > 0$ and b is a function on \mathbb{R}^+ ([1]). They also showed the same result for $-\Delta_p u + H(x, u, \nabla u) + a_0 |u|^{p-1} \operatorname{sign} u$ = f - div g with $|H| \le C_0 + C_1 |\nabla u|^p$ where a_0 , C_0 and C_1 are strictly positive and f and g are suitably integrable ([2]). Ferone and Posterare showed an existence result for $-(a_{ij}u_{x_j})_{x_i} = H(x, u, \nabla u) - \text{div } f$ with H satisfying (1.2) for p = 2 when f is suitably integrable ([3]).

2. The existence of weak solutions

Suppose that Ω is a bounded open set of \mathbb{R}^n . If $\phi:\Omega\to\mathbb{R}$ is a measurable function and $\mu(t) = |\{x \in \Omega : \phi > t\}|, t \ge 0$, is the distribution function of ϕ , then $\phi^*(s) = \sup\{t \ge 0 : \mu(t) > s\}$, $s \in [0, |\Omega|]$, is called decreasing rearrangement. We recall some properties of decreasing rearrangements.

Lemma 2.1. Suppose that u is in $L^p(\Omega)$, v is in $L^{p'}(\Omega)$, $\frac{1}{p} + \frac{1}{p'} = 1$ and F is a nonnegative increasing continuous function on $\mathbb{R}^+ \cup \{0\}$. Then the following are true.

- (a) $(F(u))^*(s) = F(u^*(s))$ a.e.
- (b) If $\{u_n\}_{n=1}^{\infty}$ converges to u in L^p , then $\{u_n^*\}_{n=1}^{\infty}$ also converges to u^* in

(c)
$$\int_{\Omega} uv \, dx \leq \int_{0}^{|\Omega|} u^* v^* \, ds.$$

The proof of this lemma can be found in [6].

Now we state the main theorem.

Theorem 2.2. Let us assume that condition (1.2) holds and

(2.1)
$$\int_0^{|\Omega|} \left(\frac{1}{n^p \omega_n^{\frac{\rho}{n}} s^{p-\frac{\rho}{n}} (p-1)} \int_0^s g^*(\sigma) d\sigma \right)^{\frac{1}{\rho-1}} ds < 1.$$

Then there exists at least one solution of (1.1).

Remark. The left-hand side of (2.1) is bounded if $g \in L^q(\Omega)$, $q > \frac{n}{p}$. When p=2, a similar theorem can be found in [3].

Proof. Let us put, for $\varepsilon > 0$,

$$H_{\varepsilon}(x,s,\xi) = \frac{H(x,s,\xi)}{1+\varepsilon|H(x,s,\xi)|}.$$

We still have

$$|H_{\varepsilon}(x, s, \xi)| \leq g(x) + |\xi|^{p}.$$

Furthermore $|H_{\varepsilon}|$ is bounded and hence a solution u_{ε} exists for the problem

$$(2.2) -\Delta_p u_{\varepsilon} = H_{\varepsilon}(x, u_{\varepsilon}, \nabla u_{\varepsilon}),$$

where $u_{\varepsilon} \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ (see [7]). We will omit ε ahead for simple presentation.

If u is a solution of (2.2), we have

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \phi \, dx = \int_{\Omega} H(x, u, \nabla u) \phi \, dx$$

for all $\ \phi \in W^{1,p}_0(\Omega) \cap L^\infty(\Omega)$. Choosing the test function

$$\phi_t(x) = e^{(p-1)|u|} (e^{|u|} - 1 - t)^+ \operatorname{sign} u$$

and putting $w = e^{|u|} - 1$, we have

$$\int_{w>t} |\nabla u|^{p-2} \nabla u \cdot \nabla u e^{(p-1)|u|} \left(p e^{|u|} - 1 - t \right) dx$$

$$= \int_{w>t} H(x, u, \nabla u) e^{(p-1)|u|} (e^{|u|} - 1 - t) \operatorname{sign} u dx.$$

For h > 0 we also apply the test function ϕ_{t+h} to (2.2). Building the differential quotient, we get

$$\frac{1}{h} \int_{t < w \le t+h} |\nabla u|^p e^{(p-1)|u|} (pe^{|u|} - 1 - t) \, dx + \int_{w > t+h} |\nabla u|^p e^{(p-1)|u|} \, dx
= \frac{1}{h} \int_{t < w \le t+h} H(x, u, \nabla u) e^{(p-1)|u|} (e^{|u|} - 1 - t) \operatorname{sign} u \, dx
+ \int_{w > t+h} H(x, u, \nabla u) e^{(p-1)|u|} \operatorname{sign} u \, dx.$$

Sending h to 0, we get that

$$\frac{1}{h} \int_{t < w \le t+h} |\nabla u|^p (p-1) e^{p|u|} dx \to (p-1) \left(-\frac{d}{dt} \int_{w > t} |\nabla w|^p dx \right)$$

and

$$\frac{1}{h} \int_{t < w \le t+h} |\nabla u|^p e^{(p-1)|u|} (e^{|u|} - 1 - t) \, dx \to 0.$$

Similarly we see that

$$\frac{1}{h} \int_{t < w \le t + h} |H(x, u, \nabla u)| e^{(p-1)|u|} (e^{|u|} - 1 - t) \operatorname{sign} u \, dx \to 0$$

and

$$\int_{w>t+h} H(x, u, \nabla u) e^{(p-1)|u|} \operatorname{sign} u \, dx \le \int_{w>t} (g(x) + |\nabla u|^p) \, e^{(p-1)|u|} \, dx.$$

Considering the above and Lemma 2.1 we get that

$$(p-1)\left(-\frac{d}{dt}\int_{w>t}|\nabla w|^p\,dx\right) \le \int_{w>t}g(w+1)^{p-1}\,dx \le \int_0^{\mu(t)}g^*(s)(w^*(s)+1)^{p-1}\,ds.$$

We use the inequality (see [8])

$$(2.3) n\omega_n^{\frac{1}{n}}\mu(t)^{1-\frac{1}{n}} \leq (-\mu'(t))^{1-\frac{1}{p}} \left(-\frac{d}{dt} \int_{w>t} |\nabla w|^p \, dx\right)^{\frac{1}{p}},$$

where $\mu(t)$ is the distribution function of w. Thus we get

$$\frac{(p-1)n^p\omega_n^{\frac{p}{n}}\mu(t)^{p-\frac{p}{n}}}{(-\mu'(t))^{p-1}}\leq \int_0^{\mu(t)}g^*(s)(w^*(s)+1)^{p-1}\,ds.$$

Then it is easy to obtain

$$(-w^*(s))' \leq \left(\frac{1}{(p-1)n^p \omega_n^{\frac{p}{n}} s^{p-\frac{p}{n}}} \int_0^s g^*(\sigma) (w^*(\sigma)+1)^{p-1} d\sigma\right)^{\frac{1}{p-1}}.$$

Integrating both sides with respect to s, we obtain

$$(2.4) \ w^*(0) \leq \int_0^{|\Omega|} \left(\frac{1}{(p-1)n^p \omega_n^{\frac{p}{n}} s^{p-\frac{p}{n}}} \int_0^s g^*(\sigma) \, d\sigma \right)^{\frac{1}{p-1}} \, ds \, (w^*(0)+1) \,,$$

since $w^*(|\Omega|) = 0$ and w^* attains its maximum at 0.

From (2.1) and (2.4) w^* must be bounded. Thus we get a uniform L^{∞} -estimate of u independent of ε , and this completes the proof. \square

Now we prove the uniform $W^{1,p}$ -estimates.

Lemma 2.3. If u_{ε} is the solution of (2.2) and $||u_{\varepsilon}||_{L^{\infty}}$ are bounded uniformly for all ε , then

$$||u_{\varepsilon}||_{W_0^{1,p}} \leq C(||g||_{L^1}, |\Omega|, n, p).$$

Proof. Let us take $u_{\varepsilon}e^{u_{\varepsilon}^2}$ as a test function. From (1.2) we get

$$\int_{\Omega} |\nabla u_{\varepsilon}|^{p} e^{u_{\varepsilon}^{2}} (1 + 2u_{\varepsilon}^{2}) dx \leq \int_{\Omega} g u_{\varepsilon} e^{u_{\varepsilon}^{2}} dx + \int_{\Omega} |\nabla u_{\varepsilon}|^{p} u_{\varepsilon} e^{u_{\varepsilon}^{2}} dx.$$

By Young's inequality we obtain

$$\int_{\Omega} |\nabla u_{\varepsilon}|^{p} e^{u_{\varepsilon}^{2}} (1 + 2u_{\varepsilon}^{2}) dx \leq \int_{\Omega} g u_{\varepsilon} e^{u_{\varepsilon}^{2}} dx + \int_{\Omega} |\nabla u_{\varepsilon}|^{p} \left(\frac{1}{2} + 2u_{\varepsilon}^{2}\right) e^{u_{\varepsilon}^{2}} dx.$$

Consequently we get

$$\frac{1}{2}\int_{\Omega}|\nabla u_{\varepsilon}|^{p}e^{u_{\varepsilon}^{2}}dx\leq\int_{\Omega}gu_{\varepsilon}e^{u_{\varepsilon}^{2}}dx.$$

Note that $1 \le e^{u_{\varepsilon}^2}$ and $u_{\varepsilon}e^{u_{\varepsilon}} \le C(n, p, \|g\|_{L^1}, |\Omega|)$. Using Sobolev's theorem, we obtain

$$||u_{\varepsilon}||_{W_0^{1,p}(\Omega)} \leq C(n, p, ||g||_{L^1}, |\Omega|). \quad \Box$$

Since $W_0^{1,p}$ is a reflexive Banach space and u_{ε} are bounded uniformly in $W_0^{1,p}$, there are u and a sequence $\{u_{\varepsilon_k}\}$ in $W_0^{1,p}$ such that

$$(2.5) u_{\varepsilon_{\iota}} \to u \text{weakly in } W_0^{1,p}$$

and

(2.6)
$$u_{\varepsilon_k} \to u \quad \begin{cases} \text{strongly in } L^q & \text{for } q < \frac{np}{n-p} & \text{if } p < n, \\ \text{strongly in } L^q & \text{for } q < \infty & \text{if } p = n, \\ \text{uniformly} & \text{if } p > n. \end{cases}$$

We show that u is a $W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ solution of (1.1). The following lemma shows the strong convergence of ∇u_{ε_k} in L^p . We will omit the index k of u_{ε_k} for the sake of convenience.

Lemma 2.4. Assume the same hypothesis of Lemma 2.3 and $\{u_{\varepsilon}\}$ is the sequence obtained above. Then

$$(2.7) \nabla u_{\varepsilon} \to \nabla u strongly in L^{p}.$$

Proof. Let $v_{\varepsilon} = u_{\varepsilon} - u$. We take $v_{\varepsilon}e^{v_{\varepsilon}^2}$ as a test function. From direct calculations and Young's inequality we get

$$\frac{1}{2} \int_{\Omega} |\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} \cdot \nabla v_{\varepsilon} e^{v_{\varepsilon}^{2}} dx
\leq \int_{\Omega} g v_{\varepsilon} e^{v_{\varepsilon}^{2}} dx + \int_{\Omega} |\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} \cdot \nabla u v_{\varepsilon} e^{v_{\varepsilon}^{2}} dx.$$

Subtracting $\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v_{\varepsilon} e^{v_{\varepsilon}^2} dx$ from both sides, we obtain

$$\int_{\Omega} (|\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} - |\nabla u|^{p-2} \nabla u) \cdot (\nabla u_{\varepsilon} - \nabla u) e^{v_{\varepsilon}^{2}} dx
\leq \int_{\Omega} g v_{\varepsilon} e^{v_{\varepsilon}^{2}} dx + \int_{\Omega} |\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} \cdot \nabla u v_{\varepsilon} e^{v_{\varepsilon}^{2}} dx
- \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v_{\varepsilon} e^{v_{\varepsilon}^{2}} dx.$$

For the first term of the right-hand side in (2.8) we obtain

$$\left| \int_{\Omega} g v_{\varepsilon} e^{v_{\varepsilon}^2} dx \right| \to 0 \quad \text{as } \varepsilon \to 0$$

for suitable q from (2.6). Let us consider the second term. By (2.6), Egoroff's theorem, Lemma 2.3 and the L^{∞} -estimate of u_{ε} we obtain that

$$\left| \int_{\Omega} |\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} \cdot \nabla u v_{\varepsilon} e^{v_{\varepsilon}^{2}} dx \right| \to \eta$$

as $\varepsilon \to 0$ for any $\eta > 0$. Now we consider the third term. $e^{v_{\varepsilon}^2} - 1$ goes to zero almost everywhere and is bounded. By (2.5) and the same method used in the

control of the second term we obtain that

$$\left| \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v_{\varepsilon} e^{v_{\varepsilon}^2} \, dx \right| \to \eta$$

as $\varepsilon \to 0$ for any $\eta > 0$.

Thus

$$\int_{\Omega} (|\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} - |\nabla u|^{p-2} \nabla u) \cdot (\nabla u_{\varepsilon} - \nabla u) \, dx \to 0 \quad \text{as } \varepsilon \to 0.$$

If $p \ge 2$, then

$$\int_{\Omega} |\nabla u_{\varepsilon} - \nabla u|^{p} dx
\leq C \int_{\Omega} (|\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} - |\nabla u|^{p-2} \nabla u) \cdot (\nabla u_{\varepsilon} - \nabla u) dx.$$

If 1 , then

$$\int_{\Omega} |\nabla u_{\varepsilon} - \nabla u|^{p} dx
\leq C \left(\int_{\Omega} (|\nabla u_{\varepsilon}| + |\nabla u|)^{p} dx \right)^{\frac{2}{2-p}}
\left(\int_{\Omega} (|\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} - |\nabla u|^{p-2} \nabla u) \cdot (\nabla u_{\varepsilon} - \nabla u) dx \right)^{\frac{p}{2}}
\leq C \left(\int_{\Omega} (|\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} - |\nabla u|^{p-2} \nabla u) \cdot (\nabla u_{\varepsilon} - \nabla u) dx \right)^{\frac{p}{2}}.$$

Therefore

$$\int_{\Omega} |\nabla u_{\varepsilon} - \nabla u|^p \, dx \to 0 \quad \text{as } \varepsilon \to 0. \quad \Box$$

By Lemma 2.4 and the Lebesgue Convergence Theorem, for any test function $\phi \in C_0^\infty(\Omega)$, we have

$$\int_{\Omega} H(x, u, \nabla u) \phi \, dx = \lim_{\varepsilon \to 0} \int_{\Omega} H_{\varepsilon}(x, u_{\varepsilon}, \nabla u_{\varepsilon}) \phi \, dx$$

$$= \lim_{\varepsilon \to 0} \int_{\Omega} |\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} \cdot \nabla \phi \, dx$$

$$= \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \phi \, dx.$$

Therefore a solution satisfying (1.1) exists in $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$.

3. The examples of unbounded weak solution

In this section we find some unbounded weak solutions for the equations of the form (1.1). We consider the equation

$$(3.1) -\Delta_p u = |\nabla u|^p \text{for } 1$$

We find some examples of unbounded weak solutions of (3.1).

Theorem 3.1. There is an unbounded solution of (3.1) on $B_R(0)$ for 0 < R < 1. Proof. At first we consider the case of 1 . For <math>R < 1 we let

$$u_p(x) = \int_R^{|x|} \frac{n-p}{r^{\frac{n-1}{p-1}} - r} dr.$$

Note that $u_p(x) = 0$ for |x| = R and

(3.2)
$$\nabla u_p(x) = \frac{n-p}{|x|^{\frac{n-1}{p-1}} - |x|} \frac{x}{|x|},$$

and

$$\int_{B_{R}(0)} |\nabla u_{p}(x)|^{p} dx = \int_{S^{n-1}} \int_{0}^{R} \left| \frac{n-p}{r^{\frac{n-1}{p-1}}-r} \right|^{p} r^{n-1} dr d\omega$$

$$\leq (n-p)^{p} \int_{S^{n-1}} 1 d\omega \int_{0}^{R} \frac{r^{n-1}}{r^{p}(1-r^{\frac{n-p}{p-1}})} dr < \infty.$$

Thus u_p is contained in $W_0^{1,p}(B_R(0))$. Furthermore we see that u_p is contained in $W_0^{1,q}(B_R(0))$ for any q < n. We also observe

$$\begin{split} u_p(x) &\geq \int_{|x|}^R \frac{n-p}{r(1-r^{\frac{n-p}{p-1}})} \, dr \\ &\geq C \int_{|x|}^R \frac{1}{r} \, dr \to \infty \quad \text{as } |x| \to 0 \,, \end{split}$$

that is, u_p is unbounded. Now let us calculate $-\Delta_p u_p$. From (3.2)

$$\begin{split} -\Delta_{p}u_{p}(x) &= \sum_{i=1}^{n} \left(\frac{(n-p)^{p-1}}{(|x|-|x|^{\frac{n-1}{p-1}})^{p-1}} \frac{x_{i}}{|x|} \right)_{x_{i}} \\ &= \frac{(n-p)^{p-1}}{(|x|-|x|^{\frac{n-1}{p-1}})^{p}|x|} \left(n(|x|-|x|^{\frac{n-1}{p-1}}) - (p|x|-n|x|^{\frac{n-1}{p-1}}) \right) \\ &= \frac{(n-p)^{p}}{(|x|-|x|^{\frac{n-1}{p-1}})^{p}} = |\nabla u_{p}|^{p}. \end{split}$$

Thus $u_p(x)$ satisfies the problem (3.1) for p which is less than n. Now we consider the next case of p = n. For R < 1 let

$$u_n(x) = \int_R^{|x|} \frac{n-1}{r \log r} dr$$
$$= (n-1) \left(\log \log \frac{1}{|x|} - \log \log \frac{1}{R} \right).$$

Clearly $u_n(x)$ vanishes for |x| = R and is unbounded on $B_R(0)$. From direct calculations we know u_n is contained in $W_0^{1,n}(B_R(0))$. It is also easy to show that u_n satisfies the problem (3.1) for p = n. \square

Remark. We can find the same example for the case of p = n = 2 on pages 61-62 of the book [4].

Remark. If p < n and R < 1, for any fixed x in (0, R) $u_p(x)$ converges to $u_n(x)$ as p converges to n.

REFERENCES

- 1. L. Boccardo, F. Murat, and J.P. Puel, Existence de solutions fables pour des équations elliptiques quasi-linéaire à croissance quadratique, Nonlinear Partial Differential Equations and their Applications (London) (H. Brezis and J. L. Lions, eds.); Pitman, London, 1983, pp. 19-73.
- 2. _____, l[∞] estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal. 23 (1992), 326-333.
- 3. Vincenzo Ferone and M. Rosaria Posteraro, On a class of quasilinear elliptic equations with quadratic growth in the gradient, Nonlinear Anal. TMA 20 (1993), 703-711.
- 4. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton Univ. Press, Princeton, NJ, 1983.
- D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, Berlin, 1983.
- 6. Bernhard Kawohl, Rearrangements and convexity of level sets in pde, Lecture Notes in Math., vol. 1150, Springer-Verlag, Berlin, 1985.
- 7. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaire, Dunod, Paris, 1969.
- 8. G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 697-718.

DEPARTMENT OF MATHEMATICS, POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY, POHANG, KYOUNGBUK, 790-784, REPUBLIC OF KOREA

E-mail address, Cho: iskra@posmath.postech.ac.kr E-mail address, Choe: Choe@posmath.postheck.ac.kr