BANACH SPACE PROPERTIES OF L^1 OF A VECTOR MEASURE

GUILLERMO P. CURBERA

(Communicated by Dale Alspach)

ABSTRACT. We consider the space $L^1(\nu)$ of real functions which are integrable with respect to a measure ν with values in a Banach space X. We study type and cotype for $L^1(\nu)$. We study conditions on the measure ν and the Banach space X that imply that $L^1(\nu)$ is a Hilbert space, or has the Dunford-Pettis property. We also consider weak convergence in $L^1(\nu)$.

1. Introduction

Given a vector measure ν with values in a Banach space X, $L^1(\nu)$ denotes the space of (classes of) real functions which are integrable with respect to ν in the sense of Bartle, Dunford and Schwartz [BDS] and Lewis [L-1]. This space has been studied by Kluvanek and Knowles [KK], Thomas [T] and Okada [O]. It is an order continuous Banach lattice with weak unit. In [C-1, Theorem 8] we have identified the class of spaces $L^1(\nu)$, showing that every order continuous Banach lattice with weak unit can be obtained, order isometrically, as L^1 of a suitable vector measure.

A natural question arises: what is the relation between, on the one hand, the properties of the Banach space X and the measure ν , and, on the other hand, the properties of the resulting space $L^1(\nu)$. The complexity of the situation is shown by the following example: the measures, defined over Lebesgue measurable sets of [0,1], $\nu_1(A)=m(A)\in\mathbb{R}$, $\nu_2(A)=\chi_A\in L^1([0,1])$ and $\nu_3=(\int_A r_n(t)dt)\in c_0$, where r_n are the Rademacher functions, generate, order isometrically, the same space, namely $L^1([0,1])$. The translation of properties from $L^1(\nu)$ to the Banach space X is limited by the following result: every separable order continuous Banach lattice with weak unit and no atoms can be obtained, order isomorphically, as L^1 of a c_0 -valued measure [C-2, Theorem 1]. In this paper we show that in the opposite direction there is a clear line of influence, that is, the properties of X and ν determine, to some extent, the properties of $L^1(\nu)$. We study type and cotype for $L^1(\nu)$; conditions on X and ν in order to have $L^1(\nu)$ order isomorphic to a Hilbert space; and conditions on X and ν so that $L^1(\nu)$ has the Dunford-Pettis property. We

Received by the editors December 13, 1993 and, in revised form, June 13, 1994.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46G10, 46E30; Secondary 28B05.

Research supported in part by DGICYT grant #PB90-0893.

This work is from the author's Doctoral Thesis directed by Professor F. J. Freniche at the Universidad de Sevilla.

3798 G. P. CURBERA

also study weak convergence in $L^1(\nu)$, giving an example of a measure ν such that weak convergence of sequences in $L^1(\nu)$ is not given by weak convergence of the integrals over arbitrary sets.

2. Preliminaries

Let (Ω, Σ) be a measurable space, X a Banach space with unit ball B_X and dual space X^* , and $\nu: \Sigma \longrightarrow X$ a countably additive vector measure. The semivariation of ν is the set function $\|\nu\|(A) = \sup\{|x^*\nu|(A) : x^* \in B_{X^*}\}$, where $|x^*\nu|$ is the variation of the scalar measure $x^*\nu$. A Rybakov control measure for ν is a measure $\lambda = |x^*\nu|$, such that $\lambda(A) = 0$ if and only if $\|\nu\|(A) = 0$ (see [DU, Theorem IX.2.2]).

Following Lewis [L-1] we will say that a measurable function $f: \Omega \longrightarrow \mathbb{R}$ is integrable with respect to ν if

- (1) f is $x^*\nu$ integrable for every $x^* \in X^*$, and
- (2) for each $A \in \Sigma$ there exists an element of X, denoted by $\int_A f \, d\nu$, such that

$$x^* \int_A f d\nu = \int_A f dx^* \nu$$
 for every $x^* \in X^*$.

Identifying two functions if the set where they differ has null semivariation, we obtain a linear space of classes of functions which, when endowed with the norm

$$||f||_{\nu} = \sup \left\{ \int_{\Omega} |f| \, d|x^* \nu| : x^* \in B_{X^*} \right\},$$

becomes a Banach space. We will denote it by $L^1(\nu)$. It is a Banach lattice for the $\|\nu\|$ -almost everywhere order. Simple functions are dense in $L^1(\nu)$ and the identity is a continuous injection of the space of $\|\nu\|$ -essentially bounded functions into $L^1(\nu)$. An equivalent norm for $L^1(\nu)$ is

$$|||f|||_{\nu} = \sup \left\{ \left\| \int_{A} f \, d\nu \right\| : A \in \Sigma \right\},\,$$

for which we have $|||f|||_{\nu} \leq ||f||_{\nu} \leq 2 \cdot |||f|||_{\nu}$.

Let λ be a Rybakov control measure for ν . Then $L^1(\nu)$ is an order continuous Banach function space with weak unit over the finite measure space $(\Omega, \Sigma, \lambda)$ (see [C-1, Theorem 1]). Thus it can be regarded as a lattice ideal in $L^1(\lambda)$, and $L^1(\nu)^*$ can be identified with the space of functions g in $L^1(\lambda)$ such that $fg \in L^1(\lambda)$, for all f in $L^1(\nu)$, where the action of g over $L^1(\nu)$ is given by integration with respect to λ .

The integration operator $\nu\colon L^1(\nu)\longrightarrow X$ is defined as $\nu(f)=\int f\,d\nu$, for $f\in L^1(\nu)$. It is a continuous linear operator with norm less than or equal to one. It is important to remark that no assumptions are made on the variation of the measure ν for the definition of the space $L^1(\nu)$.

A bounded set in a Banach lattice is L-weakly compact if for every sequence (x_n) of positive pairwise disjoint vectors such that for each n there exists y_n in the set with $x_n \leq |y_n|$, we have that (x_n) converges to zero in norm [M-1, Definition II.1]. L-weakly compact sets are relatively weakly compact [M-1, Satz II.6]. In order continuous Banach function spaces over a finite measure space (S, σ, μ) L-weak compactness is equivalent to equi-integrablility: for every $\varepsilon > 0$ there exists $\delta > 0$ such that for any $A \in \sigma$ with $\mu(A) < \delta$ we have $\|f\chi_A\| < \varepsilon$, for all f in the set.

For the general theory of vector measures we refer the reader to [DU]. Aspects related to Banach lattices can be seen in [AB], [LT, vol. II] and [M-3].

3. Type and cotype for $L^1(\nu)$

Recall that a Banach space has cotype q, for $2 \le q < +\infty$ (type q, for $1 < q \le 2$), if there exists a constant C > 0 such that for every $n \in \mathbb{N}$ and for any elements x_1, \ldots, x_n in X we have

$$\left(\sum_{1}^{n} \|x_{i}\|^{q}\right)^{1/q} \leq (\geq) C \frac{1}{2^{n}} \cdot \sum_{\theta_{i} \in \{1, -1\}} \left\| \sum_{1}^{n} \theta_{i} x_{i} \right\|.$$

Theorem 1. Let X be a Banach space with cotype q, for $q \ge 2$, and ν an X-valued vector measure. Then the space $L^1(\nu)$ has cotype q.

Proof. Let q > 2. As $L^1(\nu)$ is a Banach lattice, the property of having cotype q > 2 is equivalent to satisfying a lower q-estimate [LT, vol. II, p. 88]. Let f_1, \ldots, f_n be disjoint functions in $L^1(\nu)$, and $(A_i)_1^n$ disjoint measurable sets such that each A_i is contained in the support of f_i . Then $\int_{\cup A_i} (\sum_{1}^n f_j) d\nu = \sum_{1}^n \int_A f_i d\nu$. Let $(\theta_i)_1^n$ be an arbitrary choice of signs $\theta_i = \pm 1$; then

$$\left\| \sum_{1}^{n} \theta_{i} \int_{A_{i}} f_{i} d\nu \right\| \leq \left\| \sum_{1}^{n} \theta_{i} f_{i} \right\|_{\nu} = \left\| \sum_{1}^{n} f_{i} \right\|_{\nu}.$$

Averaging over all possible choices of signs and considering that the Banach space X has cotype q, we have

$$\frac{1}{C} \cdot \left(\sum_{i=1}^{n} \left\| \int_{A_{i}} f_{i} \, d\nu \right\|^{q} \right)^{1/q} \leq \frac{1}{2^{n}} \cdot \sum_{\theta_{i} \in \{1, -1\}} \left\| \sum_{i=1}^{n} \theta_{i} \int_{A_{i}} f_{i} \, d\nu \right\| \leq \left\| \sum_{i=1}^{n} f_{i} \right\|_{\nu}.$$

Taking the supremum over all possible choices of sets $(A_i)_1^n$ and considering the equivalent norm $|||\cdot|||_{\nu}$ in $L^1(\nu)$, we deduce that

$$\left(\sum_{1}^{n} \|f_{i}\|_{\nu}^{q}\right)^{1/q} \leq 2 C \cdot \left\|\sum_{1}^{n} f_{i}\right\|_{\nu}.$$

Hence $L^1(\nu)$ satisfies a lower q-estimate and thus it has cotype q.

Let q=2. We will prove that $L^1(\nu)$ has cotype 2 by showing that it is 2-concave [LT, vol. II, Theorem 1.f.16]. Let f_1, \ldots, f_n be in $L^1(\nu)$. Set $f=\left(\sum_{1}^{n}|f_i|^2\right)^{1/2}$. Consider the lattice ideal generated by f in $L^1(\nu)$

$$I(f) = \left\{ g \in L^1(\nu) : \exists \lambda > 0 \,, \ |g| \leq \lambda f \right\}$$

with the norm $\|g\|_{\infty} = \inf\{\lambda \geq 0 : |g| \leq \lambda \cdot f/\|f\|_{\nu}\}$. Its completion is an AM-space with unit, so by a result of Kakutani it is order isometric to a space C(K), for K a compact topological space [LT, vol. II, Theorem 1.b.6]. The injection $j: C(K) \longrightarrow L^1(\nu)$ has norm one and $\|f\|_{\infty} = \|f\|_{\nu}$. Consider the composition of this injection with the integration operator $\nu: L^1(\nu) \longrightarrow X$. As K has cotype 2, by Grothendieck's Theorem the operator $\nu \circ j$ is 2-summing

[P-2, Theorem 5.14]. Thus there exists a constant C > 0 such that for every $n \in \mathbb{N}$ and for any functions g_1, \ldots, g_n in C(K) we have

$$\left(\sum_{1}^{n} \|\nu \circ j(g_{i})\|^{2}\right)^{1/2} \leq C \cdot \sup \left\{ \left(\sum_{1}^{n} |\langle \mu, g_{i} \rangle|^{2}\right)^{1/2} : \mu \in C(K)^{*}, \|\mu\| \leq 1 \right\}.$$

This last supremum is $\|(\sum_{i=1}^{n}|g_{i}|^{2})^{1/2}\|_{\infty}$. Consider measurable sets $(A_{i})_{1}^{n}$ and set $g_{i} = f_{i} \cdot \chi_{A_{i}}$. From the previous expression we have

$$\left(\sum_{1}^{n} \left\| \int_{A_{i}} f_{i} \, d\nu \right\|^{2} \right)^{1/2} \leq C \cdot \left\| \left(\sum_{1}^{n} |f_{i} \cdot \chi_{A_{i}}|^{2} \right)^{1/2} \right\|_{\infty} \leq C \cdot \left\| \left(\sum_{1}^{n} |f_{i}|^{2} \right)^{1/2} \right\|_{\nu}.$$

Taking the supremum over all possible choices of sets $(A_i)_1^n$ and considering the equivalent norm $|||\cdot|||_{\nu}$ in $L^1(\nu)$, it follows that

$$\left(\sum_{1}^{n} \|f_{i}\|_{\nu}^{2}\right)^{1/2} \leq 2 C \cdot \left\| \left(\sum_{1}^{n} |f_{i}|^{2}\right)^{1/2} \right\|_{\nu}.$$

Thus $L^1(\nu)$ is 2-concave and so it has cotype 2. \square

 $L^1(\nu)$ does not inherit type from the Banach space X: consider the Lebesgue measure restricted to [0,1], the space $L^1(\nu)$ obtained is $L^1[0,1]$ which has no type.

Theorem 2. Let ν be a measure with values in ℓ^p , for $1 \le p < 2$. Then the space $L^1(\nu)$ has type less than or equal to p.

Proof. Suppose $L^1(\nu)$ has type q for some $p < q \le 2$. Then the integration operator $\nu: L^1(\nu) \longrightarrow \ell^p$ is compact. To prove it, assume by way of contradiction that this is not the case, then there exists a sequence (f_n) of norm one elements in $L^1(\nu)$ and $\varepsilon > 0$ such that $\|\nu(f_n)\| > \varepsilon$ and the sequence $(\nu(f_n))$ is weakly null in ℓ^p . Then there is a subsequence that we will still denote by $(\nu(f_n))$, which is a basic sequence equivalent to a block basis of ℓ^p . For $n \in \mathbb{N}$ and scalars a_1, \ldots, a_n , we have:

$$\left(\sum_{1}^{n}|a_{i}|^{p}\right)^{1/p} \sim \frac{1}{2^{n}} \cdot \sum_{\theta_{i} \in \{1,-1\}} \left\| \sum_{1}^{n} \theta_{i} a_{i} \nu(f_{i}) \right\| \leq \frac{1}{2^{n}} \cdot \sum_{\theta_{i} \in \{1,-1\}} \left\| \sum_{1}^{n} \theta_{i} a_{i} f_{i} \right\|_{\nu}.$$

Since $L^1(\nu)$ has type q, there exists a constant C > 0 such that

$$\frac{1}{2^{n}} \cdot \sum_{\theta, \in \{1, -1\}} \left\| \sum_{i=1}^{n} \theta_{i} a_{i} f_{i} \right\|_{\nu} \leq 1/C \cdot \left(\sum_{i=1}^{n} \left\| a_{i} f_{i} \right\|_{\nu} \right)^{1/q} = 1/C \cdot \left(\sum_{i=1}^{n} \left| a_{i} \right|^{q} \right)^{1/q}.$$

Combining the previous inequalities we arrive at a contradiction, as p < q. Hence the operator ν is compact.

The result follows from the next claim, which implies that $L^1(\nu)$ has a subspace isomorphic to ℓ^1 , contradicting $L^1(\nu)$ having type q > 1.

Claim. Let ν be an X-valued measure such that the integration operator ν : $L^1(\nu) \longrightarrow X$, is compact. Then the space $L^1(\nu)$ has a complemented subspace isomorphic to ℓ^1 .

Proof of the Claim. Let λ be a Rybakov control measure for ν . Consider the transpose of the integration operator $\nu^*: X^* \longrightarrow L^1(\nu)^*$. For $x^* \in X^*$, $\nu^*(x^*)$ can be identified with the Radon-Nikodym derivative of the measure $x^*\nu$ with respect to λ . Thus the norm in $L^1(\nu)$ can be written in the following way:

$$||f||_{\nu} = \sup \left\{ \int |f||h| d\lambda : h \in \nu^*(B_{X^*}) \right\}.$$

Let f be in $L^1(\nu)$ and let A be a measurable set. We have

(1)
$$||f \cdot \chi_{A}||_{\nu} = \sup \left\{ \int_{A} |f||h| d\lambda : h \in \nu^{*}(B_{X^{*}}) \right\}$$

$$\leq ||f||_{\nu} \cdot \sup \left\{ ||h \cdot \chi_{A}||_{L^{1}(\nu)^{*}} : h \in \nu^{*}(B_{X^{*}}) \right\}.$$

Suppose $L^1(\nu)$ has no complemented subspace isomorphic to ℓ^1 . Then $L^1(\nu)^*$ has no subspace isomorphic to ℓ_∞ [BP, Theorem 4]. As $L^1(\nu)^*$ is a dual Banach lattice it is order complete; this fact combined with $\ell_\infty \not\subset L^1(\nu)^*$ implies that $L^1(\nu)^*$ is order continuous [AB, Theorem 14.9]. In order continuous Banach lattices relatively compact sets are L-weakly compact [M-1, Korollar II.4]. Hence since $\nu^*(B_{X^*})$ is compact in $L^1(\nu)^*$, it is L-weakly compact, so equi-integrable; thus

(2)
$$\lim_{\lambda(A)\to 0} \sup \left\{ \|h\cdot \chi_A\|_{L^1(\nu)^*} : h \in \nu^*(B_{X^*}) \right\} = 0.$$

From equations (1) and (2) it follows that in $L^1(\nu)$ norm bounded sets are equi-integrable, so L-weakly compact. Then, on the one hand, relatively weakly compact sets are L-weakly compact, which implies that every infinite-dimensional sublattice contains a subspace isomorphic to ℓ^1 [M-2, Satz 14]. On the other hand, the unit ball of $L^1(\nu)$ being bounded is L-weakly compact so relatively weakly compact. Thus $L^1(\nu)$ is reflexive. The contradiction establishes the claim. \square

4. $L^1(\nu)$ A HILBERT SPACE

Theorem 3. Let X be a Banach space with cotype 2. Let ν be an X-valued measure satisfying that for every partition $(A_n)_1^{\infty}$ of the measure space, the sequence

$$\left(\frac{\nu(A_n)}{\|\nu\|(A_n)}\right)$$

is 2-lacunary in X. Then $L^1(\nu)$ is order isomorphic to a Hilbert space.

Proof. Given any partition $(A_n)_1^{\infty}$ there exists a constant $K = K(A_n)$, depending on the partition, such that for every sequence (α_n) in ℓ^2 we have

$$\left\|\sum_{1}^{\infty} \alpha_n \frac{\nu(A_n)}{\|\nu\|(A_n)}\right\| \leq K \cdot \left(\sum_{1}^{\infty} \alpha_n^2\right)^{1/2}.$$

Let λ be a control measure for ν . For a measurable set B with $\lambda(B) > 0$ define $\mathcal{K}(B) = \sup \{K(B_n) : (B_n) \text{ is a partition of } B\}$. Then for every $A \in \Sigma$

with $\lambda(A)>0$ there exists a measurable set $B\subset A$ with $\lambda(B)>0$ such that $\mathcal{K}(B)<+\infty$. Assume by way of contradiction that this is not the case. Then there exists a measurable set A with $\lambda(A)>0$ such that for every $B\subset A$ with $\lambda(B)>0$ we have $\mathcal{K}(B)=+\infty$. Let (A_n) be a partition of A such that $\lambda(A_n)>0$. As $\mathcal{K}(A_n)=+\infty$, for every $n\in\mathbb{N}$ there exists a partition (A_i^n) of A_n such that $K(A_i^n)>n$. So there exist real numbers α_1^n , α_2^n , ..., $\alpha_{i(n)}^n$ such that

$$\left\|\sum_{i=1}^{i(n)}\alpha_i^n\frac{\nu(A_i^n)}{\|\nu\|(A_i^n)}\right\|>n\cdot\left(\sum_{i=1}^{i(n)}|\alpha_i^n|^2\right)^{1/2}.$$

Consider the following partition of A

$$A_1^1,\ A_2^1,\ \ldots,\ A_{i(1)}^1,\ \bigcup_{i(1)}^\infty A_i^1,\ A_1^2,\ A_2^2,\ \ldots,\ A_{i(2)}^2,\ \bigcup_{i(2)}^\infty A_i^2,\ \ldots.$$

The associated sequence is not 2-lacunary in X. Applying an exhaustion argument [DU, Lemma III.2.4] we deduce that there exists a partition (B_n) of Ω such that $\mathcal{K}(B_n) < +\infty$, for every $n \in \mathbb{N}$. A similar argument shows that in fact we have $K = \sup_n \mathcal{K}(B_n) < +\infty$.

It follows that for every partition (A_n) and for every sequence $(a_n) \in \ell^2$ we have

$$\left\|\sum_{1}^{\infty} a_n \nu(A_n)\right\| \leq K \cdot \left(\sum_{1}^{\infty} a_n^2 \|\nu\| (A_n)^2\right)^{1/2}.$$

Let g be a simple function $g = \sum_{i=1}^{n} a_i \chi_{A_i}$, where the sets A_i are disjoint. Let $B \in \Sigma$. From the previous inequality we have

$$\left\| \int_{B} g \, d\nu \right\| = \left\| \sum_{i=1}^{n} a_{i} \nu(A_{i} \cap B) \right\| \leq K \cdot \left(\sum_{i=1}^{n} a_{i}^{2} \|\nu\| (A_{i})^{2} \right)^{1/2}.$$

Considering the equivalent norm $|||\cdot|||_{\nu}$ in $L^1(\nu)$ we deduce that

(3)
$$\left\| \sum_{1}^{n} a_{i} \chi_{A_{i}} \right\|_{\nu} \leq 2K \cdot \left(\sum_{1}^{n} a_{i}^{2} \|\nu\| (A_{i})^{2} \right)^{1/2}.$$

Since X has cotype 2, by Theorem 1 $L^1(\nu)$ has cotype 2, so it satisfies a lower-2 estimate: there exists C > 0 such that for any scalars a_1, \ldots, a_n and disjoint measurable sets A_1, \ldots, A_n we have

(4)
$$\left(\sum_{1}^{n} a_{i}^{2} \|\nu\| (A_{i})^{2} \right)^{1/2} \leq C \cdot \left\| \sum_{1}^{n} a_{i} \chi_{A_{i}} \right\|_{\nu} .$$

From (3) and (4) it follows that for a simple function $g = \sum_{i=1}^{n} a_i \chi_{A_i}$ where the sets A_i are disjoint, we have

$$(5) \quad 1/C \cdot \left(\sum_{1}^{n} a_{i}^{2} \|\nu\|(A_{i})^{2}\right)^{1/2} \leq \left\|\sum_{1}^{n} a_{i} \chi_{A_{i}}\right\|_{\nu} \leq 2K \cdot \left(\sum_{1}^{n} a_{n}^{2} \|\nu\|(A_{i})^{2}\right)^{1/2}.$$

This inequality evaluated at $a_1 = \cdots = a_n = 1$ gives, for disjoint measurable sets $(A_i)_{i=1}^{n}$,

$$(1/C)^2 \cdot \sum_{1}^{n} \|\nu\| (A_i)^2 \le \|\nu\| \left(\bigcup_{1}^{n} A_i\right)^2 \le (2K)^2 \cdot \sum_{1}^{n} \|\nu\| (A_i)^2.$$

Consider the set function

$$A \in \Sigma \longmapsto \mu(A) = \inf \left\{ \sum_{1}^{n} \tau(A_i) : (A_i)_1^n \text{ is a partition of } A \right\} \in \mathbb{R},$$

where

$$\tau(A) = \sup \left\{ \sum_{1}^{n} \|\nu\| (A_i)^2 : (A_i)_1^n \text{ is a partition of } A \right\},\,$$

for $A \in \Sigma$. μ is a countably additive measure that satisfies $(1/C)^2 \mu(A) \le \|\nu\|(A)^2 \le (2K)^2 \mu(A)$ for every $A \in \Sigma$. From (5) it follows that $L^1(\nu)$ is order isomorphic to the space $L^2(\Omega, \Sigma, \mu)$. \square

- Remarks. 1. Condition (*) is necessary for $L^1(\nu)$ to be a Hilbert space since the integration operator is continuous and, in a Hilbert lattice, a sequence of normalized disjoint functions is 2-lacunary. Condition (*) does not imply that $L^1(\nu)$ or X have type 2. To see this consider the measure defined over the subsets of natural numbers, such that $\nu(\{n\}) = a_n \cdot e_n \in c_0$ where (a_n) is a positive null sequence, and e_n is the nth vector of the canonical basis of c_0 . Then $L^1(\nu)$ is c_0 and ν satisfies (*). The requirement of X having cotype 2 is not necessary, as the space $L^2[0,1]$ obtained from a c_0 -valued measure shows [C-2, Theorem 1].
- 2. A condition, stronger than (*), but easier to verify as it deals with the norm instead of the semivariation, is the following: for every partition $(A_n)_1^{\infty}$ of the measure space, such that $\nu(A_n) \neq 0$ for every $n \in \mathbb{N}$, the sequence in $X \left(\frac{\nu(A_n)}{\|\nu(A_n)\|}\right)$, is 2-lacunary.

5.
$$L^1(\nu)$$
 a Dunford-Pettis space

A Banach space has the Dunford-Pettis property if weakly compact operators defined on it map relatively weakly compact sets into relatively compact sets. We study sufficient conditions on the measure ν and the Banach space X in order to obtain $L^1(\nu)$ with the Dunford-Pettis property. Recall that a Banach space has the Schur property if weak convergence of a sequence implies its norm convergence.

Theorem 4. Let X be a Banach space with the Schur property and ν an X-valued measure with σ -finite variation. Then the space $L^1(\nu)$ has the Dunford-Pettis property.

Proof. The result follows from the next two claims.

Claim 1. If ν takes its values in a Banach space with the Schur property, then in $L^1(\nu)$ relatively weakly compact sets coincide with L-weakly compact sets.

3804 G. P. CURBERA

Claim 2. If ν has σ -finite variation, Y is a Banach space and $T: L^1(\nu) \longrightarrow Y$ is a weakly compact operator, then T maps L-weakly compact sets into relatively norm compact sets.

Proof of Claim 1. Suppose that there exists a set in $L^1(\nu)$ that is relatively weakly compact but it is not L-weakly compact: then there exist functions f_n , disjoint measurable sets A_n and $\varepsilon > 0$ such that $||f_n\chi_{A_n}||_{\nu} \geq \varepsilon$ for every $n \in \mathbb{N}$. As the set $\{f_n : n \in \mathbb{N}\}$ is relatively weakly compact, there exists a subsequence, that we still denote by (f_n) , which converges weakly in $L^1(\nu)$ to a function $f \in L^1(\nu)$. It follows that for every $A \in \Sigma$ the sequence $(\int_A f_n d\nu)$ converges weakly in X to $\int_A f d\nu$. As X is a Schur space, the convergence is in norm.

Let μ and μ_n be the measures with densities f and f_n with respect to ν , respectively. They are countably additive and absolutely continuous with respect to a control measure [L-1, Theorem 2.2]. Since $(\mu_n(A))$ converges in norm to $\mu(A)$, for every $A \in \Sigma$, by the Vitali-Hahn-Saks theorem it follows that $\{\mu_n\}$ is uniformly countably additive [DU, Corollary I.5.6]. This implies that $\lim_k \sup_n \|\mu_n\|(A_k) = 0$. Since $\|\mu_n\|(A_n) = \|f_n\chi_{A_n}\|_{\nu}$, we arrived at a contradiction.

Proof of Claim 2. Let λ be a Rybakov control measure for ν . Considering the measure defined by $A \in \Sigma \longmapsto T(\chi_A) \in Y$, the σ -finiteness of the variation of ν and the weak compactness of T, we obtain, by the vector Radon-Nikodym Theorem (see [DU, Theorem III.2.18]), a function $g: \Omega \longrightarrow Y$ λ -measurable and Pettis integrable with respect to λ , such that the operator T can be represented as

$$T(f) = \text{Pettis} - \int f g \, d\lambda.$$

Let K be an L-weakly compact set in $L^1(\nu)$ and $\varepsilon > 0$. Since K is equi-integrable and g is λ -measurable, there is a simple function φ and a measurable set A such that $\|f \cdot \chi_A\|_{\nu} < \varepsilon$ for every $f \in K$, and $\|g(\omega) - \varphi(\omega)\| < \varepsilon$ for every $\omega \in \Omega \setminus A$. For f in K we have

$$Tf = T(f \cdot \chi_A) + \int_{\Omega \setminus A} f \varphi \, d\lambda + \int_{\Omega \setminus A} f(g - \varphi) \, d\lambda,$$

where $||T(f \cdot \chi_A)|| < \varepsilon ||T|||$. Since K is bounded $||f||_{\nu} \le M$, so

$$\left\| \int_{\Omega \setminus A} f(g - \varphi) \, d\lambda \right\| \leq \int_{\Omega \setminus A} |f| \cdot \|g - \varphi\| \, d\lambda \leq \varepsilon \int |f| \, d\lambda \leq \varepsilon \, \|f\|_{\nu} \leq \varepsilon \, M.$$

It follows that the distance between the sets T(K) and $\{\int_{\Omega\setminus A} f\varphi \,d\lambda : f\in K\}$ is less than $\varepsilon(\|T\|+M)$. This last set is compact, hence T(K) is relatively compact in Y. \square

Remark. From Claim 2 in the previous theorem we can derive the following consequence: If ν has no atoms and σ -finite variation, then $L^1(\nu)$ is not reflexive. To see this let λ be a Rybakov control measure for ν and K be the unit ball of $L_{\infty}(\lambda)$, which is an L-weakly compact set in $L^1(\nu)$. If $L^1(\nu)$ is reflexive, then K is relatively compact in $L^1(\nu)$, hence in $L^1(\lambda)$. But this cannot be if λ is nonatomic, since in K we can build a Rademacher type

sequence. It follows, for example, that in order to have $L^1(\nu)$ order isomorphic to $L^p([0, 1])$, for $1 , it is necessary that the variation of <math>\nu$ be infinite on every measurable set where it is non null.

6. Weak convergence in $L^1(\nu)$

In [C-2, Theorem 4] we showed that if $L^1(\nu)$ has no complemented subspace isomorphic to ℓ^1 , then weak convergence of bounded nets in $L^1(\nu)$ is characterized by weak convergence of the integrals over arbitrary sets. This was proved independently by Okada [O, Corollary 16]. In [O] the author mentions the question, raised by Professor J. Diestel, as to whether or not the above characterization of weak convergence in $L^1(\nu)$ holds, in general, for sequences. The following example shows that this is not the case.

Let \mathscr{M} be the σ -algebra of Lebesgue measurable sets of the interval $[0, +\infty)$ and let m be the Lebesgue measure on the interval. Let r_n be the Rademacher functions, defined on $[0, +\infty)$ by $r_n(t) = \operatorname{sign}(\sin(2^n\pi t))$. Consider the measure

$$A \in \mathscr{M} \longmapsto \nu(A) = \sum_{1}^{\infty} \frac{1}{2^k} \nu_k(A) \in \ell^2$$
,

where the measures ν_k are defined as

$$\nu_k(A) = \left(\overbrace{0, \ldots, 0}^{k-1}, \int_{A \cap [k-1, k]} r_k(t) dt, \int_{A \cap [k-1, k]} r_{k+1}(t) dt, \ldots \right).$$

Each measure ν_k is well defined, countably additive and satisfies

$$\|\nu_k(A)\|_2 \le \|\chi_{A\cap[k-1,k]}\|_{L^2([k-1,k])} = m(A\cap[k-1,k])^{1/2}.$$

Thus the measure ν is well defined and countably additive. Consider in $L^1(\nu)$ the sequence (f_n) where $f_n = 2^n \cdot \chi_{[n-1,n]}$. As the function f_n is supported on the interval [n-1,n], we have $||f_n||_{\nu} = ||\nu_n||([n-1,n]) \le 1$.

For every $A \in \mathcal{M}$ we have $\int_A f_n d\nu = \nu_n (A \cap [n-1, n])$. This vector, with norm less than or equal to one, belongs to the subspace generated by the vectors e_n , e_{n+1} , ... of the canonical basis of ℓ^2 . Thus the sequence $(\int_A f_n d\nu)$ tends weakly to zero in ℓ^2 .

Let a_1, \ldots, a_N be scalars. For every $n, 1 \le n \le N$, consider the set $A_n = \{t \in [n-1, n] : r_N(t) = \text{sign}(a_n)\}$. Then we have

$$\int_{A_n} r_k dm = \begin{cases} 0 & \text{if } k \neq N, \\ (1/2) \cdot \text{sign}(a_n) & \text{if } k = N. \end{cases}$$

Thus $\nu_n(A_n) = (1/2) \cdot \text{sign}(a_n) \cdot e_N$. Let $A = \bigcup_{1}^N A_n$. Then

$$\left\| \sum_{1}^{N} a_{n} f_{n} \right\|_{\nu} \geq \left\| \sum_{1}^{N} a_{n} \int_{A} f_{n} d \nu \right\| = \left\| \sum_{1}^{N} a_{n} \nu_{n}(A_{n}) \right\|$$
$$= \left\| \sum_{1}^{N} a_{n}(1/2) \cdot \operatorname{sign}(a_{n}) \cdot e_{N} \right\| = (1/2) \sum_{1}^{N} |a_{n}|.$$

As the sequence (f_n) is bounded, it follows that (f_n) is equivalent in $L^1(\nu)$ to the canonical basis of ℓ^1 . Thus (f_n) does not tend weakly to zero in $L^1(\nu)$.

3806 G. P. CURBERA

The measure ν has unbounded variation. This is not relevant, as the same construction can be done with values in c_0 and the resulting measure has bounded variation.

ACKNOWLEDGEMENTS

I would like to thank Professor F. J. Freniche for his advice. I would also like to thank Professor L. Rodríguez Piazza for fruitfull discussions during the preparation of this paper.

REFERENCES

- [AB] C. Aliprantis and O. Burkinshaw, Positive operators, Academic Press, New York, 1985.
- [BDS] R. G. Bartle, N. Dunford, and J. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289-305.
- [BP] C. Bessaga and A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
- [C-1] G. P. Curbera, Operators into L^1 of a vector measure and application to Banach lattices, Math. Ann. 293 (1992), 317-330.
- [C-2] _____, When is L^1 of vector measure an AL-space, Pacific J. Math. 162 (1994), 287-303.
- [DU] J. Diestel and J. J. Uhl, Jr., Vector measures, Amer. Math. Soc. Surveys, vol. 15, Providence, RI, 1977.
- [KK] I. Kluvánek and G. Knowles, Vector measures and control systems, North-Holland, Amsterdam, 1975.
- [L-1] D. R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157-165.
- [L-2] _____, On integration and summability in vector spaces, Illinois J. Math. 16 (1972), 294-307.
- [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Springer-Verlag, Berlin and New York, 1979.
- [M-1] P. Meyer-Nieberg, Zur schwachen Kompaktheit in Banachverbänden, Math. Z. 134 (1973), 303-315.
- [M-2] _____, Über Klassen schwach kompakter Operatoren in Banachverbänden, Math. Z. 138 (1974), 145-159.
- [M-3] _____, Banach lattices, Springer-Verlag, Berlin and New York, 1991.
- [O] S. Okada, The dual space of $\mathcal{L}^1(\mu)$ for a vector measure μ , J. Math. Anal. Appl. 177 (1993), 583–599.
- [P-1] G. Pisier, Factorization of linear operators and geometry of Banach spaces, Amer. Math. Soc., Providence, RI, 1986.
- [T] E. G. H. Thomas, L'intégration par rapport à une mesure de Radon vectorielle, Ann. Inst. Fourier (Grenoble) 20 (1970), 55-191.

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD DE SEVILLA, APTDO. 1160, SEVILLA 41080, SPAIN

E-mail address: curbera@cica.es