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BANACH SPACE PROPERTIES OF V OF A VECTOR MEASURE

GUILLERMO P. CURBERA

(Communicated by Dale Alspach)

Abstract. We consider the space L'(i>) of real functions which are integrable

with respect to a measure v with values in a Banach space X . We study type

and cotype for Lx{v). We study conditions on the measure v and the Banach

space X that imply that Ll(v) is a Hilbert space, or has the Dunford-Pettis

property. We also consider weak convergence in Lx(v).

1. Introduction

Given a vector measure v with values in a Banach space X, Lx(v) denotes

the space of (classes of) real functions which are integrable with respect to v in
the sense of Bartle, Dunford and Schwartz [BDS] and Lewis [L-l]. This space
has been studied by Kluvanek and Knowles [KK], Thomas [T] and Okada [O].

It is an order continuous Banach lattice with weak unit. In [C-l, Theorem 8] we
have identified the class of spaces Lx(v) , showing that every order continuous

Banach lattice with weak unit can be obtained, order isometrically, as L1 of a
suitable vector measure.

A natural question arises: what is the relation between, on the one hand,

the properties of the Banach space X and the measure v, and, on the other
hand, the properties of the resulting space Lx(v) . The complexity of the situ-

ation is shown by the following example: the measures, defined over Lebesgue

measurable sets of [0,1], vx(A) = m(A) £ R, v2(A) = Xa e £'([0, 1]) and
v3 — (]"A r„(t)dt) £ Co, where rn are the Rademacher functions, generate, order

isometrically, the same space, namely 7J([0, 1]). The translation of properties
from Lx(v) to the Banach space X is limited by the following result: every

separable order continuous Banach lattice with weak unit and no atoms can be
obtained, order isomorphically, as Lx of a Co-valued measure [C-2, Theorem
1]. In this paper we show that in the opposite direction there is a clear line
of influence, that is, the properties of X and v determine, to some extent,
the properties of Lx(v) . We study type and cotype for Lx(v) ; conditions on

X and v in order to have Lx(v) order isomorphic to a Hilbert space; and

conditions on X and v so that Lx(v)  has the Dunford-Pettis property. We
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also study weak convergence in Lx (v) , giving an example of a measure v such

that weak convergence of sequences in Lx(v) is not given by weak convergence

of the integrals over arbitrary sets.

2. Preliminaries

Let (Q, X) be a measurable space, X a Banach space with unit ball Bx
and dual space X*, and v: S —► X a countably additive vector measure. The

semivariation of v is the set function IMP) = sup{|x*^|(^) : x* € Bx*},
where \x*v\ is the variation of the scalar measure x*u . A Rybakov control

measure for v is a measure X = \x*v\, such that X(A) = 0 if and only if
IMP) = 0 (see [DU, Theorem IX.2.2]).

Following Lewis [L-l] we will say that a measurable function /: Q —> R is

integrable with respect to v if

(1) / is x*v integrable for every x* £ X*, and

(2) for each A £Z there exists an element of X, denoted by fAfdv, such

that

x* / fdv = / fdx*v    for every    x* £ X*.
Ja Ja

Identifying two functions if the set where they differ has null semivariation,

we obtain a linear space of classes of functions which, when endowed with the

norm

= supjjí|/|¿|x*i/|:x*€fix-},

becomes a Banach space. We will denote it by Lx(v) . It is a Banach lattice for

the ||v11-almost everywhere order. Simple functions are dense in Lx(v) and

the identity is a continuous injection of the space of \\v\\-essentially bounded
functions into Lx(v) . An equivalent norm for Lx(v)  is

sup j! ¡fdv   :A£l\ ,

for which we have \\\f\\\v < \\f\\v < 2 ■
Let X be a Rybakov control measure for v . Then Lx(v) is an order con-

tinuous Banach function space with weak unit over the finite measure space

(Q, I, X) (see [C-l, Theorem 1]). Thus it can be regarded as a lattice ideal in

LX(X) , and Lx(v) * can be identified with the space of functions g in LX(X)

such that fg £ LX(X) , for all / in Lx(v) , where the action of g over Lx(v)

is given by integration with respect to X.

The integration operator v:Lx(v) —► X is defined as u(f) - ¡fdv , for

f £ Lx(v) . It is a continuous linear operator with norm less than or equal to

one. It is important to remark that no assumptions are made on the variation

of the measure v for the definition of the space Lx(v) .

A bounded set in a Banach lattice is L-weakly compact if for every sequence
(x„) of positive pairwise disjoint vectors such that for each n there exists y„

in the set with x„ < \y„\, we have that (x„) converges to zero in norm [M-l,
Definition II. 1]. L-weakly compact sets are relatively weakly compact [M-l,

Satz II. 6]. In order continuous Banach function spaces over a finite measure
space (S, a, p) L-weak compactness is equivalent to equi-integrablility: for

every e > 0 there exists Ô > 0 such that for any A £ a with p(A) < 6 we

have H/x.-ill < e, for all / in the set.
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For the general theory of vector measures we refer the reader to [DU]. Aspects

related to Banach lattices can be seen in [AB], [LT, vol. II] and [M-3].

3. Type and cotype for Lx(v)

Recall that a Banach space has cotype q, for 2 < q < +oo (type q, for
1 < q < 2 ), if there exists a constant C > 0 such that for every n £ N and for

any elements xx, ... , x„ in X we have

i/«

Xi <

e,e{i,-i}
2>*<

Theorem 1. Lei X be a Banach space with cotype q, for q > 2, and v an

X-valued vector measure. Then the space Lx (v) has cotype q.

Proof. Let q > 2. As Lx (v) is a Banach lattice, the property of having cotype

q > 2 is equivalent to satisfying a lower ^-estimate [LT, vol. II, p. 88]. Let
f , ... , fn be disjoint functions in Lx(v) , and (A¡)" disjoint measurable sets

such that each A¡ is contained in the support of f . Then JUA (YTX fj) dv =

YH ¡a f d v . Let (Qi)" be an arbitrary choice of signs 0, = ±1 ; then

¿0i/" fidv
i     Ja¡

< 5>>¡ Efi

Averaging over all possible choices of signs and considering that the Banach

space X has cotype q, we have

C

/ "  II /• "\fell/, HI)
u«

<
2"

9/€{l,-l}

¿0,   Í   ¿dl/
1 ^i

< Y.f>

Taking the supremum over all possible choices of sets (Ai)" and considering

the equivalent norm ||| • |||„  in Lx(v) , we deduce that

<2C- I>

Hence Lx(v) satisfies a lower ^-estimate and thus it has cotype q.
Let q = 2. We will prove that Lx(v) has cotype 2 by showing that it is

2-concave [LT, vol. II, Theorem l.f.16]. Let fx, ... ,f„ be in Lx(v) . Set

/ = (E? I/I2)1/2 • Consider the lattice ideal generated by / in Lx(v)

I(f) = {g£Lx(v) :3A>0, \g\<Xf)

with the norm HgH^ = inf{A > 0 : |g| < X • ff\\f\\v } ■ Its completion is an
AM-space with unit, so by a result of Kakutani it is order isometric to a space
C(K), for K a compact topological space [LT, vol. II, Theorem l.b.6]. The

injection j:C(K) —► Lx(v) has norm one and ||/||oo = \\f\\v • Consider the

composition of this injection with the integration operator v. Lx (v) —► X . As
X has cotype 2, by Grothendieck's Theorem the operator v o j is 2-summing
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[P-2, Theorem 5.14]. Thus there exists a constant C > 0 such that for every

n £ N and for any functions g\, ... , gn in C(K) we have

in \ 1/2 f / „ \ 1/2

£lk°7(&)ll2       <Csup{   £|^,g,)|2        :/ieCW, Hull <11
This last supremum is ||(£î |g,|2)1/2||oo • Consider measurable sets (v4,)y and

set gi = f • xa, ■ From the previous expression we have

fJL II r
£   / fid»

1/2

<c
1/2

^2\fi'XAi\ <c Z\f>\2
1/2

Taking the supremum over all possible choices of sets (A¡)" and considering

the equivalent norm ||| • |||„  in Lx(v) , it follows that

1/2

£u¿ <2C
£i¿i2

1/2

Thus Lx(v) is 2-concave and so it has cotype 2.   D

Lx(v) does not inherit type from the Banach space X: consider the

Lebesgue measure restricted to [0,1], the space Lx(v) obtained is L'[0, 1]

which has no type.

Theorem 2. Let v be a measure with values in ip, for 1 < p < 2. Then the
space Lx(v) has type less than or equal to p.

Proof. Suppose Lx(v) has type q for some p < q < 2. Then the integration

operator v:Lx(v) —» lp is compact. To prove it, assume by way of contra-

diction that this is not the case, then there exists a sequence (f„ ) of norm one

elements in Lx(v) and e>0 suchthat ||^(/«)|| >e and the sequence (v(f„))

is weakly null in lp . Then there is a subsequence that we will still denote by

ivifn)), which is a basic sequence equivalent to a block basis of lp . For n £ N

and scalars ax, ... , a„ , we have:

£i*<f
i/p

2^ E
9,6(1,-1}

¿M/i't/,) <
2" E

8(6(1,-1}
£0,0,7,

1/9

<i/c  £M|,,«     =i/c  5>,|?

Since L'(t/)  has type <7, there exists a constant C > 0 such that

. n /  n \ '/?

F-   E    £ö,^
6,6(1,-1}       1

Combining the previous inequalities we arrive at a contradiction, as p < q.

Hence the operator v is compact.
The result follows from the next claim, which implies that Lx(v)   has a

subspace isomorphic to il, contradicting Lx(v) having type q > 1.

Claim. Let v be an X-valued measure such that the integration operator v :
Lx(v) —► X, is compact. Then the space Lx(v) has a complemented subspace

isomorphic to ix.
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Proof of the Claim. Let A be a Rybakov control measure for v. Consider
the transpose of the integration operator v*:X* —► Lx(v)* . For x* £ X*,

v*(x*) can be identified with the Radon-Nikodym derivative of the measure

x*v with respect to X. Thus the norm in Lx(v) can be written in the following

way:

H/H, =snn{j\f\\h\dX:h£v*(Bx.)^

Let / be in Lx(v) and let A be a measurable set. We have

||/.XaWu =sup( / \f\\h\dX : h £ v*(Bx.)\
(1) U/J J

<\\ft-suv{\\h-XA\\L^).:h£v*(Bx.)}.

Suppose Lx(v) has no complemented subspace isomorphic to £x. Then

Lx(v)* has no subspace isomorphic to 4o [BP, Theorem 4]. As Lx(v)* is a

dual Banach lattice it is order complete; this fact combined with t^ £ Lx(v) *

implies that Lx (v) * is order continuous [AB, Theorem 14.9]. In order continu-

ous Banach lattices relatively compact sets are L-weakly compact [M-l, Korollar

II.4]. Hence since v*(Bx.) is compact in Lx(v)*, it is L-weakly compact, so
equi-integrable; thus

(2) Kn^ suv{\\h-XA\\v(v)' ■ h £ v*(Bx.)} = 0.

From equations (1) and (2) it follows that in Lx(v) norm bounded sets are

equi-integrable, so L-weakly compact. Then, on the one hand, relatively weakly

compact sets are L-weakly compact, which implies that every infinite-dimen-

sional sublattice contains a subspace isomorphic to lx [M-2, Satz 14]. On the

other hand, the unit ball of Lx(v) being bounded is L-weakly compact so rela-

tively weakly compact. Thus Lx(v) is reflexive. The contradiction establishes

the claim.   G

4.   LX(v)   A HlLBERT SPACE

Theorem 3. Let X be a Banach space with cotype 2. Let v be an X-valued

measure satisfying that for every partition (An)™ of the measure space, the se-

quence

(*)
(   VJAn)   \

\\W\\iAn)J

is 2-lacunary in X. Then Lx(v)  is order isomorphic to a Hilbert space.

Proof. Given any partition (An)f there exists a constant K = K(A„), depend-

ing on the partition, such that for every sequence (an) in I1 we have

(00 \  '/2

? 7   '
Let X be a control measure for v . For a measurable set B with X(B) > 0

Ev(An)
(*n

WW(An)

•e for v

define Jf(B) = sup{A^(7i„) : (Bn) is a partition of B} . Then for every A el
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with X(A) > 0 there exists a measurable set B c A with X(B) > 0 such that

3?(B) < +00 . Assume by way of contradiction that this is not the case. Then

there exists a measurable set A with X(A) > 0 such that for every B c A

with X(B) > 0 we have Z%(B) = +00 . Let (An) be a partition of A such that
X(An) > 0. As 3£(An) = +00, for every n £ N there exists a partition (A") of

A„ such that K(An) > n . So there exist real numbers a" , a\,... , a",n) such

that

i(n)

tí ' MW)
n    HA?)

i(n)

>H£ki2
;=1

1/2

Consider the following partition of A

Ax     Ax
A'(l) '   U ^' '  ^1 '  ^2 >  ■•• ,  A.JI2) ,   U Aj ,

'(1) i(2)

The associated sequence is not 2-lacunary in X. Applying an exhaustion argu-

ment [DU, Lemma III.2.4] we deduce that there exists a partition (B„) of £2

such that 3£(Bn) < +00, for every n £ N. A similar argument shows that in

fact we have K = sup„ 3¡f(Bn) < +00.

It follows that for every partition (A„) and for every sequence (a„) £ I2 we
have

^anv(A„) <K- [Y^OnMUn)2

1/2

Let g be a simple function g = Y," ̂ íXaí , where the sets Ai are disjoint. Let
B £ X. From the previous inequality we have

\Lgdv £a,i/(^,n5) <K. [Y,a2\\v\\(Ai?

1/2

Considering the equivalent norm |„ in Lx(v) we deduce that

(3) ¿«/*4 <2K.   £a2|MP,)2

1/2

Since X has cotype 2, by Theorem 1 Lx(v) has cotype 2, so it satisfies a
lower-2 estimate: there exists C > 0 such that for any scalars ax,... ,an and
disjoint measurable sets Ax,..., A„ we have

(4) £a2IMP/)2

1/2

<C
£«1*4

From (3) and (4) it follows that for a simple function g = £" a,-^. where

the sets A¡ are disjoint, we have

1/2

(5)    1/C-   £a2|MP;)2        < £a«X<, <2^-   £fl„2||^||(^)2

1/2
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This inequality evaluated at ax = ■ ■ ■ - an = I gives, for disjoint measurable

sets (A¡)1,

(1/C)2 • ¿ IMP/)2 < H (\Ja]   < (2K)2 - ¿ HP,)2-

Consider the set function

A £ I i—► p(A) = inf < £ -c(Ai) : (A¡)"x  is a partition of A \ £ R ,

where

r(A) = sup I £ IMP,)2 : (^/)ï is a partition of A \ ,

for A £ !.. p is a countably additive measure that satisfies (1/C)2/P) <

IMP)2 < (2K)2p(A) for every /l G X. From (5) it follows that Lx(v) is
order isomorphic to the space L2(£l, I, p).   D

Remarks. 1. Condition ( * ) is necessary for Lx(v) to be a Hubert space since
the integration operator is continuous and, in a Hilbert lattice, a sequence of

normalized disjoint functions is 2-lacunary. Condition ( * ) does not imply that
Lx(v) or X have type 2. To see this consider the measure defined over the

subsets of natural numbers, such that v({n}) = an • e„ £ en where (a„) is a

positive null sequence, and en is the nth vector of the canonical basis of en.

Then Lx(v) is Co and v satisfies (*). The requirement of X having cotype

2 is not necessary, as the space L2[0, 1] obtained from a cn-valued measure
shows [C-2, Theorem 1].

2. A condition, stronger than ( * ), but easier to verify as it deals with the
norm instead of the semivariation, is the following: for every partition (An)f
of the measure space, such that v (A„) ^ 0 for every n G N, the sequence in X

(nÄ) -is 2-lacunary-

5. Lx(v)  a Dunford-Pettis SPACE

A Banach space has the Dunford-Pettis property if weakly compact operators
defined on it map relatively weakly compact sets into relatively compact sets.
We study sufficient conditions on the measure v and the Banach space X in
order to obtain Lx(v) with the Dunford-Pettis property. Recall that a Banach

space has the Schur property if weak convergence of a sequence implies its norm

convergence.

Theorem 4. Let X be a Banach space with the Schur property and v an X-

valued measure with a-finite variation. Then the space Lx(v) has the Dunford-
Pettis property.

Proof. The result follows from the next two claims.

Claim 1. If v takes its values in a Banach space with the Schur property, then

in Lx (v)  relatively weakly compact sets coincide with L-weakly compact sets.
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Claim 2. If v has a-finite variation, Y is a Banach space and T:Lx(v) —► Y

is a weakly compact operator, then T maps L-weakly compact sets into relatively

norm compact sets.

Proof of Claim 1. Suppose that there exists a set in Lx(v) that is relatively

weakly compact but it is not L-weakly compact: then there exist functions f„ ,

disjoint measurable sets A„ and e > 0 such that H/i^JI, > e for every

n £ N. As the set {/„ : n £ N} is relatively weakly compact, there exists a

subsequence, that we still denote by (/,), which converges weakly in Lx(v) to

a function f £ Lx(v) . It follows that for every A £ X the sequence (¡Afndv)

converges weakly in X to JAfdv.As X is a Schur space, the convergence is
in norm.

Let p and pn be the measures with densities / and /„ with respect to

v, respectively. They are countably additive and absolutely continuous with

respect to a control measure [L-l, Theorem 2.2]. Since (p„(A)) converges in

norm to p(A), for every A £ X, by the Vitali-Hahn-Saks theorem it follows
that {pn} is uniformly countably additive [DU, Corollary 1.5.6]. This implies

that limksnn„\\pn\\(Ak) = 0. Since ||/*n|P„) = H/jUjU > we arrived at a
contradiction.

Proof of Claim 2. Let A be a Rybakov control measure for v . Considering the
measure defined by A £ X i—► T(xa) G T , the a-finiteness of the variation of
v and the weak compactness of T, we obtain, by the vector Radon-Nikodym
Theorem (see [DU, Theorem III.2.18]), a function g:Q —> Y A-measurable

and Pettis integrable with respect to X, such that the operator T can be repre-

sented as

T(f) = Pettis- ffgdX.

Let K be an L-weakly compact set in Lx(v) and e > 0. Since K is

equi-integrable and g is A-measurable, there is a simple function <p and a

measurable set A such that ||/• xa\\v < £ for every f £ K, and \\g(oj) -
<p(co)\\ < e for every œ £Q\A . For / in K we have

Tf=T(f-xA)+[    f<pdX+ Í    f(g-<p)dX,
Ja\A Ja\A

where \\T(f ■ Xa)\\ < e\\T\\. Since K is bounded \\f\\v <M,so

\f    f(g-<p)dx\\< [    \f\.\\g-<p\\dX<e [\f\dX<e\\f\l <zM.
\Ja\A Ja\A J

It follows that the distance between the sets T(K) and {fa\A f(pdX: f £ K}

is less than e(||r|| + M). This last set is compact, hence T(K) is relatively
compact in Y.   D

Remark. From Claim 2 in the previous theorem we can derive the following

consequence: If v has no atoms and a-finite variation, then Lx(v) is not

reflexive. To see this let A be a Rybakov control measure for v and K be
the unit ball of L<x>(A), which is an L-weakly compact set in Lx(v) . If Lx(v)

is reflexive, then K is relatively compact in Lx(v) , hence in LX(X). But

this cannot be if A is nonatomic, since in K we can build a Rademacher type
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sequence. It follows, for example, that in order to have Lx (v) order isomorphic

to IP([0, 1 ]), for 1 < p < +co, it is necessary that the variation of v be infinite

on every measurable set where it is non null.

6. Weak convergence in Lx(v)

In [C-2, Theorem 4] we showed that if Lx(v) has no complemented sub-

space isomorphic to ix, then weak convergence of bounded nets in Lx(v) is

characterized by weak convergence of the integrals over arbitrary sets. This was
proved independently by Okada [O, Corollary 16]. In [O] the author mentions

the question, raised by Professor J. Diestel, as to whether or not the above char-

acterization of weak convergence in Lx(v) holds, in general, for sequences.

The following example shows that this is not the case.
Let Jt be the c-algebra of Lebesgue measurable sets of the interval [0, +00)

and let m be the Lebesgue measure on the interval. Let rn be the Rademacher
functions, defined on [0, +00) by rn(t) = sign(sin(2"7r7)). Consider the mea-

sure
1

A&jr^v{A) = Yj-vk(A)£l2 ,

where the measures vk are defined as

• ,0, / rk(t)dt
JAn\k-

vM)

\
lAn[k-\,k] JAn\k-AC\[k-\,k]

rk+Át)dt..

)

Each measure vk is well defined, countably additive and satisfies

IKMII2 < \\XAnik-i,k]hmk-i,k]) = m(A n [k - 1, k])x/2.

Thus the measure v is well defined and countably additive. Consider in Lx (v)

the sequence (/,) where /„ = 2" • X[n-\,n\ • As the function f„ is supported

on the interval [n - 1, n], we have \\f„\\v = IMI|([" - 1, «]) < 1.

For every A £ J! we have JA f„ d v = v„(A n [n - 1, n]). This vector, with
norm less than or equal to one, belongs to the subspace generated by the vectors

e„, e„+x, ... of the canonical basis of I2. Thus the sequence (¡Afndv) tends

weakly to zero in I2.

Let ax, ... , un be scalars. For every n, 1 < n < N, consider the set
An = {t £ [n - 1, n] : rN(t) = sign(a„)} . Then we have

/      d     =i° ifk^N,
JAJk    m     l(l/2).sign(û„)   if k = N.

Thus v„(A„) = (1/2) • sign(a„) • e> . Let A = (J^ An . Then

£û«/n >
N    r

£a„ / fndv
JA

'Y^anVn(An)

£an(l/2)-sign(a„)-i?yv = (l/2)j>„|.

As the sequence (/„) is bounded, it follows that (/„) is equivalent in Lx(v) to

the canonical basis of £x. Thus (/„) does not tend weakly to zero in Lx(v) .
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The measure v has unbounded variation. This is not relevant, as the same

construction can be done with values in Co and the resulting measure has

bounded variation.
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