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BANACH SPACE PROPERTIES OF L' OF A VECTOR MEASURE
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(Communicated by Dale Alspach)

ABSTRACT. We consider the space L!(v) of real functions which are integrable
with respect to a measure v with values in a Banach space X . We study type
and cotype for L!(v). We study conditions on the measure v and the Banach
space X that imply that L!(v) is a Hilbert space, or has the Dunford-Pettis
property. We also consider weak convergence in L!(v).

1. INTRODUCTION

Given a vector measure v with values in a Banach space X, L'(v) denotes
the space of (classes of) real functions which are integrable with respect to v in
the sense of Bartle, Dunford and Schwartz [BDS] and Lewis [L-1]. This space
has been studied by Kluvanek and Knowles [KK], Thomas [T] and Okada [O].
It is an order continuous Banach lattice with weak unit. In [C-1, Theorem 8] we
have identified the class of spaces L'(v) , showing that every order continuous
Banach lattice with weak unit can be obtained, order isometrically, as L! of a
suitable vector measure.

A natural question arises: what is the relation between, on the one hand,
the properties of the Banach space X and the measure v, and, on the other
hand, the properties of the resulting space L'(v) . The complexity of the situ-
ation is shown by the following example: the measures, defined over Lebesgue
measurable sets of [0,1], v(4) = m(4) € R, v,(4) = x4 € L'([0, 1]) and
v3 = ([, ra(t)dt) € ¢y, where r, are the Rademacher functions, generate, order
isometrically, the same space, namely L!([0, 1]). The translation of properties
from L'(v) to the Banach space X is limited by the following result: every
separable order continuous Banach lattice with weak unit and no atoms can be
obtained, order isomorphically, as L' of a co-valued measure [C-2, Theorem
1]. In this paper we show that in the opposite direction there is a clear line
of influence, that is, the properties of X and v determine, to some extent,
the properties of L!(v) . We study type and cotype for L!(v) ; conditions on
X and v in order to have L!(v) order isomorphic to a Hilbert space; and
conditions on X and v so that L!(v) has the Dunford-Pettis property. We
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also study weak convergence in L!(v) , giving an example of a measure v such
that weak convergence of sequences in L!(v) is not given by weak convergence
of the integrals over arbitrary sets.

2. PRELIMINARIES

Let (2, X) be a measurable space, X a Banach space with unit ball By
and dual space X*,and v:X — X a countably additive vector measure. The
semivariation of v is the set function |v||(4) = sup{|x*v|(4) : x* € By-},
where |x*v| is the variation of the scalar measure x*v. A Rybakov control
measure for v is a measure 4 = |x*v|, such that A(4) = 0 if and only if
ll¥]|(4) = 0 (see [DU, Theorem IX.2.2]).

Following Lewis [L-1] we will say that a measurable function f:Q — R is
integrable with respect to v if

(1) f is x*v integrable for every x* € X*, and

(2) for each 4 € X there exists an element of X, denoted by [, fdv, such
that

x*/fdu=/fdx*u for every x*e X*.
A A

Identifying two functions if the set where they differ has null semivariation,
we obtain a linear space of classes of functions which, when endowed with the
norm

I/l = sup { /Q ldixv] s x" € Bx.} ,

becomes a Banach space. We will denote it by L!(v) . It is a Banach lattice for
the ||v||-almost everywhere order. Simple functions are dense in L'(v) and
the identity is a continuous injection of the space of ||v|-essentially bounded
functions into L'(v) . An equivalent norm for L!(v) is

s =sup{| [ rav|:aez},

for which we have [[If]ll, < [Ifl, <2-[lIlll, -

Let A4 be a Rybakov control measure for . Then L'(v) is an order con-
tinuous Banach function space with weak unit over the finite measure space
(Q, X, A) (see [C-1, Theorem 1]). Thus it can be regarded as a lattice ideal in
L'(A) ,and L'(v)* can be identified with the space of functions g in L!(4)
such that fg € L'(A), forall f in L!(v) , where the action of g over L'(v)
is given by integration with respect to A.

The integration operator v:L!(v) — X is defined as v(f) = [ fdv, for
f € L'(v) . It is a continuous linear operator with norm less than or equal to
one. It is important to remark that no assumptions are made on the variation
of the measure v for the definition of the space L!(v) .

A bounded set in a Banach lattice is L-weakly compact if for every sequence
(xn) of positive pairwise disjoint vectors such that for each n there exists y,

_in the set with x, < |y,|, we have that (x,) converges to zero in norm [M-1,
Definition II.1]. L-weakly compact sets are relatively weakly compact [M-1,
Satz I1.6). In order continuous Banach function spaces over a finite measure
space (S, o, u) L-weak compactness is equivalent to equi-integrablility: for
every ¢ > 0 there exists d > 0 such that for any 4 € ¢ with u(4) < J we
have || fx4ll <¢€, forall f in the set.
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For the general theory of vector measures we refer the reader to [DU]. Aspects
related to Banach lattices can be seen in [AB], [LT, vol. II] and [M-3].
3. TYPE AND COTYPE FOR L!'(v)

Recall that a Banach space has cotype ¢, for 2 < g < +oco (type ¢, for
1 < g < 2), if there exists a constant C > 0 such that for every n € N and for
any elements x,,..., x, in X we have

n 1/q
(Z ||x,~||q) <@)Cqpe ¥
1

ole{la_l}

zn:eixi .

1

Theorem 1. Let X be a Banach space with cotype q, for ¢ > 2, and v an
X-valued vector measure. Then the space L'(v) has cotype q .

Proof. Let ¢ >2. As L!(v) is a Banach lattice, the property of having cotype
q > 2 is equivalent to satisfying a lower g-estimate [LT, vol. II, p. 88]). Let
fi, ..., fn be disjoint functions in L'(v), and (4;)7 disjoint measurable sets
such that each 4, is contained in the support of f;. Then [, (3] fj) dv =

) 4, Jidv. Let (6;)] be an arbitrary choice of signs 6; = £1; then

S0 [ siav|<|Sos| =35
1 Ai 1 1

Averaging over all possible choices of signs and considering that the Banach
space X has cotype g, we have

l n ql/q l n n
1, fid ) <L o [ fid ji
0> VRZE D REE TN I RZE E >

6;e{l,-1}
Taking the supremum over all possible choices of sets (4;)] and considering
the equivalent norm |||-|||, in L'(v), we deduce that

n 1/q n
(Z ||ﬂ~|13) <2C-|)f
1 1

Hence L!(v) satisfies a lower g-estimate and thus it has cotype ¢.
Let ¢ = 2. We will prove that L!(v) has cotype 2 by showing that it is
2-concave [LT, vol. II, Theorem 1.f.16]. Let fi,..., f, be in L'(v). Set

= ﬁ|2)l/ 2 Consider the lattice ideal generated by f in L'(v)

1(/)={geL'() :34> 0, lg| < Af}

<

14

14

<

v

v

with the norm ||gllo = Inf{A > 0 : |g| < A: f/IIfll,}. Its completion is an
AM-space with unit, so by a result of Kakutani it is order isometric to a space
C(K), for K a compact topological space [LT, vol. II, Theorem 1.b.6]. The
injection j:C(K) — L'(v) has norm one and ||f|l = ||f]l» . Consider the
composition of this injection with the integration operator v:L!(v) — X . As
X has cotype 2, by Grothendieck’s Theorem the operator v o j is 2-summing
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[P-2, Theorem 5.14]. Thus there exists a constant C > 0 such that for every
n € N and for any functions g, ..., g, in C(K) we have

n 1/2 n 1/2
(Z IIVOJ'(g,-)Ilz) < pr{(Zl(ﬂ, g.-)lz)
1 1

This last supremum is [|(3][£i]%)!/?||lc . Consider measurable sets (4;)7 and
set g = fi - x4, . From the previous expression we have
" 12
()
1 v

n 2\ 1/2 n 1/2
(z [ sy ) <c. (zm.xA,V)
1 Ai 1 .

Taking the supremum over all possible choices of sets (4;)] and considering
the equivalent norm ||| -|||, in L'(v), it follows that

n 1/2 n 1/2
(Z IIfillﬁ) <2C- (E Ifilz)
1 1

Thus L'(v) is 2-concave and so it has cotype 2. O

tpe CK), [|ull < 1}.

<C-

v

L'(v) does not inherit type from the Banach space X : consider the
Lebesgue measure restricted to [0,1], the space L'(v) obtained is L'[0, 1]
which has no type.

Theorem 2. Let v be a measure with values in £P, for 1 < p < 2. Then the
space L'(v) has type less than or equal to p.

Proof. Suppose L'(v) has type g for some p < g < 2. Then the integration
operator v:L'(v) — ¢P is compact. To prove it, assume by way of contra-
diction that this is not the case, then there exists a sequence (f,) of norm one
elements in L!(v) and ¢ > 0 such that |v(f,)|| > ¢ and the sequence (v(fy))
is weakly null in ¢7. Then there is a subsequence that we will still denote by
(v(fn)) , which is a basic sequence equivalent to a block basis of ¢7. For n € N
and scalars a,, ..., a,, we have:

(i 1a,~|") TaLs

1 6.€{l,—-1}

i biaifi

1
S'Z_". Z

ole{l v_-l}

> 6iaw(f)

1

v

Since L!(v) has type g, there exists a constant C > 0 such that

n n 1/q n 1
5 Y (e <ic (Z laifil, ") =1/C- (Z lait")
ge{1,-1}311 1 v 1 1
Combining the previous inequalities we arrive at a contradiction, as p < ¢.
Hence the operator v is compact.
The result follows from the next claim, which implies that L'(v) has a
subspace isomorphic to £!, contradicting L'(v) having type g > 1.

/4

Claim. Let v be an X-valued measure such that the integration operator v :
L'(v) — X, is compact. Then the space L'(v) has a complemented subspace
isomorphic to £'.
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Proof of the Claim. Let A be a Rybakov control measure for v. Consider
the transpose of the integration operator v*: X* — L!(v)* . For x* € X*,
v*(x*) can be identified with the Radon-Nikodym derivative of the measure
x*v with respect to A. Thus the norm in L!(v) can be written in the following
way:

11, =sup{ [ 1711di: he v (Ber)}.

Let f bein L'(v) and let 4 be a measurable set. We have
17 xall, =sup{ [ 11 d2s e v (b))

<IAll - sup{llk « xalloiwy- : b € v*(Bx-)}.

Suppose L'(v) has no complemented subspace isomorphic to £'. Then
L'(v)* has no subspace isomorphic to £, [BP, Theorem 4]. As L'(v)* isa
dual Banach lattice it is order complete; this fact combined with £, ¢ L'(v)*
implies that L'(v)* is order continuous [AB, Theorem 14.9]. In order continu-
ous Banach lattices relatively compact sets are L-weakly compact [M-1, Korollar
I1.4). Hence since v*(By.) is compact in L!(v)*, it is L-weakly compact, so
equi-integrable; thus

(2) Jim - sup{lh - 2allui)- h e v (B} = 0.

(1)

From equations (1) and (2) it follows that in L'(~) norm bounded sets are
equi-integrable, so L-weakly compact. Then, on the one hand, relatively weakly
compact sets are L-weakly compact, which implies that every infinite-dimen-
sional sublattice contains a subspace isomorphic to ¢! [M-2, Satz 14]. On the
other hand, the unit ball of L!(v) being bounded is L-weakly compact so rela-
tively weakly compact. Thus L!(v) is reflexive. The contradiction establishes
the claim. O

4. L'(v) A HILBERT SPACE

Theorem 3. Let X be a Banach space with cotype 2. Let v be an X-valued
measure satisfying that for every partition (A,);° of the measure space, the se-
quence

y (i)

is 2-lacunary in X . Then L'(v) is order isomorphic to a Hilbert space.

Proof. Given any partition (A4,)° there exists a constant K = K(4,), depend-
ing on the partition, such that for every sequence (a,) in £2 we have

i ||V|(|?A (Z"">U2'

Let A be a control measure for v. For a measurable set B with A(B) > 0
define Z'(B) = sup {K(B,) : (By) is a partition of B}. Then for every 4 € X
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with A(4) > 0 there exists a measurable set B C A with A(B) > 0 such that
JZ (B) < +00. Assume by way of contradiction that this is not the case. Then
there exists a measurable set 4 with A(A4) > 0 such that for every B C A4
with A(B) > 0 we have Z(B) = +o0. Let (4,) be a partition of A such that
MAn) > 0. As Z(4,) = +oo, for every n € N there exists a partition (A7) of
Ap such that K(A47) > n. So there exist real numbers of , o, ..., af such

that
i(n) 1/2
ne (Y laf? | .
i=1

A, Ay, ..., Ay, UA 1,43, ., Ay, UA

n
i(n)

2 (4
Z“' A4

Consider the following partition of A

The associated sequence is not 2-lacunary in X . Applying an exhaustion argu-
ment [DU, Lemma II1.2.4] we deduce that there exists a partition (B,) of Q
such that Z(B,) < +o0, for every n € N. A similar argument shows that in
fact we have K = sup, Z (B,) < +o00.

It follows that for every partition (4,) and for every sequence (a,) € £ we

have
o 1/2
<K- (Z aﬁIIVII(A,.)z) .
1

Let g be a simple function g = 3| a; x4, , where the sets A; are disjoint. Let
B € X. From the previous inequality we have

n 1/2
<K. (zafuuuw) .
1

Considering the equivalent norm ||| - |||, in L!(v) we deduce that

n n 12
Y aixa|| <2K- (z a:Z"V“(Ai)Z) .
1 y 1

Since X has cotype 2, by Theorem 1 L!(v) has cotype 2, so it satisfies a
lower-2 estimate: there exists C > 0 such that for any scalars a,, ..., a, and
disjoint measurable sets A4;, ..., A, we have

n 1/2 n
4) (Z axz||V||(Ai)2) <C-|\Y aixa,
1 1 y

From (3) and (4) it follows that for a simple function g = "] a;x4, where
the sets A4, are disjoint, we have

1/2
(5) 1/C- (ZaZIIVII(A)z) <

v(An)

n
=Y aw(4:nB)
1

3)

" 1/2
<2K- (Z aﬁIIVII(Ai)Z) :
v !

n
> aixa,
1
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This inequality evaluated at a; = --- = a, = 1 gives, for disjoint measurable
sets (A4:)],

n n 2 n
(1/CP ) Iwli(4:)* < vl (UA:') <(2K)?2-Y w4
1 1 1
Consider the set function

n
AeZr— pu(d) = inf{z 7(A;) : (4;)" is a partition of A} €R,
1

where

n
7(A4) = sup {Z Iv((4:)? : (4;)" is a partition of A} ,
1

for A € . u is a countably additive measure that satisfies (1/C)%*u(4) <
lv||(4)? < (2K)2u(A) for every A € £. From (5) it follows that L!(v) is
order isomorphic to the space L*(Q, X, u). O

Remarks. 1. Condition ( =) is necessary for L!(v) to be a Hilbert space since
the integration operator is continuous and, in a Hilbert lattice, a sequence of
normalized disjoint functions is 2-lacunary. Condition ( x ) does not imply that
L'(v) or X have type 2. To see this consider the measure defined over the
subsets of natural numbers, such that v({n}) = a, e, € ¢; where (a,) is a
positive null sequence, and e, is the nth vector of the canonical basis of ¢ .
Then L'(v) is ¢y and v satisfies (*). The requirement of X having cotype
2 is not necessary, as the space L2[0, 1] obtained from a cy-valued measure
shows [C-2, Theorem 1].

2. A condition, stronger than (*), but easier to verify as it deals with the
norm instead of the semivariation, is the following: for every partition (A,)$°
of the measure space, such that v(A,) # 0 for every n € N, the sequence in X

A, .
( ) ) is 2-lacunary.

5. L'(v) A DUNFORD-PETTIS SPACE

A Banach space has the Dunford-Pettis property if weakly compact operators
defined on it map relatively weakly compact sets into relatively compact sets.
We study sufficient conditions on the measure v and the Banach space X in
order to obtain L!(v) with the Dunford-Pettis property. Recall that a Banach
space has the Schur property if weak convergence of a sequence implies its norm
convergence.

Theorem 4. Let X be a Banach space with the Schur property and v an X-
valued measure with a—finite variation. Then the space L'(v) has the Dunford-
Pettis property.

Proof. The result follows from the next two claims.

Claim 1. If v takes its values in a Banach space with the Schur property, then
in L'(v) relatively weakly compact sets coincide with L-weakly compact sets.
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Claim 2. If v has o-finite variation, Y is a Banach spaceand T:L'(v) — Y
is a weakly compact operator, then T maps L-weakly compact sets into relatively
norm compact sets.

Proof of Claim 1. Suppose that there exists a set in L!(v) that is relatively
weakly compact but it is not L-weakly compact: then there exist functions f,,
disjoint measurable sets 4, and ¢ > O such that | fux4|., > & for every
n € N. As the set {f, : n € N} is relatively weakly compact, there exists a
subsequence, that we still denote by (f,), which converges weakly in L!(v) to
a function f e L'(v) . It follows that for every 4 € X the sequence ([, f, dv)
converges weakly in X to [, fdv. As X is a Schur space, the convergence is
in norm.

Let 4 and u, be the measures with densities f and f, with respect to
v, respectively. They are countably additive and absolutely continuous with
respect to a control measure [L-1, Theorem 2.2]. Since (u,(A)) converges in
norm to u(A), for every A € X, by the Vitali-Hahn-Saks theorem it follows
that {u,} is uniformly countably additive [DU, Corollary 1.5.6]. This implies
that lim, sup, ||ux|(4x) = 0. Since ||uall(4) = |Ifux4, |l , we arrived at a
contradiction.

Proof of Claim 2. Let A be a Rybakov control measure for v . Considering the
measure defined by 4 € £+ T(x4) € Y , the o-finiteness of the variation of
v and the weak compactness of T, we obtain, by the vector Radon-Nikodym
Theorem (see [DU, Theorem III.2.18]), a function g:Q — Y A-measurable
and Pettis integrable with respect to A, such that the operator T can be repre-
sented as

T(f) = Pettis- / feda.

Let K be an L-weakly compact set in L'(v) and ¢ > 0. Since K is
equi-integrable and g is A-measurable, there is a simple function ¢ and a
measurable set 4 such that ||f - x4/, < ¢ for every f € K, and | g(w) —
p(w)|| <& forevery we Q\ 4. For f in K we have

Tf=T(f a0+ [ fedi+ [ flg-p)d,
Q\4 Q\4
where || T(f - x4)|l < €||T||. Since K is bounded ||f], < M, so
| se-nar < [ 1n-lg-gldr<e [1n1dr<elfl, <em.
Q\4 Q\4
It follows that the distance between the sets 7(K) and { fg\ Jodi: feK}

is less than ¢(||T|| + M). This last set is compact, hence T(K) is relatively
compactin Y. O

Remark. From Claim 2 in the previous theorem we can derive the following
consequence: If v has no atoms and c-finite variation, then L'(v) is not
reflexive. To see this let A be a Rybakov control measure for » and K be
the unit ball of L., (4), which is an L-weakly compact setin L!(v) . If L'(v)
is reflexive, then K is relatively compact in L!(v), hence in L!(1). But
this cannot be if A is nonatomic, since in K we can build a Rademacher type
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sequence. It follows, for example, that in order to have L!(v) order isomorphic
to LP([0, 1]), for 1 < p < +00, it is necessary that the variation of v be infinite
on every measurable set where it is non null.

6. WEAK CONVERGENCE IN L!(v)

In [C-2, Theorem 4] we showed that if L!(v) has no complemented sub-
space isomorphic to ¢!, then weak convergence of bounded nets in L'(v) is
characterized by weak convergence of the integrals over arbitrary sets. This was
proved independently by Okada [O, Corollary 16]. In [O] the author mentions
the question, raised by Professor J. Diestel, as to whether or not the above char-
acterization of weak convergence in L!(v) holds, in general, for sequences.
The following example shows that this is not the case.

Let .# be the og-algebra of Lebesgue measurable sets of the interval [0, +o00)
and let m be the Lebesgue measure on the interval. Let r, be the Rademacher
functions, defined on [0, +00) by r,(t) = sign(sin(2"nt)). Consider the mea-
sure

Ae/:—»u(A)=22ikuk(A)€£2,
1

where the measures v, are defined as
k=1

e
w)=19,...,0, (t) dt,/ e () dt, ...
AN[k—1, k] AN[k—1, k]

Each measure v, is well defined, countably additive and satisfies
vk (D2 < WX an—1, kll2qk—1.4) = m(A N[k = 1, k])'/%.

Thus the measure v is well defined and countably additive. Consider in L!(v)
the sequence (f,) where f, = 2" x(,—1.n). As the function f, is supported
on the interval [n — 1, n], we have || f,|l, =|lwall([n—-1,n]) <1.

For every A € # wehave [, frdv =v,(AN[n—1, n]). This vector, with
norm less than or equal to one, belongs to the subspace generated by the vectors
€n, ens1, ... of the canonical basis of ¢2. Thus the sequence ([, f,dv) tends
weakly to zero in £2.

Let a;,...,an be scalars. For every n, 1 < n < N, consider the set
A, ={te€[n—-1, n]:rn(t) =sign(a,)}. Then we have

|0 ifk£N,
/n”‘ m‘{(n/z)-sign(a,,) ifk=N.

Thus v,(4,) = (1/2) - sign(a,) - ey . Let A=} 4,. Then

N N N
zanfn Zan/f;tdy ZanVn(An)
1 1 4 1

N
)" an(1/2) - sign(a) - en
1

2

v

N
=(1/2))_ |axl.
1

As the sequence (f,) is bounded, it follows that (f,) is equivalentin L'(v) to
the canonical basis of ¢!. Thus (f,) does not tend weakly to zero in L'(v) .
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The measure v has unbounded variation. This is not relevant, as the same
construction can be done with values in ¢y and the resulting measure has
bounded variation.
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