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ABSTRACT. In this note we prove that the collection of upper (lower) semi-
Fredholm operators with finite ascent (descent) is closed under commuting op-
erator perturbations that belong to the perturbation class associated with the
set of upper (lower) semi-Fredholm operators. Then, as a corollary we get the
main result of S. Grabiner (Proc. Amer. Math. Soc. 71 (1978), 79-80).

Let X be an infinite-dimensional complex Banach space and denote the set of
bounded (compact) linear operators on X by B(X) (K(X)). For T in B(X)
throughout this paper N(T) and R(T) will denote, respectively, the null space
and the range space of 7. Set N>(T) = |J,N(T"), R>(T) = N, R(T"),
a(T) = dim N(T) and B(T) = dimX/R(T). Recall that an operator T €
B(X) is semi-Fredholm if R(T) is closed and at least one of a(7T) and B(T)
is finite. For such an operator we define an index i(T) by i(T) = a(T) —
B(T). Let ®,.(X) (P_(X)) denote the set of upper (lower) semi-Fredholm
operators, i.e., the set of semi-Fredholm operators with a(T) < oo (B(T) <
o0) . The perturbation classes associated with @, (X) and ®_(X) are denoted,
respectively, by P(®.(X)) and P(P_(X)), i.e.,

P(®@, (X)) ={T € B(X): T+S € ®,(X) forall S € ®,(X)}

and

PO_(X))={TeBX): T+Sed_(X)forall S € P_(X)}.
Recall that a(T) (d(T)), the ascent (descent) of T € B(X), is the smallest
non-negative integer n such that N(7") = N(T"*') (R(T") = R(T"*")). If
no such n exists, then a(7T) = oo (d(T) = o). For a subset M of X let M
denote the closure of M . The main result of this note is the following theorem.
Theorem 1. Suppose that T, K € B(X) and TK = KT . Then

(1.1) T € ®,(X), a(T) < oo and K € P(®,(X)) = a(T + K) < 0,

(1.2) T e ®_(X), a(T) < o and K € P(®_(X)) = d(T +K) < co.
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Proof. To prove (1.1) suppose that T € ®,(X), a(T) < ©, K € P(®P,(X))
and TK = KT . Set

T,=T+iK, A €0, 1].
For each A € [0, 1], T; € ®,.(X). By [2, Theorem 3], there exists ¢ = ¢(4) >0
such that

(1.3) N=(T;) N R™(T;) = N=(T,) N R™(T,)
in the open disc S(4) with center A and radius ¢. Since [0, 1] is compact, we
can obtain a finite set {4, 41, ..., 4,} of points on [0, 1] such that 4o =0,

An=1and [0, 1] C U/, S(4;) with S(A;)NS(Ai+1) #0 for i=0,1,...,n-1.
Now since a(T) < oo, it follows that N®°(T)NR>®(T) = N©(T)NR>(T) = {0}
[6, Proposition 1.6. (i)], and by (1.3) we have that N>(T,) n R>(T,) = {0}
for all 4 in S(4o). Hence, because S(4;) overlaps S(4p), we conclude that
N>(T,)NR>(T,) = {0} forall u in S(4,). By proceeding along the family of
disc, we finally deduce that N>°(T,)NR>(T,) = {0} forall u in S(4,). Thus
N>(T;,)NR>(T,,) = {0}, and again by [6, Proposition 1.6. (i)] it follows that
a(T + K) < oo. This completes the proof of (1.1).

To prove (1.2) suppose that T € ®_(X), d(T) < o0, K € P(d_(X)) and
TK=KT. Then T* € ®,.(X*), a(T*) < oo, T*K* =K*T* and T*+AK* €
d,.(X*), A€[0, 1] [1, pp. 7-8]. Part (1.2) now follows directly from the proof
of part (1.1). This completes the proof.

Let us remark that the commutativity condition in Theorem 1 is essential,
even for compact K [1, pp. 13-14]. In order to prove Theorem 1 we need the
hypothesis that K commutes with T in the place where we invoke [2, Theorem
3]

Now as a corollary, we get the main result of S. Grabiner [3, Theorem 2] (see
also [4, Theorem 7.9.2]). Our formulation of that result is somehow different
from that of S. Grabiner’s, but appropriate to Theorem 1.

Corollary 2. Suppose that T € B(X), K € K(X) and TK = KT . Then
(2.1) Te®,(X)and a(T) < 0= a(T +K) < 00,

(2.2) T e ®_(X) and d(T) < 0 = d(T + K) < oo.

Proof. By Theorem 1 and the fact that K(X) C P(®,.(X)) n P(®_(X)) [1,
Theorem 5.6.9].

To help readers understand how far our Theorem 1 extends the result in [3],
we refer them to the discussion of perturbation ideals in Sections 5.5 and 5.6,
pages 95-102 in [1]. Let us mention in particular that P(®,(X)) includes all
strictly singular operators.

Let 0,(T) and 6,4(T) denote, respectively, the approximate point spectrum
and the approximate defect spectrum of an element 7 of B(X). Set

o(T)= (| 6uT+K) and 04(T)= [ 0i(T+K).

TK=KT TK=KT
KeK(X) KEK(X)

We call a,,(T) and a,,(T), respectively, Browder’s essential approximate
point spectrum of T and Browder’s essential approximate defect spectrum of T
[5], [7]. Recall that by [5, Theorem 2.1] a complex number A &€ 6,,(T) (045(T))
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ifandonly if T—A€ ®,(X), i(T)<0 and a(T -1) <oo (T-1€ed_(X),
i(T)>0 and d(T - 1) < ).
Finally, as a second application of Theorem 1 we have

Corollary 3. Suppose that T € B(X). Then

(3.1)

and
(3.2)

ou(T)= (] 6uT+K)
TK=KT
KeP(®.(X))

ou(T)= (] 0T +K).
TK=KT
KeP(®-(X))

Proof. By Theorem 1 and [5, Theorem 2.1].
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