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ON THE DEPTH OF BLOWUP ALGEBRAS
OF IDEALS WITH ANALYTIC DEVIATION ONE

SANTIAGO ZARZUELA

(Communicated by Wolmer V. Vasconcelos)

Abstract. Let / be an ideal in a local Cohen-Macaulay ring (A, m). Assume

/ to be generically a complete intersection of positive height. We compute the

depth of the Rees algebra and the form ring of / when the analytic deviation

of / equals one and its reduction number is also at most one. The formu-

las we obtain coincide with the already known formulas for almost complete

intersection ideals.

1. INTRODUCTION

Let (A, m) be a local ring, and / an ideal of A. Denote by ht (/) the
height of /, and by /(/) the analytic spread of /. In [14], S. Huckaba and
C. Huneke defined the analytic deviation of / as the diference 1(1) - ht (/).

Denote by ad (/) this number. Analytic deviation zero ideals are the so-called

equimultiple ideals, which have been extensively studied by several authors (see
[7] for an account of the results concerning the Blowing Up rings of these ideals).
Recently, many interesting properties about the Rees algebras and the associated
graded rings of ideals with small analytic deviation have been discovered, see
e.g. [4, 5, 6, 14, 15, 20, 21, 24]. These results are mainly related to the Cohen-
Macaulay and Gorenstein properties of the Rees algebras and form rings of
ideals with analytic deviation 1 or 2, and they become particularly good when
the reduction number of / is also small. Then, there exists a minimal reduction
J of I which is very "near" to / and, roughly speaking, one is able to transfer
some of the properties of the Rees algebra and the associated ring of J to those
of /. This point of view has been systematically used by W. V. Vasconcelos in
[24] (cf. [22]).

A minimal reduction of a generically complete intersection ideal with analytic
deviation 1 is an almost complete intersection (see Section 2 for the definitions
of generically complete intersection and almost complete intersection ideals).
The Rees algebra and the associated graded ring of almost complete intersection
ideals in a Cohen-Macaulay ring are quite well understood, see e.g. [2, 3, 9, 23].
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In particular, the depth of both graded rings is known due to M. Brodmann

[2] (cf. [9]). Our aim in this note is to obtain similar formulas for the depth
of the Rees algebra and the associated graded ring of a generically complete
intersection ideal, with analytic deviation 1 and reduction number at most 1, in

a local Cohen-Macaulay ring. This is achieved by means of the following result.

Denote by R(I) and G(I), respectively, the Rees algebra and the associated

graded ring of /, and by r(I) the reduction number of /.

Theorem (Theorem 3.1). Let (A, m) be a local Cohen-Macaulay ring, and I an

ideal of A with ht (/) > 1. Assume I to be generically a complete intersection

with ad (I) = 1. If r(I) < 1, then the following hold:

(i)  depth G(I) = min{dim A, depth A/1 + ht (/) + 1} .
(ii)   depth R(I) = minjdim A + l, depth A/1 + ht (/) + 2}.

These formulas coincide with the above cited for almost complete intersection

ideals.
Now we give a brief description of the content of this note. In Section 2 we

collect the most important technical results we shall use in the proof of Theorem
3.1, which is given in Section 3. In Section 4 we give other related results. First,

we show that under the conditions of Theorem 3.1, the depth of the Rees algebra

of any power of / is the depth of the Rees algebra of /, and similarly for the

associated graded ring (Theorem 4.3). This result has been proved by J. Ribbe
in [19] for almost complete intersection ideals in a Cohen-Macaulay ring. We
also show that if / is an ideal which verifies the hypothesis of Theorem 3.1,

then the Rees algebra R(I) satisfies Serre's property S2, when A/I satisfies
Si (Theorem 4.4). The corresponding result for almost complete intersections

has been proved by P. Brumatti, A. Simis, and W. V. Vasconcelos in [1].
Throughout this paper, (A, m) will always be a ¿/-dimensional local ring with

maximal ideal m and infinite residue field A/m. If I is an ideal of A, p(I)
denotes the minimal number of generators of /, and /(/) its analytic spread, i.e.

the minimal number of generators of a minimal reduction of /. The diference

ad (/) = /(/) - ht (/) is then the analytic deviation of /. If / is a minimal

reduction of /, we shall denote by rj(I) the reduction number of / with

respect to /, which is the least integer n such that I"+i = JI" . The reduction
number of / is then defined as r(I) = min{o(7), J a minimal reduction of 1} .
The graded ring R(I) = ®„>0 Intn c A[t] is the Rees algebra of /, and G(I) =

©«>o I"IIn+x the associated graded ring of /. If S is a Noetherian graded

ring defined over A and JÍ is the maximal homogeneous ideal of S, we shall

denote by H^(-) the i-th local cohomology functor with respect to J?.

2. Preliminaries

Let / be an ideal of A. Recall that / is said to be an almost complete
intersection if p(I) = hi (I) + 1, and Ip is a complete intersection for all

minimal prime ideals p £ Min (A/1). Furthermore we say that / is generically
a complete intersection if ß(Ip) = ht (I) for all minimal prime ideals p £

Min (A/1). Our first observation is that a minimal reduction of an analytic

deviation one ideal is an almost complete intersection.

Lemma 2.1. Let (A, m) be a local ring, and I an ideal of A. Assume ad (I) = 1

and Ip is a complete intersection for all p £ Min (A/1). Let J be a minimal

reduction of I. Then, J is an almost complete intersection.
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Proof. Since ad(/) = 1, p(J) = ht(/)+l = ht(/)+l. Moreover, Min (A/1) =
Min (A/J), Ip being a complete intersection for all p G Min (A/1). Since Jp
is a reduction of Ip, we have Ip = Jp for all p e Min(^4//). Hence J is an
almost complete intersection.

If A is Cohen-Macaulay, it is then possible to find nice minimal systems

of generators of almost complete intersection ideals, see [8]. The next lemma
summarizes the main properties of these families of generators.

Lemma 2.2. Let (A, m) be a local Cohen-Macaulay ring, and I a generically

complete intersection ideal of A with ht (I) = g. Assume ad (I) = 1, and
let J be a minimal reduction of I.   Then there exists a family of elements

ax, ... , ag, c in J such that:

(i)   Jp = (ax,... , ag)p for all p 6 Min (A/I).
(ii)   ax, ... , ag is a regular A-sequence.

(iii)   c is a non-zerodivisor of A, and (ax, ... , ag) : c = (ax, ... , ag) : c2.

Proof. By Lemma 2.1, J is an almost complete intersection, and Jp = Ip for

all p £ Min04//) = Min(A/J). Then, apply [8, §4].

The following result of Huckaba and Huneke describes some additional useful

properties of these minimal systems of generators.

Lemma 2.3 ([14, Lemma 2.6]). Let (A, m) be a local Cohen-Macaulay ring,

and I an ideal of A with ht(I) = g > 1 and dim A/1 > 1. Assume that
ax, ... , ag is a regular A-sequence in I that generates I generically. Let c be

a non-zerodivisor of I such that (ax, ... , ag, c)I = I2. Then:

(i)  depth (A/(ax, ... , ag)' + I") > min{depth A/I', dim A/I - 1} for all
n > 1, i — 1, ... ,n.

(ii)   (ax,..., ag)'nl" = (ax, ... , ag)'I"-' for all n> I, i = 1,..., n-l.

Now we establish some basic relations between the Rees algebra of an ideal
with small analytic deviation and the Rees algebra of its minimal reductions.

They can be deduced from several parts of [24]. For completeness we give a

proof along with the statement.

Proposition 2.4. Let (A, m) be a local Cohen-Macaulay ring, and I an ideal

of A with ht (/) = g > 1. Assume Ip is a complete intersection for all p £

Min (A 11), and let J be a minimal reduction of I. Then:
(i) Suppose ad(I) = 1, and let HX(J) be the first Koszul homology with

respect to a minimal system of generators of J. Then, Hx (J) is an A/I-module,

and there exists an exact sequence of A/I-modules

0^HX (J) ®AS^ A/I ®AS^ R(J)/IR(J) - 0 .

(ii) // r(I) < 1,   IR(J) = IR(I).

Proof, (i) By Lemma 2.1, J is an almost complete intersection. Hence by

[9, Proposition (1.6)], Ass(#,(/)) c Min(A/J) = Uirx(A/I). Furthermore,
/p = Jp for all p £ Min(A/I). Thus (IHX(J))P = 0 for all p £ Min (A/1).
Since Min(IHx(J)) c Ass(Hx(J)), we obtain IHX(J) = 0. Now set S the
polynomial ring A[XX, ... , Xg+X], and consider the approximation complex

0 -> HX(J) ®AS^ A/J ®AS^ G(J) - 0 ,
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which is exact since J is an almost complete intersection (see [11, Theorem

4.1]). Tensoring with A/I we have a complex

(1) O^Hx(J)®AS^A/I®AS^R(J)/IR(J)^0 .

Let L be the kernel of the first map. Then Min (L) c Ass (Hx (J) ®A S) =
Ass(HX(J)) c Min(A/J) = Min (A/I) because S is a free /1-module. There-
fore, the above complex is exact when localized at p for all p £ Min (L). Thus

L = 0 and (1) is exact.
(ii) Consider the exact sequence

0 -► IR(J) -* IR(I) -♦ 0 In+x/IJ" -* 0

n>0

(®„>0 In+l/IJ" is the Sally-module of / with respect to /, see [24]). Since

r(I) < 1, In+i = IJ" for all n > 0 and the Sally-module vanishes. Thus
IR(J) = IR(I).

We finish this section with two variations of [13, Proposition 2.2]. The proof
is straightforward, hence we leave it for the reader.

Lemma 2.5. Let (A, m) be a local ring and I an ideal of A.

(i) Assume that x £ I satisfies (x)nln = xl"~{ for all n> 1. Let B = A/(x)

and Ix = I/(x) c B. If x is part of a minimal system of generators of a

reduction of I, then l(Ix) = /(/) - 1.
(ii) Let x £ m be a non-zero element such that I" : x = I" for all n > 1.

Let B = A/(x) and Ix = I + (x)/(x) c B. Then, l(Ix) = 1(1).

3. Main result

Theorem 3.1. Let (A, m) be a local Cohen-Macaulay ring, and I an ideal of

A with ht (/) > 1. Assume I to be generically a complete intersection with
ad (I) = I. If r(I) < 1, then the following hold:

(i) depth G(I) = min{dim^, depth A/1 + ht (/) + 1} .
(ii) depth R(I) = min{dim^ + 1, depth A/1 + ht (/) + 2} .

Proof. First of all note that if depth A/1 > dim A/1 - 1, the statement is
equivalent to [15, Theorem 2.1], hence we only must prove the case dim^/7 -

2 > depth A/I. We use induction on depth A/I. Assume depth A/I = 0,
and let J = (ax, ... , ag, c) be a minimal reduction of / minimally generated
as in Lemma 2.2. Set S equal to the polynomial ring A[XX, ... , Xg+X]. By
Proposition 2.4 (i), we have an exact complex

(1) O^Hx(J)®AS-*A/I®AS^R(J)/IR(J)^0 ,

where Hx(J) is the first Koszul homology with respect to ax,... ,ag,c. By
[9, Proposition (1.6)] depth HX(J) > 2, which implies depth(HX(J) ®A S) >
3 + ht(7). From (1) and by the Depth-Lemma we get depth (R(J)/IR(J)) =
ht (I) + l. Consider now the exact sequence

(2) 0 -» IR(J) -* R(J) -► R(J)/IR(J) -+ 0 .

By [9, Proposition 1.7], we have depth R(J) > ht(J) + 2 > ht(7) + 2. Hence
from (2) we obtain depth IR(J) = ht(I) + 2. On the other hand, IR(J) =
IR(I) ^ tIR(I) by Proposition 2.4 (ii). From the exact sequence

(3) 0 ̂  */;?(/) -► R(I) ^A-+0
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we then get depth R(I) = ht (/) + 2, since A is Cohen-Macaulay. Furthermore,

G(I) is not Cohen-Macaulay by [ 15, Theorem 2.1]. Thus by [ 16, Corollary 3.12],
depth G(I) = depth R(I) - 1 = ht (/) + 1, as we wanted to show.

Now assume depth A/1 > 0. The proof follows by induction on ht (/). Let

ht(/) = 1. Since dim A/1 > 2, by a similar argument as in the proof of [15,

Theorem 2.1], we may find an element x £ m such that x is a non-zerodivisor

of A and I" : x = I" for all n > 1. Consider now the ring B = A/(x) and

the ideal Ix = I + (x)/(x) c B. Then ht(/j) = 1, dim£//i = dim^/7 - 1,
depth B/Ix = depth A/I - I, r(Ix) < 1, and /(/,) = /(/) by Lemma 2.5.
Moreover, /) is generically a complete intersection by the choice of x (see [15,

Theorem 2.1]). We then have an exact sequence

(4) 0 ->*(/) -2* *(/)-*(/,)-().

By induction on depth A/I v/e have

depth R(I) = depth R(IX) + 1 = min{dim£ + 1, ht(/i) + depth B/Ix + 2} + 1

= min{dim^ + 1, ht (/) + depth A/1 + 2}.

Similarly, from the exact sequence

(5) 0^G(I)^ G(I) -» G{Ii) -» 0 ,
we obtain depth G(I) = min{dim^, ht (/) + depth A/1 + 1} .

If ht(/) > 1, let J = (ax, ... , ag, c) be a minimal reduction of / mini-

mally generated as in Lemma 2.2. Following the proof of [ 15, Theorem 2.1 ], the

initial form a* of ax is a regular element of degree 1 of G(I). Set B = A/(ax)
and Ix = I/(ax) c B. By Lemmas 2.3 and 2.5, /(/.) = /(/) - 1. Moreover,

ht (Ix ) = ht (/) - 1, r(Ix ) < 1, and Ix is generically a complete intersection.
Furthermore, since a* is regular, we have exact sequences

(6) 0 -♦ G(/)(-l) Ä R(I)/axR(I) - *(/,) - 0,

(7) o-G(/)(-l)-^G(/)-G(/,)^0.

From (7) and by induction, we get

depth G(I) = min{dim A, ht (/) + depth A/I+l} = depth R(IX ).

Thus from (6), depth R(I) = min{dim A+l,ht(I) + depth A/I + 2} , since ax
is a non-zerodivisor of R(I). The proof is now complete.

Example. Let R = K[XX, ... , X5], where K is a field, and J! = (Xx, ..., Xs).
Let A = Rji . By [14, Example 4.7], there exists a prime ideal & in A such
that (i) ht(^) = 2, (ii) l(&>) = 3, (iii) r{&) = 1, (iv) depth (A/&>) = 1,
and (v) Gi&>) is not Cohen-Macaulay. By Theorem 3.1, depth G(&) = 4 and

depth Ri&) = 5.

4. Other results

In [19], Ribbe has shown that if / is an almost complete intersection ideal

in a Cohen-Macaulay ring A, the depth of the Rees algebra of any power of
/ equals the depth of the Rees algebra of /, and similarly for the associated
graded rings. Next, we extend these results to analytic deviation one ideals with

small reduction number in a Cohen-Macaulay ring. We need the following two

lemmas.
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Lemma 4.1. Let (A, m) be a local ring and M an A-module. Let r > 1 and

set s = depth M + r. Denote by JV the maximal homogeneous ideal of the

polynomial ring A[XX ,...,Xr].   Then,  [HSV(M[XX,..., Xr])l ¿ 0 for all
j<-r.

Proof. The proof is by induction on r, taking into account for r = 1 that M

is concentrated in degree 0.

Lemma 4.2. Let (A, m) be a local Cohen-Macaulay ring, and I an ideal of
A with ht (/) > 1. Assume I to be generically a complete intersection with

ad (/) = 1. Set s = min{dim^4, depth A/1 + ht (/) + 1}, and denote by JK the
maximal homogeneous ideal of R(I). If r(I) < 1, then:

(i)   [Wj\R(I))]jiO for all j <-h\(I).
(ii)   [H^(G(I))]j ¿ 0 for all j < - ht (/).

Proof. Assume first that depth A/1 > dim A/1 - 1. By Theorem 3.1, this im-
plies that both R(I) and G(I) are Cohen-Macaulay. Set g = ht (/). Then
a(G(I)) = -g by [4, Proposition 2.4], and the statement for G(I) is a conse-

quence of [12, Lemma 4.1]. Consider now the exact sequence

(1) 0 -^IR(I) -*(/)->G(/)-0,

where depth G(I) = d and depth R(I) = depth IR(I) = d + 1. We have
monomorphisms [Hd^(G(I))]j <-* [Hd¿{(IR(I))]j , thus [HdJ{(1R(I))]j ¿ 0
for all j < -g. On the other hand, from the exact sequence

(2) 0 - tIR(I) -> R(I) ^A^O,

we get isomorphisms [HdJx(IR(I))]^x ~[H^+[(tIR(I))]j ~ [Hd¿x (R(I))]} for

all 7^0; hence [HdJx (R(I))]¡ + 0 for all j<-g.
Assume now that depth A/1 < dim ,4// - 2. The proof follows by induction

on depth A/I. If depth A/1 = 0, and using the same notation as in the proof

of Theorem 3.1, we have an exact sequence

(3) 0 -» Hx (J) ®AS^ A/I ®AS-+ R(J)/IR(J) -+ 0 ,

where depth (A/I®AS) = depth (R(J)/IR(J)) = s and depth (Hx (J)®AS) > s .
Thus for all ;' there is an injection of local cohomology modules [H^A/I ®A

S)]j *-» [H^(R(J)/IR(J))]j and, by Lemma 4.1, [H^(R(J)/IR(J))]j ± 0 for
all j < -g. Consider now the exact sequence

(4) 0 -> IR(J) -» R(J) -» R(J)/IR(J) -0 ,

where depth R(J) > s and depth IR(J) = s + 1. We then have injections

[H^(R(J)/IR(J))]j ^ [Hgl(IR{J))]j, where Sf is the maximal homoge-
neous ideal of R(J). Thus [H^(IR(J))]j # 0 for all j <-g. If we consider
now the exact sequence

(5) 0 -♦ tIR(I) -* R(I) ^A^O,

we obtain [Hs+l (R(I))]j ss [HSJ{(IR(I))]HX ± 0 for all j<-g.
Set C = ®„>0 I"/J" . Since r(I) < 1, there are exact sequences

(6) 0 - C(l) -» G(J) -» G(J)/IG(J) -* 0 ,

(7) 0 -» G(J)/IG(J) -» G(/) -» C -♦ 0 .
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By [9, Proposition (1.7)], we have depth G(J) > s. From (6) we get depth C(l)
> s; hence from (7) we obtain injections [H^(G(J)/IG(J))]j ^ [HS^(G(I))]}
for all j, which implies that [H^,(G(I))]j ¿ 0 for all j <-g.

Now assume depth A/1 > 0. As in the proof of Theorem 3.1, we follow by

induction on ht (7). Hence if ht (7) = 1, we have an exact sequence

(8) 0 - R(I) -^ R(I)^ R(IX) -0,

where depth R(I) = depth R(IX) + 1,  ht(Ix) = ht(I), and depths/7,  =
depth A/1
- 1. Thus for all j we have injections [H^(R(Ix))]j ^ [HSJX(R(I))]j , and

by induction [HSJX(R(I))]j ^ 0 for all j < -g.  Similarly, from the exact
sequence

(9) 0^G(I)^U G(I)^G(Ix)^0

we get [H*r(G(I))]j # 0 for all j<-g.
If ht (I) > 1 we may construct an ideal /[ such that ht (7i ) = ht (I) - 1, and

exact sequences

(10) 0 -» C7(/)(-l) 2U R(I)/axR(I) - R(IX) -» 0,

(11) 0 -+ G(/)(-l) -S£ G(I) - G(/,) -» 0 ,

where depth /?(/,) = depth (?(/) = 5 and depth G(/.) = 5 - 1. From (11),
and by induction, we obtain [H^(G(I))]j ^ 0 for all j < -g, and from (10)

we obtain [HsJl (R(I))]j / 0 for all j <—g, since ax is a non-zerodivisor of

7\(7). This completes the proof.

Theorem 4.3. Let (A, m) be a local Cohen-Macaulay ring, and I an ideal of

A with ht (I) > 1. Assume I to be generically a complete intersection with

ad (/) = 1. // r(I) < 1, then for all n>l :

(i)   depth R(I) = depth R(I").
(ii)   depth Gil) = depth G(I").

Proof. Statement (i) is clear since H^(R(In)) ~ H^(R(I))W for all i. For

(ii) it suffices to apply [19, Lemma (5.3.1)] after Lemma 4.2.

In [1, Proposition (2.6)], Brumatti, Simis, and Vasconcelos proved that if I

is an almost complete intersection ideal in a Cohen-Macaulay ring, then R(I)

satisfies Serre's condition S2. The next result concerns this property for Rees
algebras of ideals which satisfy the hypothesis of Theorem 3.1.

Theorem 4.4. Let (A, m) be a local Cohen-Macaulay ring, and I an ideal of

A with ht (I) > 1. Assume that I is generically a complete intersection, with

ad (I) = 1 and r(I) < I. If A/I satisfies Sx, then /?(/) satisfies S2.

Proof. By [1, Theorem (1.5)], Ril) satisfies S2 if and only if G(7) satisfies Sx
(cf. [17, Theorem 2.2]). Hence it suffices to show that if & is a homogeneous

prime ideal of (?(/) with ht(^) > 1, then &> £ Ass(C7(/)). Let p be the
inverse image of & in A . By passing to the local ring Ap we may assume that
p = m. Denote by S the polynomial ring A[XX, ... , Xg+X], where g = ht(7),
and set S as the inverse image of &> in S. Consider first the case dim .4/7 >
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2. Let y be a minimal reduction of 7 as in Lemma 2.2. By Proposition 2.4

(i) there exists an exact sequence

(1) O^Hx(J)®AS^A/I®AS->R(J)/IR(J)^0 .

By [9, Proposition (1.7)], depth HX(J) > 2 since dim A/J = dim .4/7 > 2. Let
?T be the ideal mS. Then

F - depth (A/1 ®A S) > 1   and   F - depth (77,(7) ®A S) > 2;

thus from (1) we obtain y - depth (G(J)/IG(J)) > 1. Consider the ring
C = ©„>() I"/J" . There are exact sequences

(2) 0^C(l)^G(/)^G(/)/7C7(/)^0 ,

(3) 0 -* G(J)/IG(J) -+ G(I) -+ C -* 0

because r(I) < 1. By [1, Proposition 2.6], ST - depth (7(7) > 1, hence from
(3) we get y - depth C(l) > 1. Thus from (2), y - depth G(I) > 1, and
¿f - depth G(T) > 1 because y c S. In particular, 3a <¡L Ass(<7(7)) as we
wanted to prove.

Finally, if dim .4/7 < 1, G(I) is always Cohen-Macaulay by Theorem 3.1.
Hence (7(7) is Sx , and the proof is now complete.

Remark 4.5. Note that in Theorem 4.4, the assumption ,4/7 satisfies prop-
erty Si can be weakened in the following sense: It suffices to assume that if

dimv4/7 > 2, then depth A/I > 0. Recall that if 7 is an ideal of A with

positive grade, the Ratliff-Rush closure of 7 is defined as 7 = \Jn>x(In+l : I").

In [18], K. Raghavan has shown that if A is a Cohen-Macaulay domain and 7
is an ideal of A with ht (7) = g > 1, which is generically a complete intersec-
tion, of analytic deviation 1, and such that all the associated primes of 7 have
height at most g + 1, and if there exists a minimal reduction J of I such that

rj(Ip) < 1 for every prime ideal p D 7 with ht(p/7) = 1, then 7 = 7. As a
consequence of Theorem 4.4 we obtain the following.

Corollary 4.6. Let iA, m) be a local Cohen-Macaulay ring, and I an ideal of A
with ht (7) = g > 1. Assume that I is generically a complete intersection with
ad (7) = 1. Suppose also that the associated primes of I have height at most
g + 1, and that there exists a minimal reduction J of I such that rj{Ip) < 1

for all prime ideals pD I with ht (p/7) < 1. Then 7" = 7" for all n>l.

Proof. By [14, Theorem 2.2] (cf. [24, Theorem 4.7]), we have r(7) < 1. Thus
by Theorem 4.4 we obtain that 7?(7) is S2 (use Remark 4.5), which implies

that Î" = I" for all n > 1, see [17, § 2.3].
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