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Abstract. Let (S, I., p.) be a positive measure space, k: S x S —» R be a

measurable function such that the kernel \k\ induces a bounded integral oper-

ator on L°°(S, I, p) (equivalently, that ess.supJ€S \k(s, t)\dp(t) < oo), and

for s £ S let ks(t) = k(s, t). We show that it is sufficient for the integral

operator T induced by k on L°°(S,T.,p) to be compact, that there exists

a locally ¿¿-null set JVel such that the set {ks : s £ S} is relatively com-

pact in L'(5', X, p), and that this condition is also necessary if (S, I, p) is

separable. In the case of Lebesgue measure on a subset of R" , we use Riesz's

characterisation of compact sets in L'(R") to provide a more tractable form

of this criterion.

1. Introduction

If (S, Z, p.) is a positive measure space, k: S x S ^ R is a measurable

function, and p, q > 1 with p~l + q~l = 1, one may define the 'double norm'

of k on LP(S,Z,n) by

\\k\\P = Js![Js\k(s,t)\''dß(t)Jlldß(s).

If this double-norm is finite, then the integral operator induced by k is a com-
pact transformation on LP(S, X, p) (see Zaanen [6, Chapter 11, §2, Example

D]).
One may make the obvious generalisations of the double-norm to the spaces

Ll(S,2Z, p) and L°°(S, Z, p), but in these cases integral operators of finite

double-norm, although bounded, are not necessarily compact. In the case of an
integral operator T of finite double-norm on Ll(S, Z, p), T2 turns out to be

compact ([6, Chapter 11, §2, Example E]), but an operator of finite double-norm

on L°°(S, I, p) may fail even to be asymptotically compact ([6, Chapter 11,

§2, Example D]).
We shall give necessary and sufficient conditions for an integral operator of

finite double-norm on L°°(S, 2Z, p) to be compact, initially in the context of

an abstract measure space and then in a more concrete form for operators on
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L°°(Q), where Qçr with Lebesgue measure. Under these conditions, one

also has that the transposed kernel induces a compact operator on Ll (S, X, p).

2. Notation and hypotheses

The following notation and hypotheses will be used throughout.

Let (S, X, p) be a positive measure space. We follow Hewitt and Stromberg

[3] in our definition of the essential supremum and infimum and of L°°(S, X, p).

In brief, a set N e X is called locally p-null if p(A n N) = 0 whenever A £ X
has finite measure. A measurable function 4>: S -» K is essentially bounded

above if there is a locally /¿-null set N and a real constant C suchthat <p(t)<C

for all t £ S\N, in which case the essential supremum of <j> is defined by

ess. sups(<j>) = inf{C £ R: for some locally p-null set 7Y, <f>(t) < C

for all t £ S\N}.

The essential infimum is defined similarly, and L°°(S, X, p) is then defined as

the set of all measurable functions (j>: (S, X, p) —► 1 for which \<f>\ is essentially
bounded above, quotiented by the subspace of such functions which are zero

except on a locally null set. The norm is given by ||</>||oo = ess. sups(|r/>|).

Under these definitions, L°°(S, X, p) may be identified in the usual way with

the dual of L1 (S, X, p), even if (S, X, p) is not cr-finite. For x £ Ll (S, X, p)

and <t> £ L°°(S,Z, p) we let

(x, cj>) = / xcpdp.
Js

In the case where (S, X, p) is tr-finite, these definitions are, of course, equiv-

alent to the more conventional definitions where ' p-nalV is used in place of

'locally /¿-null'.
We shall assume throughout that k: S x S —> R is a measurable function.

For s £ S define ks: S —> R by ks(t) = k(s, t). We shall assume that there

exist a locally /i-null set N ç S and a constant M > 0 such that for s £ S\N,

ks £ Ll(S, X, p) and ||fcs||i < M. (The quantity ess.supJ65 ||fcs||i < M is the
double-norm of k on L°°(S, X, p) mentioned in the introduction.)

Define integral operators T* and T by

(T4>)(s) = jk(s,t)<p(t)dp(t),

(T*x)(t) = i k(s, t)x(s)dp(s).
Js

Finally, let

P(S, X, p) = i x £ Lx (S, X, p) : x > 0 almost everywhere and  / x = 1 >.

3. Preliminaries

Definition 3.1. Let X be a real Banach space and K ç X be closed and convex.

We shall call a set <P ç X* sufficient for K if given any x0 £ X\K there exist

4> £ O and a £ R such that (xo, <f>) < a and <f> > a on K.

In this terminology, standard theory states that the entire dual space X* is
sufficient for any closed convex set K. In our application we shall, however,
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need countable sufficient sets. The next two lemmas show that such sets always
exist, provided X is separable.

Lemma 3.1. Let K be a closed convex subset with non-empty interior of a sepa-

rable real Banach space X. Then there exists a countable set Oçr, sufficient
for K.

Proof. Let {yn : n £ N} be a dense subset of X\K. A standard separation

theorem implies that for each n £ N there exists (pn £ X* and a„ £ R such

that (yn , <f>„) < a„ and </>„ > an on K. Let <S> = {</>„: n £ N}.
We now show that <P has the required properties.  Given xo £ X\K, let

o

7? = dist(xo, K) and choose xx £ K ,so B(xx, S) ç K for some S > 0.

Consider the balls B, = B(x,, St) for 0 < t < 1, where x, = (1 - t)x0 + txx
none of which contains the point xo. Every point in Bt is at a distance at

most i(||xo - xi || + ô) from xo, so by choosing t < 7?/(||xo - xi || + S) we have

BtnK = 0 . Since {y„} is dense, we can choose y„ £ Bt, so (yn ,(/>„)< an
and (pn > a„ on K. It remains to be shown that (xn, <p„) <an ■

We have y„ = xt + v , where ||t;|| < St. Let x2 = t~l{(x, + v) - (1 - i)x0} .

Now, x2 = xx+t~iv and ||i_1u|| < <5 , so x2 £ K and hence (x2, (j>n) > a„ . We

also have y„ = ( 1 -t)xo + tx2, so ( 1 -t)xo = yn -tx2. Hence, (1 -t)(xo, <j>„) <

an - ta„ , so (x0 ,</>„) <a„.   G

Theorem 3.1. Let K be a closed convex subset of a separable real Banach space

X. Then there exists a countable set OCX*, sufficient for K.

Proof. For n £ N, let Kn = {x £ X: \\x - y\\ < n~l for some y £ K}. Since
Kn is convex and has non-empty interior, by Lemma 3.1 there exists a countable

set <P„ ç X* such that for all Xo £ X\K¿ there exists <p £ <ï>„ and a £ R with

(x0,4>)< a and </> > a on K~n. Let O = U„gN ®n ■
To show that O has the required properties, pick xo £ X\K and let 7? =

dist(xo, K). Choose n > 7?-1, so xo ^ K„. Now, there exist <p £ i>„ ç O

and ael such that (xo ,</>)< a and 4> > a on K„ . Since K C K„, 4> > a

on K.   a

In geometrical terms, this shows that a closed, convex subset of a separable
Banach space can be represented as the intersection of a countable family of

half-spaces.

Lemma 3.2. Let A and B be subsets of a real Banach space X, and let O ç X*

be sufficient for co(B).   Then co(A) ç cü(5) if and only if for all <f> £ O,
m((A,<i>))çm((B,<t>)).
Proof. Suppose cô(^) ç cö(B), and <p £ <P. If <t> = 0, then co((^, <f>)) =
co((B, <(>)) = {0}, otherwise pick e > 0 and t £ co((A, </>)), so t = (x, <f>)
for some x 6 co(A). Now, since co(^4) ç co(7í), there exists y £ co(B) with

||x-y|| < £/||0||, so |(x, <f>) - {y, </>)\ < e, which is to say that \t-(y, <f>)\ < e.
Thus, co((A, 4>)) ç cö({B, (/>)).

Now suppose for all (f> £ <P, cö((^4, <p)) ç cö((B, tp)), and assume for a

contradiction that there exists x0 £ cö(A)\cö(B). Since O is sufficient for

co(B), there exist ^e$ and ael such that (xo, <j>) < a and <p > a on

co(B). Since <j> is continuous, co((^4, </>)) contains points less than a, but

co((7?, </>)) does not, contrary to the hypothesis.   D
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Lemma 3.3. A linear map A on L\S,~L,p) is compact if and only if
A(P(S, X, p)) is a relatively compact set.

Proof. Suppose A is compact. Since P(S,'L,p) is bounded in the L{ norm,
A(P(S, X, p)) is relatively compact.

Now suppose that A(P(S, X, p)) is relatively compact and let B be the

open unit ball in Ll(S, X, p). For any x e B, we have x = Xu- pv , where
u, v £ P(S, X, p) and 0 < X, p < 1. It now follows that A(B) is relatively
compact, so A is a compact operator.   D

Lemma 3.4. With the notation and hypotheses of Section 2, let </>£ L°° (S, X, p).

Then

ess.sup5(0) = sup< / X(pdp:x £ P(S, X, p) \ ,

ess.infc;(</>) = inf < / x<pdp: x £ P(S, X, p) \.

Proof. For x £ P(S, X, p) we have

x(t) ess. infs((j>) < x(t)<f>(t) < x(t) ess. sup5(<£)

for all t outside a locally //-null set N. However, since x £ Ll(S, X, p), the

set {t £ S: x(t) t¿ 0} is a-finite [3, Theorem 20.13], so this inequality holds

for almost all t for which x(t) ^ 0. Thus,

ess.infs(<£) <     X(/)dp< ess. sup5(</>).
Jsis

Given e > 0, there exists a set E of finite positive measure on which (f> >

ess.sup5(0) - e. Let x(t) = xe(í)/m(E) , so x £ P(S, X, p) and

/ x<f> = (l/p(E)) / r> > ess.sup5(</>) - e.
Js Je

Similarly, there exists y £ P(S,2Z,p) such that $sy<p < ess. infs((p) + e .   D

4. Abstract measure spaces

The following result is an immediate consequence of the Fubini-Tonelli the-

orem.

Lemma 4.1. The integral operators T and T* defined in Section 2 are, under

the hypotheses stated there, bounded operators on L°°(S, X, p) and L^(S, X, p)

respectively, and representing LX(S, X, p)* by L°°(S, X, p) in the usual way,

T is the Banach space adjoint of T*.

We now give a generalisation of the following simple observation: if

Pn = ix£R":Xi>0 for all i and ¿x, = 1 I

and A is a real n x n matrix, then A(P„) is the convex hull of the columns

of A.
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Lemma 4.2. With the notation and hypotheses of Section 2,

œ({ks:s£S})DT.(P(S,ï,p)).

Proof. By Lemma 3.2 and the convexity of T(P(S, X, p)), it is sufficient to

show that for each <f> e L°°(S, X, p),

œ({(ks,<f>):s£S})2 (T.(P(S, Z,p)), </>).

However,

(T.(P(S,2Z,p)),<p) = (P(S,2Z,p),T<f>)

and

(k,, 4>) = j k(s, t)<t>(t)dp(t) = (T<p)(s).

We thus need to show that

cü({(7»(j): S£S})D (P(S, l,p), Tcp).

But by Lemma 3.4,  (P(S, X, p), T<f>) = [ess. infs(T<p), ess. sup5(7V>)], and
the result follows immediately.   D

Lemma 4.3. With the notation and hypotheses of Section 2, suppose (S, X, p)

is separable. Then there exists a locally p-null set N ç S such that

œ({ks:seS\N}) = T.(P(S,ï,p)).

Proof. For any locally /i-null set N, if we choose So £ S\N and define a kernel
k' by

k'(s  t)-ik{S>t]    *'*"'
K{S,l)     \k(so,t)   ifs£N,

then the integral operator induced by k' is T, and

cü({Ä:; : s £ S}) = cö({ks : s £ S\N}).

Applying Lemma 4.2 to k' shows that

cô({ks: s £ S\N}) D T,(P(S, X, p)).

It remains to construct a locally ¿í-null set N for which the reverse inclu-
sion is also true. Since Ll(S, X, p) is separable, by Theorem 3.1 there ex-
ists a countable set O = {</>„: n £ N} ç L°°(S, X, p) which is sufficient for

Tt(P(S,2Z,p)).
Following the same reasoning as in Lemma 4.2, the reverse inclusion will be

true if for all n £ N,

cô({(ks, <f>n): s £ S\N}) = œ({(T,x, </>„): x £ P(S, X, p)})

or, equivalently,

cô({(T<t>n)(s): s £ S\N}) = cü({(x, T</>„) :x£P(S,l, p)}).

This, however, is equivalent by Lemma 3.4 to the two identities

sup T(f>n = ess. sups T(p„,
S\N

inf T(pn = ess. infs T<f>„.
S\N
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Now, for n £ N let

Nn = {s £ S: (T<pn)(s) > ess.sup5 T(/>n or (T(pn)(s) < ess.infs T<f>n}

and let N = (J„eN N„.
For each n e N, we have </>„(s) < ess. sup5 </>„ for ail 5 £ S\N and for any

e > 0, (pn > ess. sups <pn - e on a set of positive measure in S, hence on a

non-empty subset of S\N. It follows that sup^ T<pn = ess. sup5 T</>„ ; the

other identity follows in a similar way.   D

It is now easy to give necessary and sufficient conditions for T* and T to

be compact, based on the topology of the set of cross-sections {ks: s £ S} in

V(S,l,p).

Corollary 4.1. With the notation and hypotheses of Section 2, if there exists a

locally p-nullset N c S such that the set {ks: s £ S\N} is relatively compact in
Ll(S, X, p), then 7", and T are compact operators. If (S, X, p) is separable,

then the converse is also true.

Proof. Pick so £ S\N and define a kernel k' by

k'(s  t)-ik{S>t]    *°*N'
K' '     \k(s0,t)   ifs£N.

The integral operator induced by k' is T» and

co({A:; : s £ S}) = cö({ks : s £ S\N}).

Applying Lemma 4.2 to k' shows that

cö({ks : s £ S\N}) D T.(P(S, X, p)).

Since {ks: s £ S\N} is relatively compact in Ll(S, X, p), its closed convex

hull is compact. It follows that r*(7>(5', X, p)) is relatively compact, so T»
and T are compact by Lemma 3.3.

Now suppose that (5, X, p) is separable and that T and T» are com-
pact (they are, of course, either both compact or both non-compact). Since

P(S, X, p) is bounded in L[(S, X, p), T*(P(S, X, p)) is a compact set. How-
ever, by Lemma 4.3, there exists a locally /¿-null set 7Y such that

cö({ks:s£S\N}) = Tt(P(S,I,p)),

from which it follows that {ks : s £ S\N} is relatively compact.   D

5. Domains in 1"

In the important special case that S is a subset of R" and p is Lebesgue

measure, we can use a standard characterisation of L1 compactness to provide
alternative criteria. Lebesgue measure is, of course, both fj-finite and separable
so 'locally null' reduces to 'null' and both implications of Corollary 4.1 are valid.

We begin by recalling M. Riesz's characterisation of compact sets in L[(R").

Theorem 5.1. Let Q, be a (Lebesgue) measurable subset of R" and K be a

bounded subset of L1 (Q). For u£K, define ü £ L1 (Rn) by

-, \-i "W   ^xeQ'

U(X) - \ 0       ifx £ R»\ß.
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Then K is relatively compact if and only if for all e > 0 there exists 6 > 0 and

R > 0 such that for every u £ K and for every h £ R" with \h\ < 6,

i |ö(x)|rfx<e, /   \ü(x +h)-ü(x)\dx <e.
Jr»\B(0,R) Jm"

Proof. See Riesz [4] or Adams [1, Theorem 2.21].   D

Corollary 5.1. Let £2 be a measurable subset of Rn and &: Q x £2 —> R be a

measurable function where there exists a constant M > 0 such that for almost

all x £ Q, k(x, •) £ V (Q) and /n \k(x, y)\dy < M. Define operators T and

T, on L°°(Í2) and L'(Q) respectively by

(Tu)(x)= i k(x,y)u(y)dy,
Ja

(Ttv)(y)= / k(x,y)v(x)dx,
Ja

and define k:Q.xRn^R by

k(x  y)-ik{x>y)   ifyGQ>

*<*•"-\0 ify£R"\Q.

Then the following are equivalent:

(1) T is compact.

(2) r» is compact.
(3) Given e > 0 there exist S > 0 and R>0 such that for almost all x £ Q

and for every h £ R" with \h\ < 6,

/ \îc(x,y)\dy<e,        [ \k(x, y + h) - k(x, y)\dy < e.
Jr"\b(0,r) Jr"

Proof. Immediate from Corollary 4.1 and Theorem 5.1.   D

6. Remarks

Although the results have been presented only for real L1 and L°° spaces,

their generalisations to complex spaces are immediate.

B. M. Cherkas [2] gives sufficient conditions for a subset of L°°(S, X, p) to

be compact, which are also necessary in the case that (S, X, p) is a -finite. It is

easy to deduce from these that the conditions given in Corollary 4.1 are sufficient
for T to be compact. Their necessity for separable measure spaces cannot,

however, follow from Cherkas's criterion as stated in [2], since a separable
measure space is not necessarily cr-finite.

The fact that the operator T* is the integral operator whose kernel is the

tranpose of that of T is not important; all that is required is the existence

of a bounded operator Tt on Ll(S, X, p) whose Banach space adjoint is T.

It may be shown that such an operator exists if and only if T is bounded

and weak *-continuous (this is Exercise 6 in Rudin [5, Chapter 4]), and all

of the conclusions about T are valid in this case. It is not, however, clear
what conditions other than finite double-norm could be placed on the kernel to

guarantee such continuity of T.
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