A NOTE ON THE EXPONENTIAL DIOPHANTINE EQUATION $x^2 - 2^m = y^n$

YONGDONG GUO AND MAOHUA LE

(Communicated by William W. Adams)

ABSTRACT. In this note we prove that the equation $x^2 - 2^m = y^n$, x, y, m, $n \in \mathbb{N}$, $\gcd(x,y) = 1$, y > 1, n > 2, has only finitely many solutions (x,y,m,n). Moreover, all solutions of the equation satisfy $2 \nmid mn$, $n < 2 \cdot 10^9$ and $\max(x,y,m) < C$, where C is an effectively computable absolute constant.

Let \mathbb{Z} , \mathbb{N} , and \mathbb{Q} be the sets of integers, positive integers, and rational numbers respectively. In [3], Rabinowitz proved that the equation

(1)
$$x^2 - 2^m = y^n$$
, $x, y, m, n \in \mathbb{N}, \gcd(x, y) = 1, y > 1, n > 2$,

has only the solution (x, y, m, n) = (71, 17, 7, 3) with n = 3. In this note we give a general result as follows.

Theorem. Equation (1) has only finitely many solutions (x, y, m, n). Moreover, all solutions of (1) satisfy $2 \nmid mn$, $n < 2 \cdot 10^9$ and $\max(x, y, m) < C$, where C is an effectively computable absolute constant.

In order to prove the theorem, we now introduce a result concerned with the linear forms in logarithms, which was derived by Dong [1]. Let α be a nonzero algebraic number with the defining polynomial

$$a_0z^r + a_1z^{r-1} + \cdots + a_r = a_0(z - \sigma_1\alpha) \cdots (z - \sigma_r\alpha), \quad a_0 \in \mathbb{N},$$

where $\sigma_1 \alpha, \ldots, \sigma_r \alpha$ are all the conjugates of α . Then

$$h(\alpha) = \frac{1}{r} \left(\log a_0 + \sum_{i=1}^r \log \max(1, |\sigma_i \alpha|) \right)$$

is called Weil's height of α . Let K be an algebraic number field of degree D over \mathbb{Q} , and let \mathfrak{p} be a prime ideal of K with $\mathfrak{p}|p$, where p is a prime. We write $e_{\mathfrak{p}}$ for the ramification index of \mathfrak{p} , and for $\alpha \in K \setminus \{0\}$, we denote by $\operatorname{ord}_{\mathfrak{p}} \alpha$ the order to which \mathfrak{p} divides the principal ideal $[\alpha]$ of K.

Received by the editors March 7, 1994 and, in revised form, June 18, 1994.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11D61, 11J86.

Supported by the National Natural Science Foundation of China.

Lemma 1 ([1, Theorem 4.1 and Corollary 1.1]). Let α_1 , $\alpha_2 \in K \setminus \{0\}$. If $\operatorname{ord}_{\mathfrak{p}}(\alpha_j - 1) > e_{\mathfrak{p}}/(p-1)$ (j = 1, 2) and $\Lambda = \alpha_1^{b_1} - \alpha_2^{b_2} \neq 0$ for some b_1 , $b_2 \in \mathbb{Z}$, then we have

$$\log |\Lambda| > \begin{cases} -37390 D^4 A_1 A_2 (\log B)^2, & \text{if } p = 2, \\ -\frac{2500}{(\log p)^3} \left(\left(\frac{p}{p-1} + \frac{1}{p^2} \right) p^2 + 0.17159 \right) D^4 A_1 A_2 (\log B)^2, & \text{if } p > 2, \end{cases}$$

and

$$\operatorname{ord}_{\mathfrak{p}} \Lambda \leq \frac{(51p + 67)^2}{(\log p)^4} e_{\mathfrak{p}} D^4 A_1 A_2 (\log B)^2,$$

where $A_j = \max(h(\alpha_j), 2\log p)$ $(j = 1, 2), B = \max(3, |b_1|, |b_2|).$

Lemma 2 ([2]). Let $a, b, x, y, m, n \in \mathbb{Z}\setminus\{0\}$ be such that $\gcd(x, y) = 1$, $m \ge 2$, $n \ge 2$ and $mn \ge 6$. Then the greatest prime factor $P(ax^m + by^n)$ of $ax^m + by^n$ satisfies $P(ax^m + by^n) > C(a, b, m, n)((\log \log X)(\log \log \log X))^{1/2}$, where C(a, b, m, n) is an effectively computable constant depending only on a, b, m and n, and $X = \max(e^{e^c}, |x|, |y|)$.

Proof of Theorem. Let (x, y, m, n) be a solution of equation (1). If 2|m, then we have

$$x + 2^{m/2} = y_1^n$$
, $x - 2^{m/2} = y_2^n$, $y = y_1 y_2$, $y_1, y_2 \in \mathbb{N}$;

whence we get

$$2^{m/2+1} = y_1^n - y_2^n.$$

Since $(y_1^n-y_2^n)/(y_1-y_2)$ is an odd integer with $(y_1^n-y_2^n)/(y_1-y_2)>1$, (2) is impossible. Hence $2\nmid m$.

Let $K = \mathbb{Q}(\sqrt{2})$, and let h_K , O_K be the class number and the algebraic integer ring of K, respectively. Then we have $h_K = 1$ and $O_K = \mathbb{Z}[\sqrt{2}]$. For any $\alpha \in O_K \setminus \{0\}$, let $[\alpha]$ denote the principal ideal of K which is generated by α . If $2 \nmid m$, then from (1) we get

(3)
$$[x + 2^{(m-1)/2}\sqrt{2}][x - 2^{(m-1)/2}\sqrt{2}] = [y]^n.$$

Since $\gcd(x, y) = 1$ and $2 \nmid xy$, $\gcd([x + 2^{(m-1)/2}\sqrt{2}], [x - 2^{(m-1)/2}\sqrt{2}]) = [1]$, and by (3), we get $[x + 2^{(m-1)/2}\sqrt{2}] = [\alpha]^n$, where $\alpha \in O_K$ with the norm $N(\alpha) = y$. It implies that

(4)
$$x + 2^{(m-1)/2}\sqrt{2} = (X_1 + Y_1\sqrt{2})^n(u + v\sqrt{2}),$$

where X_1 , Y_1 and u, v satisfy

(5)
$$X_1^2 - 2Y_1^2 = y$$
, $X_1, Y_1 \in \mathbb{Z}, \gcd(X_1, Y_1) = 1$,

and

(6)
$$u^2 - 2v^2 = 1, \quad u, v \in \mathbb{Z},$$

respectively. Let

(7)
$$\rho = 3 + 2\sqrt{2}, \qquad \overline{\rho} = 3 - 2\sqrt{2}.$$

Since ρ is the fundamental solution of (6), by (4) and (5),

(8)
$$x + 2^{(m-1)/2}\sqrt{2} = (X_2 + Y_2\sqrt{2})^n \overline{\rho}^t, \quad t \in \mathbb{Z}, \ 0 \le t < n,$$

where X_2 , Y_2 satisfy

(9)
$$X_2^2 - 2Y_2^2 = y$$
, $X_2, Y_2 \in \mathbb{Z}, X_2 > 0$, $gcd(X_2, Y_2) = 1$.

Let

(10)
$$\varepsilon = X_2 + Y_2 \sqrt{2}, \qquad \overline{\varepsilon} = X_2 - Y_2 \sqrt{2}.$$

We see from (8) that

(11)
$$x - 2^{(m-1)}\sqrt{2} = \overline{\varepsilon}^n \rho^t.$$

By (8) and (11), we get

(12)
$$2^{(m+1)/2}\sqrt{2} = \varepsilon^n \overline{\rho}^t - \overline{\varepsilon}^n \rho^t.$$

Let $\alpha_1 = \overline{\rho}^2$, $\alpha_2 = \overline{\epsilon}/\epsilon$ and $\Lambda = \alpha_1^t - \alpha_2^n$. Since $\epsilon > \overline{\epsilon} > 0$ by (8) and (11), we find from (7), (9) and (10) that

(13)
$$h(\alpha_1) = \log \rho, \qquad h(\alpha_2) = \log \varepsilon.$$

Notice that $[2] = \mathfrak{p}^2$, where \mathfrak{p} is a prime ideal of K. We have α_1 , $\alpha_2 \in K \setminus \{0\}$, and $\operatorname{ord}_{\mathfrak{p}}(\alpha_j - 1) \geq 3$ for j = 1, 2. Recall that $0 \leq t < n$. By Lemma 1, we have

$$\log |\Lambda| > -1054500(\log \varepsilon)(\log n)^2$$

and

(15)
$$\operatorname{ord}_{\mathfrak{p}} \Lambda < 7054500(\log \varepsilon)(\log n)^{2}.$$

Since $2^{(m+1)/2}\sqrt{2} = \varepsilon^n \rho^t \Lambda$ by (12), we get

(16)
$$\frac{m+2}{2}\log 2 = \log \varepsilon^n \rho^t + \log |\Lambda| \ge n \log \varepsilon + \log |\Lambda|$$

and

(17)
$$\operatorname{ord}_{\mathfrak{p}} \Lambda = m + 2.$$

The combination of (14), (15), (16) and (17) yields

$$7054500(\log \varepsilon)(\log n)^2 > \frac{2n}{\log 2}\log \varepsilon - 3056600(\log \varepsilon)(\log n)^2;$$

whence we deduce that

$$(18) n < 2 \cdot 10^9.$$

Thus, by Lemma 2, we get from (1) and (18) that $\max(x, y, m) < C$, where C is an effectively computable absolute constant. The theorem is proved.

REFERENCES

- 1. P.-P. Dong, Minoration de combinaisons linéaires de deux logarithmes p-adiques, Ann. Fac. Sci. Toulouse 12 (1991), 195-250.
- 2. S. V. Kotov, Über die maximale norm der idealteiler des polynoms $\alpha x^m + \beta y^n$ mit algebraischen Koeffizienten, Acta Arith. 31 (1976), 219–230.
- 3. S. Rabinowitz, The solution of $y^2 \pm 2^n = x^3$, Proc. Amer. Math. Soc. 62 (1976), 1-6.

DEPARTMENT OF MATHEMATICS, ZHANJIANG TEACHERS COLLEGE, P.O. BOX 524048, ZHANJIANG, GUANGDONG, PEOPLE'S REPUBLIC OF CHINA