
proceedings of the
american mathematical society
Volume 123, Number 12, December 1995

A NOTE ON THE EXPONENTIAL
DIOPHANTINE EQUATION x2 - 2m = yn
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(Communicated by William W. Adams)

Abstract. In this note we prove that the equation x2 — 2m = y" , x, y, m, n

e N, gcd(* ,y)=\,y>\,n>2, has only finitely many solutions

(x, y, m , n). Moreover, all solutions of the equation satisfy 2 \ mn , n <

2 • 109 and max(x, y, m) < C , where C is an effectively computable abso-

lute constant.

Let Z, N, and Q be the sets of integers, positive integers, and rational
numbers respectively. In [3], Rabinowitz proved that the equation

(1)     x2-2m=y",       x,y,m,n£N,gcd(x,y) = l,y> l,n>2,

has only the solution (x, y, m, n) = (71, 17,7,3) with n = 3. In this note

we give a general result as follows.

Theorem. Equation (1) has only finitely many solutions (x,y,m,n). More-

over, all solutions of (I) satisfy 2\ mn, n < 2 • 109 and max(x, y, m) < C,

where C is an effectively computable absolute constant.

In order to prove the theorem, we now introduce a result concerned with the

linear forms in logarithms, which was derived by Dong [1]. Let a be a nonzero
algebraic number with the defining polynomial

anz'-r-aiz''-1 -l-\-ar = an(z - axa) ■ ■ ■ (z - ara),        ao £ N,

where axa,... , ara are all the conjugates of a. Then

h(a) = - iloga0 + ^logmax(l, \ata\) J

is called Weil's height of a. Let K be an algebraic number field of degree D
over Q, and let p be a prime ideal of K with p\p, where p is a prime. We
write ep for the ramification index of p, and for a £ K\{0}, we denote by
ordp a the order to which p divides the principal ideal [a] of K.
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Lemma 1 ([1, Theorem 4.1 and Corollary 1.1]). Let ax, a2 £ AT\{0}.   If

ordp(a7-1) > ep/(p-l) (/=1, 2) and A = a\{ -ab22 ¿ 0 for some bx,b2£l,
then we have

f -37390D4AxA2(\ogB)2, ifp = 2,
log |A| > ^      2500

(logp): ((p^x+ji)p2 + 0.17159) DUxA2(loèB)2,    ifp>2,

and

ordp A < {5\H^)2epDUxA2(logB)2,

where A¡ = max(A(a;), 2logp)   (j = 1,2), B = max(3, \bx\, \b2\).

Lemma 2 ([2]). Let a, b, x, y, m, n £ Z\{0} be such that gcd(x, v) = 1,
m>2, « > 2 and mn > 6. Then the greatest prime factor P(axm + by") of

axm+byn satisfies P(axm+by") >C(a,b,m, «)((loglogX)(logloglogX))1/2,

where C(a, b, m, n) is an effectively computable constant depending only on

a, b, m and n, and X = maxien , |jc| , \y\).

Proof of Theorem. Let (x,y,m,n) be a solution of equation (1). If 2\m,
then we have

x + 2m'2 =ynx,    x- 2m'2 = yn2,        y= yxy2, yx, y2 £ N;

whence we get

(2) 2ml2+{=y1-y^.

Since (yl -y2)/(yx -y2) is an odd integer with (yl -y")/(yx -y2) > 1, (2) is
impossible. Hence 2 \ m .

Let K = Q(\/2), and let hx, Ok be the class number and the algebraic

integer ring of K, respectively. Then we have hK = 1 and Ok = Z[\/2]. For
any a £ Ok\{0} , let [a] denote the principal ideal of K which is generated

by a. If 2 \ m , then from (1) we get

(3) [x + 2<m-"/2v/2][;c - 2<m-'>/2v/2] = [y]n.

Since gcd(x, y) = 1 and 2\xy , gcd([jc+2(m-'>/2v/2], [x-2<",-1»/2v/2]) = [1],

and by (3), we get [x + 2(m-1)/2\/2] = [a]n, where a £ Ok with the norm

N(a) = y. It implies that

(4) x + 2<",-1>/2v/2 = (Xx + Yx V2)"(u + vV2),

where Xx, Yx and u, v satisfy

(5) X\ -2Y2=y,        XX,YX£1, gcd(X,, Yx) = 1,

and

(6) u2-2v2 = l,        u,v£Z,

respectively. Let

(7) p = 3 + 2V2,       -p = 3-2\/2.

Since p is the fundamental solution of (6), by (4) and (5),

(8) jc + 2('"-1)/2v/2 = (X2 + y2v/2)'y,        t£l, 0<t<n,
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where X2, Y2 satisfy

(9) X\ - 2Y2 = y,        X2, Y2 £ 1, X2 > 0, gcd(X2, Y2) = 1.

Let

(10) e = X2 + Y2V2,        I = X2- Y2y/2.

We see from (8) that

(11) x-2(m-1)v/2 = êV'.

By (8) and (11), we get

(12) 2{m+l)l2V2 = en-p'-ënp<.

Let ax = p2, ol2 = I/e and A = a\-a2'. Since e > e > 0 by (8) and (11),

we find from (7), (9) and (10) that

(13) h(ax) = log p,        h(a2) = loge.

Notice that [2] = p2, where p is a prime ideal of K. We have ax, a2 £ K\{0},
and ordp(a/ - 1) > 3 for j = 1, 2. Recall that 0 < í < n . By Lemma 1, we
have

(14) log|A| > -1054500(loge)(logn)2

and

(15) ordp A < 7054500(loge)(logn)2.

Since 2(m+1>/2v/2 = enp'A by (12), we get

m A- 2
(16) -^^log2 = logeV+log|A|>rtloge + log|A|

and

(17) ordpA = w-l-2.

The combination of (14), (15), (16) and (17) yields

7054500(loge)(log«)2 > p^loge - 3056600(loge)(log«)2;

whence we deduce that

(18) «<2-109.

Thus, by Lemma 2, we get from (1) and (18) that max(x, v, m) < C, where

C is an effectively computable absolute constant. The theorem is proved.
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