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(Communicated by Peter Li)

Abstract. Using Jacobian elliptic functions we construct families of complete

immersed minimal surfaces, with one, two or three ends and a non-trivial sym-

metry group.

Let M be a minimal surface of genus g and finite total curvature C(M).

A considerable amount of work has gone into the problem of constructing ex-

amples of such a surface with a given C(M) and prescribed ends [1], [2], [3],

[7]. As pointed out in [6] such examples would be of interest in connection

with various problems about minimal surfaces, e.g., the question of distribu-
tion of values of the Gauss-map of the surface. If M is complete, oriented
and of genus one, then it is classical [5], [6] that M is determined by a triple
{R, f(z)dz, g(z)} where R, the space for isothermal parameters, equals a

torus T2 = C/L, formed with respect to a lattice L, from which a finite num-

ber of points have been removed, i.e., R = T2 - {px, p2,... , p„) ; and f(z) dz

is a holomorphic differential on R and g is a meromorphic function on R.

Through the canonical projection re : C —> C/L, f and g can be identified
with elliptic functions on C having the same period lattice L. If a0 is the

Weierstrass-elliptic function associated to the lattice L, then any elliptic func-
tion with period lattice L may be expressed in terms of ¿P and ¿P' . This is,
perhaps, the reason why most known examples of genus one minimal surfaces
[1], [2], [3], [7] employ explicitly the Weierstrass ^"-function. Costa's surface

[2] is one such example where f(z) = £?(z) and g(z) = a/¿P'(z) for some

constant a.

In this paper we use Jacobian elliptic functions to construct three families of

minimal surfaces of genus one:

1. complete minimal surfaces, conformally the square torus with one point

removed and total curvature -4re(2« +1), « = 2,3,...;

2. complete minimal surfaces, conformally the square torus with two

points removed and total curvature -4re(2« + 1) ;

3. complete minimal surfaces, conformally the square torus with three

points removed and total curvature -4re(2« + 3).

Received by the editors April 28, 1994.

1991 Mathematics Subject Classification. Primary 53A10.

© 1995 American Mathematical Society

3837



3838 F. F. ABI-KHUZAM

All surfaces enjoy certain geometric properties among which we note:

• The Gauss map composed with sterographic projection is a

constant multiplied by a simple combination of three Jacobian

functions.
• To each surface there corresponds a group of motions of

R3 under which it is invariant. The group is generated by

0 -1        0
1 0 0
0    0    (-l)"+l

and
1 0 0
0-10
0    0    e

(£ = ±1).

2. The Weierstrass representation

Corresponding to a parameter k, 0 < k < 1, let K and E be the complete
elliptic integrals of the first and second kinds. That is,

rn/2 de r„/2
(2.1]

JO I VJo
l-k2sinzddd.

'o Vl-k2sin2e'

It is the usual practice to refer to k as the modulus. If k' is the complemen-

tary modulus, that is k' > 0 and k'2 + k2 = 1, then we define K' and E'
respectively as the same functions of k'2 as K and E are of k2. Using K

and K' we define the lattice

(2.2) L(K,K') = {2Km + 2iK'n:m,neZ}

and let

R = C/L(K,K')

be the corresponding torus. We take M = R - {px, p2, ... , /?„} as the domain

for isothermal parameters and, through the canonical projection re : C -» R,

identify meromorphic functions on R with elliptic functions on C having

L(K, K') as their period lattice. If / and g are two such functions, then a

mapping X : M —> R3 defined by

(2.3) X(z) = Re|Zi(l -g2, i(l + g2),2g)fdz

will be a regular complete minimal immersion of genus one and n ends, if /

and g satisfy the following:
(a) / is analytic on M, g is meromorphic on M and every zero of / on

M coincides with a pole of g so that its order as a zero of / is twice its order
as a pole of g ;

(b) (Residues) Res^ f(z)g(z) e R and Resp„ f(z) + ResPl/ fg2(z) = 0 for
v = 1,2, 3.n. _

(c) (Integrals) If yx and y2 are generators of the fundamental group of R,

then

Re / g(z)f(z) dz = 0   and    / f(z) dz= [ f(z)g2(z) dz   for 7 = 1,2.
Jy. Jv; Jy¡



JACOBIAN ELLIPTIC FUNCTIONS AND MINIMAL SURFACES 3839

(d) (Completeness) ¡¡(I + |g(z)|2|/(z)| \dz\ = oo for each divergent path /

in R.
The representation (2.3) is called the Weierstrass representation [6] and the

above conditions (a), (b), (c) and (d) may be found in [1], [5], [6].

3. Surfaces with one or two ends

Theorem 1. Let sn(z, k), cn(z, k) and dn(z, k) be the Jacobian elliptic func-

tions to the modulus k. Let k' be the complementary modulus and

(j.»   K=r   ¿l=,  r.r   « a.
Jo     Vl-k2sin2d Jo     VT-/c'2sin20

Let T2 = C/L(K,K') where

L(K, K') = {2nK + 2imK':m,neZ).

Let Po,P\, P2 and p3 be the points in T2 corresponding to 0, K, K + iK' and
iK'. Let

(3.2)      f(z) = cn4n+2(z,k),       g(z) = asn(z, k)dn(z, k)/cn2n+x(z, k)

where n is an integer and a = a(n) is a constant defined by

3    r2K

(3-3)
/Jo

_-»  r2A
a2 = -4        cn4m~2tdt      (m = -n>2).

2a Jo

Assume k = -4= and let X : D —> R3 be defined by the Weierstrass representation

formula (2.3) with f and g.
(a) If D - T2 - {pi,} and n > 0, then X is a regular conformai minimal

immersion and the surface M - X(D) c R3 is complete with total curvature

-8re if n = 0 and -4n(2n + 1) if n = 1,2,3,... .
(b) If D — T2-{px, Pi) and n < -2, then X is a regular conformai minimal

immersion and M is complete with total curvature -4re(2|«| + 1).

Note. Since k - 4=, we have k' = k and K = K'. In the sequel we will

suppress k and write e.g. 5« z instead of sn(z, k) ; but use of identities will

be easier to follow if we continue to write K, K' forgetting the fact that they

are equal. The constants 4K and 4iK' are not basic periods for sn z, en z

and dn  z. But in view of the properties [8, p. 503]

(3.4) sn(z + 2K) = -snz,    cn(z + 2K) = -en z,    dn(z + 2K) = dnz

and

(3.5) sn(z + 2iK') = snz,    cn(z + 2iK') = -enz,    dn(z + 2iK') = -dnz

one sees immediately that the functions / and g defined by (3.2) are, for each

integer n , doubly periodic with periods 2K and 2iK'. Their zeros and poles
in a fundamental region (shown below as a rectangle!) may be depicted as in

Figure 1.
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(a) iK'-oo4n+2       •       •    02"-'       -O1

0?"+2    •     -O1      -oo2"+1

(«>0,oo-1 =0,0-' =00).

(b) iK'-04m-2 • .    .oo2w+l       -0'
^4w-2      , n/ ,Q2m-l•00

(n = -m < -2).

Figure 1

Proof, (a) If n > 1, then the only pole of g in the fundamental region occurs

at K with multiplicity 2n + 1. But / has a zero at K with multiplicity
4n + 2 — 2(2« + 1). If n — 0, g has two simple poles at K and iK'. The pole
at iK' corresponds to p?, and D = T2 - {p-$}. The pole of g at AT is now

simple and / has a double zero there and no other zeros in the fundamental
region.

Consider next the residues of f,fg and fg2 at iK'. We have [8, p. 503]

(3.6) sn(z+iK') = y-!-,    cn(z+iK') = ZlÉUl      dn(z+iK') = Zi£ÎL£
ksnz ksnz snz

Since 5« z is an odd function and en z and d« z are even functions, it follows

that f(z + iK'), fg(z + iK') and fg2(z + iK') are all even functions of z

and so each must have zero residue at zero. Thus

(3.7) Res,-*- / = Res,x< fg = Res,*, fg2 = 0.

Consider next the period integrals of /,  fg and fg2.   For this let us
introduce the two paths yx and y2 defined by

(3.8) z(t) = i-j+t,    0<t<2K,       and      z(t) = j+it,    0<t<2K',

respectively. Cauchy's theorem and periodicity make it possible to move yx
down to the real segment [0, 2K] and y2 to the vertical segment from K to

K + 2iK' so that

r (2K r rK+2iK'
(3.9) I f(z)dz= I    cn4n+2tdt   and    \f(z)dz=\ /(f) ¿C

Jy, Jo Jy2 Jk

where the path of integration in the second integral is the vertical line segment.

Now the transformation

cn(K + it, k) = l-¥-cn(K' + t,k')

gives cn(K + it) = icn(K + t) since we are assuming k = k'. Thus

r2K'

f f(z)dz= f     if(K + it)dt
Jy2 Jo

= -/ /     cn4n+2(K' + t)dt = -i /    cn4n+2tdt.
Jo Jo

(3.10)v ' r2K' r2K
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Next we have, since the derivative of en z is -sn zdnz,

_cn2n+2z(3.11) j f(z)g(z)dz = ^-

so that

(3.12) f f(z)g(z)dz = 0   for; = 1,2
hi

by periodicity of enz.
For the integral of fg2 we have

(3.13) f(z)g2(z)dz = a2 \ sn2zdn2zdz ——{z-snzcnzdnz)

as can be easily verified using the differentiation formulas

,, ... d(snz) , d(dnz) 2
(3.14) —-^—- = en zdnz,        —-^—- — -ksnzcnz

dz dz

together with the identities

(3.15) sn2z + cn2z = 1,        dn2z + k2sn2z = 1

and the assumption k = 4= .

It follows that

(3.16) / f(z)g2(z)dz = ^f-   and    f f(z)g2(z)dz = ^^.
Jy\ -> Jyi J

In view of the definition of a2 and the equality K — K' we have

(3.17) / f(z) dz= [    cn4n+2tdt = ^ = / f(z)g2(z) dz
Jy, Jo ■* Jy,

and

(3.18) [f(z)dz = i[    cn4n+2tdt = ^-^ [ f(z)g2(z)dz.
Jyi Jo Jy2

It remains to verify completeness, but this is immediate since / has a pole

at iK' of order 4n + 2 and g has a pole at iK' of order 2n - 1 if n > 1
and a simple zero if n = 0. This shows that X defined by the Weierstrass

representation (2.3) with / and g is a regular conformai minimal immersion

and that M = X(D) is complete. Finally, since g is of order 2n + 1 when
n > 1 and of order 2 when « = 0, the curvature of M will be -4n(2n + 1)

in the first case and -8re in the second. This finishes the proof of part (a).
(b) Write m = -n so that, since n < — 2,

(3.19) /(z)=     -1 ,      and   g(z) = acn2m~xzsnzdnz.
cn*m zz

Since D — T2 - {px, p2}, both / and g are analytic in the corresponding

region and / is never zero there.

It is clear that Res/A-- / = Res,*' fg = 0 since both are regular at iK' and

that Res/zc fg2 = 0 since fg2(z + iK') is an even function of z. Using the

identities [8, p. 500]

(3.20) sn(z + K) = ??-?-,    cn(z + K) = -^Hl   and   dn(z + K) =
dnz' dnz dnz
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one sees that f(z + K), fg(z + K) and fg2(z + K) are all even functions of z

and so must have residue zero at zero. (Of course fg2 is regular at K.) Thus

(3.21) Res* / = Res* fg = Res* fg2 = 0.

Consider next the integrals of /, fg and fg2. Since / has now a pole at

K, we use Cauchy's theorem and periodicity to move the line of integration so
that it goes from iK' to 2K + iK'. By (3.6) and (3.20) we have cn(t + iK') =
i/cn(t + K) since we are assuming k = k'. Thus

= -/    cn4m~2(t + K)dt = -        cn4m-2tdt.
Jo Jo

On the other hand

f f{z)dz= I     f(it)idt
(3.23) Jyi Jo     ,

= i /     cn~4m+2(it)dt = i /     cn4m~2tdt,
Jo Jo

since (cn(it, k))~x = cn(t, k') = cn(t, k) by [8, p. 505] and the assumption

k = k'.
Next we have

/~acn~2m+2zf(z)g(z)dz=    a{™_2)    ,        m>2.

Thus

(3.25) j f(z)g(z) dz = 0   for j = 1, 2 and m > 2,
Jy¡

by periodicity of cn~2m+2. The integrals / f(z)g2(z) dz continue to be given

by (3.13) with the appropriate a since f(z)g2(z) — a2sn2zdn2z. It is now
clear in view of (3.22), (3.23) and (3.13) that the value

r2K

cn4m~2tdt2     -3  Ï
a=2KJo

gives

/ f(z) dz= f f(z)g2(z) dz   for ;=1,2.
Jy¡ Jy,

We conclude that X defined by the Weierstrass representation with / and

g on D- {px, pi) is a regular conformai minimal immersion. Since / and g

both have poles at iK' while, at K, / has a pole of order 4m - 2 and g a

zero of order 2m - 1, we may conclude that M = X(D) is a complete surface.
Finally since g is of order 2m + 1, the total curvature of M is -4re(2w + 1).

4. Surfaces with three ends

Theorem 2. In the notation of Theorem 1, let

(4.1) /(z) = c«4"+2z,        g(z) = ß/cn2n+xzsnzdnz
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where ß = ß(n) is a constant defined by

i    r2K
(4.2) ß2 = JKj     cn"n+2tdt       (n^°)»

and assume that the modulus k = 4- .

(a) If D — T2 - {po, P2, Pi} and n > 0, then X is a regular conformai
minimal immersion and the surface M = X(D) ç R3 is complete with total
curvature -4n(2n + 3).

(b) If we write X = (Xx, X2, X3), then for n = 0,

Xx(z)=l-Ke{2E(z)-(ß2 + l)z + J^};

(4.3) X2(z)=l-Rei{2E(z) + (ß2-l)z-J^-4E + 2K}-,

X3(z) = ßlog
snz

V2dn

where

(4.4) E(z) = £dn2ÇdÇ,    E = E(K),    ß2 = %n2/Y4 (^j .

In particular X3(z) tends to -co when z -> 0, to +oo when z -> K + iK'

and to 0 when z -* iK' if we choose ß > 0.

Proof. The zeros and poles of / and g in a fundamental region may be de-

picted as
•    2iK'>

1+3

•04"+2    •      -co'      -oo2^1    -2K

iK'-oo4n+1        •        -    -02"+J

The only poles of g in the fundamental region occur at 0, K and K + iK'.
The poles at 0 and K + iK' correspond to po, p2 and D = T2 -{p0, p2, P3} ■

The pole at K is of order 2« + 1 and / has a zero at K of order 4« + 2 and
no other zero in the fundamental region.

Consider next the residues of /, fg and fg2 at 0, K + iK' and iK'. We

have f(z), (fg)(z) and (fg2)(z) are even functions of z and, as in the proof

of Theorem 1, f(z + iK'), (fg)(z + iK') and (fg2)(z + iK') are also even
functions of z. We also have [8, p. 503]

,      „     . „,,      dn u
sn(u + K + iK ) =

(4.5) cn(u + K + iK') =

dn(u + K + iK') =

kcnu'
-ik'

kcnu'
ik'snu

cnu

which again imply that /, fg and fg2, as functions of z + K + iK', are even

in z. Hence

(4.6) Res / = Res fg = Res fg2 = 0   at 0, K + iK', iK'.
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Consider next the periods of /, fg and fg2. Let yx and y2 be the two paths
defined by (3.8) in the proof of Theorem 1. We already have

p p2K /• *2K

(4.7)     j f(z)dz= I     cn4n+2tdt   and        f(z)dz = -i        cn4n+2tdt.
Jy, Jo Jy2 Jo

For the integral of fg we need a bit of elementary trigonometry: The identities
in (3.15) give for n > 1,

cn2n+xz = cn2n+iz (dnz^ + k2snz\

snzdnz \snz      dnz )

cnzdnz,,        -, .„    k2cnzsnz Idn2z -k'2\"

snz

cnzdnz

snz
+ Yj(^\(-iysn2v-xz cnzdnz

2 / -k'2\" enzsnz

+ W=l E (")(-k'2)n-"dn2"-xzenzsn z.

Since (snz)' — cnzdnz and (dnz)' = -k2snzenz, it follows that the in-

tegral of fg contains two logarithmic terms plus two polynonials in sn2z
and dn2z respectively. In view of the periodicity of sn2z and dn2z it
follows that the value of Re / f(z)g(z)dz on  y¡  depends on log|s«z| +

(-1)"+1 jit log \dn z\. But again, by the "periodicity" of 5« z and dn z namely,
sn(z + 2K) = -snz and dn(z + 2K) — dnz, one sees that

For the integral of fg2 we have

Re / f(z)g(z)dt = 0,        ; = 1,2.
Jy,

jmfw^ßif-^it

^7(¿ + 3k)rf»"2(í en z

snzdnzi

as may be verified by direct differentiation taking into account that k2 = \
Clearly then

[ f(z)g2(z)dz = 2Kß2   and     Í f(z)g2(z)dz = 2iK'ß2.
Jy\ Jyi

In view of the definition of ß2 and the equality K = K' we have

f f(z) dz= f    cn4n+2tdt = 2Kß2 = / f(z)g2(z) dz
Jy, JO Jy¡

and _

/ f(z) dz = i [    cn4n+2tdt = 2/A-^2 = Í f(z)g2(z) dz.
Jy2 Jo Jy2
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/Jk

Completeness follows immediately as in Theorem 1 and so X defined by the

Weierstrass representation with / and g is a regular conformai minimal im-

mersion and M = X(D) is complete. Finally, since g is of order 2« + 3, the
curvature of M will be -4re(2« + 3).

(b) If n = 0, then "starting" all integrals at K we have

f* /(C) dC = f cn2CdÇ = 2E(z) -Z-2E + K;
Jk Jk

Re f AQg(C)dÇ = Kefi [Z(cnC/snCdnQdC
Jk Jk

= ß log \snz/dn z\ - ß log \Í2 ;

It follows that

Xx(z) = ±Re£f(l-g2)dc:

= ^{2E(z)-(ß2 + l)z + ß2J^-2E + (ß2 + l)K},

X2(z) = ^ReijZf(l+g2)dÇ

= l-Rei{2E(z) + (ß2-l)z-ß2J^-2E-(ß2-l)K},

X3(z) = Re íZf(C)g(Odi: = /Hog -^— .
Jk v'2 dnz

On the other hand, the value of the constant ß as defind in (4.2) is

f = hl
2K 1 O f _ K~

cn2tdt = ^{2E(2K) - 2K} = tÏL-±

which implies that ß2 + 1 = 2E/K or K(ß2 + 1) = 2E thus removing the

constant term in the expression for Xx and simplifying the constant term

-2E - (ß2 - l)K in X2 to 2K -4E. The explicit evaluation of ß2 is found

in [8, p. 525]. Finally as z -» 0, snz ^ 0 and dnz —► l/v^ so that, since
j8 > 0, X3 -> -co. Similarly X, -♦ +oo when z->K + iK'. When z -+ iX'

the ratio jj^ approaches i VI ; hence X3 -> 0 in this case. Let us note that
for each n the components Xx, X2 and X3 of the corresponding surface may
be computed in terms of E(z), snz, cnz, dnz and other simple functions.

Indeed, all that is needed is a recurrence relation for the integral of cn4n+1, but

this is easily obtained by two differentiations. The same, of course, is true of
integrals involving powers of sn and dn.

5. Symmetry

In order to study the symmetries of the surfaces obtained we shall take as
fundamental region the square F with vertices -iK', 2K-ÍK', 2K+ÍK', iK'

where we continue to write K' although now K' = K since k — l/\f2 — k'.
Following Hoffman and Meeks [4] we introduce the following transformations



3846 F. F. AB1-K.HUZAM

of the above square:

ß(K + z) = K + z reflection about x-axis ;

pm(K + z) = K + imz rotation by mre/2 about K, m = 1, 2, 3;

a(K + z) = p(ß(K + z)) = K + tz reflection through positive

diagonal through K ;

â(K + z) = p2(ß(K + z)) = K - z reflection through vertical line through K ;

p(K + z) = p3(ß(K + z)) = K + iz reflection through negative diagonal

iK'     •     •     •
0      •   -K   ■

-iK'   ■     •     •

Note that, although we are using the same notation, the transformations

a, p, ß, p above are not, strictly speaking, the same as those in [4]. The

next lemma translates well-known periodicity properties of the Jacobian elliptic
functions into geometric language.

Lemma 1. Let snz, cnz and dn z be the Jacobian elliptic functions to the

modulus k = 4= . Then

(5.1)

and

(5.2)

cn(p(K + z)) = icn(K + z),       cn(p(K + z)) = icn(K + z),

cn(ß(K + z)) = cn(K + z),       cn(à(K + z)) = =cñ(K + z)

sn dn p(K + z) = sn dn(K + z),       sn dn p(K + z) = sn dn(K + z),

sn dn ß(K + z) - sn dn(K + z),       sn dnâ(K + z) = sn dn(K + z).

Proof. All three Jacobian functions are real on the real axis and

sn(iz) = isnz/cn z,    cn(iz) = l/cn z,    dn(iz) = dn z/cn z

by the Jacobian imaginary transformation with k = k'. If we recall (3.20), it

becomes an easy matter to verify the following:

cn(p(K + z)) = cn(K + iz) = -k'sn(iz)/dn(ïz) - -k'isn(~z)/dn(z)

= i (-k' sn z/dn z) = /' cn(K + z).

The other relations in (5.1) are obtained in a similar fashion. The computations

leading to (5.2) are completely analogous.

The next step is to use Lemma 1 to obtain geometric statements about the

functions / and g of Theorems 1 and 2. Since, in part (b), of Theorem 1 the

constant a is pure imaginary we expect a difference in this case.

Lemma 2. Let f and g be the pair of functions defined in Theorem  1  or

Theorem 2. Then

(5.3)        f(p(K + z)) = -f(K + z),        f(p(K + z)) = -f(K + z),

J\ß(K + z)) = f(K + z);

fg2(p(K + z)) = -fgHK + z),        fg\p(K + z)) = -fg2(K + z),

fg2(ß(K + z)) = fg^(K + z);
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fg(p(K + z)) = (-l)"ifg(K + z),        fg(ß(K + z)) = efg(K + z)

where e = +1 if a is real and e = -1 if a is pure imaginary.

Proof. All relations follow immediately from Lemma 1 and the definitions of

/ and g. For example, if / and g are defined by (3.2), then

fg(ß(K + z)) = a(cñ¿n+isñdn)(K + z) = (a/a)fg(K + z) = efg(K + z).

Let us now introduce, again following Hoffman and Meeks [4], two orthogo-

nal motions of R3 defined by

(5.4) 5E =

1 0 0
0-10
0    0    e

Rn =

0 -
1 0
0    0

0
0

(_lr+l

where e = ± 1 and n is an integer. If e = +1, then B£ is reflection in the

(xx, jc3)-plane. If e = -1, B£ is a product of two reflections or a rotation by
re about the Xi-axis. If n is odd, R„ is a rotation by re/2 about the X3-axis;

if n is even, it is a rotation by re/2 about the X3-axis followed by a reflection

in the (xx, x2)-plane. It is easy to verify that B\ = R4 = I and, in fact, that
Bs is of order 2 and R„ is of order 4 as elements of the group of orthogonal

motions of R3. Let C7£i„ be the group generated by Be and R„ . Then Ge<n

is the dihedral group with eight elements. We may consider Ge, „ as acting on

I3 through the motions Bs and R„ . We may also identify BE and Rn with

the transformations ß and p of the square F. Then Ge t n may be considered
as acting on the square F.

Recall that F is the square with vertices -iK', 2K - iK', 2K + iK' and
iK' and po, Pi, i>2 and p3 are the points on the torus T2 corresponding to

the points 0,K,K-iK' and -iK' respectively. D is the domain occurring
in Theorem 1 or Theorem 2 i.e. D = T2 - {p3} or D = T2 - {px, p3} or
D = T2 - {po, P2, Pi} • X : D —> R3 is the immersion defined by the Weierstrass
representation with the functions / and g. Since / and g involve an integer

n and a constant a = a(n), so does X. In other words X = X„,a or Xn¡e

where e = +1 if a is real and e = -1 if a is pure imaginary. In the next

result, we refer to n and e as the indices corresponding to the surface X
described in Theorems 1 and 2. The next result is identical to the result of
Hoffman and Meeks [4, p. 117].

Theorem 3. Let M - X(D) be the minimal surface described in Theorem 1
or Theorem 2, and let n and e be the corresponding indices. Let G be the
dihedral group, with eight elements. Then G, acting on R3, is a symmetry group
of M = X(D) c R}. The immersion I:Ö-»R3 is compatible with the action
of G on D. That is,

Xop RnoX and   Xoß = BEoX.

In the metric on D induced by X, G acts by isometries .
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Proof. We first translate the properties of /, fg, fg2 in Lemma 2 into prop-

erties of <t>x = /(l - g2)/2, fa = if (I + g2)/2 and fa = fg. We have

c/>x(p(K + z)) = l-f(l - g2)(p(K + z))

= \(-f-fg2)(K + z) = i<p2(K + z);

<t>2(p(K + z))=l1f(l+g2)(p(K + z)) = -i<¡>x(K + z);

fo(p(K + z)) = (-iriMK + z).

Thus

(Xx, X2)(p(K + z)) = (Xx, X2)(K + iz) = i Re |    "\<f>x, 02)(C)rff

= ^RefZ(<l>x,<j>2)(K + iOidÇ = ^ReJZ(-<t>2,<l>x)(K + Odi;

= i Re J +Z(-<^2, 0i )(C) ¿C = (-*, AT, )(tf + z).

Also
rK+izfli + lZ fZ

Xi(p(K + z)) = X3(K + iz) = Re <¿3(C)¿C = Re /   fa(K + iQidÇ
Jk Jo

= Re fZ(-l)"+xfo(K + QdC = (-l)n+xXi(K + z).
Jo

It follows that

where

Again,

X o p = Rn o X

0   -1        0
Rn =    1     0 0

0    0    (-1)"+1

1,-*
<t>x(ß(K + z)) = ^f(l-g2)(ß(K + z)) = ^(f-fg2)(K + z) = j>x(K + z),

<f>2(ß(K + z)) = i/(i + s2)(/?(ü: + z)) = i(7 - 7¿2)( * + 2) - -&(* + 2),

03(0(* + z)) = /*(£(* + z)) = e)W + z) = efo(K + z)

where e = +1 if a is real and e = -1 if a is pure imaginary.

It follows that

(Xx, X2)(ß(K + z)) = (Xx, X2)(K + J) = ±Re|    \fa , <h)(C)dÇ

= l-RtJ\<px,<P2)(K + l)dl=^jZ(^x,^2)(K + Qdl

1        fK+z -      -
= 2 Re/       i<t>x,-<t>2:)dC = ^Rcj +z(h,-<t>2)(Qdi;

= (Xx,-X2)(K + z).
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X3(ß(K + z)) = Re /    Z UQ dC = Re[ fo{K + Q dÇ
Jk Jo

= Re f ¿4>Z(K + C) dl = e Re /* fo(K + Ç) rff = eX3(K + z).
Jo Jo

Thus we have

X o ß = Be o X

where "1     0 0

B£=   0-1 0
0    0 e

This is all that is necessary to establish and the proof of Theorem 3 is completed.

It is, of course, possible to go into more detail and study the mapping proper-

ties of the immersion. Since this is more or less straightforward, we omit such
considerations. Let us, however, point out one simple instance, say, when a

is real: since en and dn are real on the real and imaginary axes while sn is

real on the real axis and pure imaginary on the imaginary axis, it follows that

/, fg2 are real on both the real and imaginary axes in case a is real. Thus the

segments 0,2rv and -iK'', iK' are mapped into the (xx, x3)-plane. Similar

statements can be made in case a is imaginary and for other segments in the

square F. Let us note finally that as an immediate corollary of Theorem 3 we

have that if n is even and e = 1, the surface M is made up of eight congruent

pieces. Again similar statements can be made in the other cases.
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