GENERALIZATIONS OF SEMI-FREDHOLM OPERATORS

RICHARD BOULDIN

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. On nonseparable Hilbert spaces there are multiple sets of operators that are analogous to the semi-Fredholm operators on a separable space. We develop the properties of these sets and relate those properties to some recent research. We conclude with a theorem that indicates precisely how far one can go from a given generalized semi-Fredholm operator (or generalized Fredholm operator) and retain the property of generalized semi-Fredholmness (or generalized Fredholmness).

1. Introduction

By "operator" we mean a bounded linear operator T defined on a Hilbert space H; we do not assume H to be separable. Let $\mathcal{B}(H)$ denote the operators on H. When H is not separable there are multiple sets of operators that might be used as natural generalizations of the Fredholm operators on a separable Hilbert space. See Definition 2.7 and Theorem 2.8 of [11], and the references listed there. Much less attention has been given to the semi-Fredholm operators. This paper continues our study of nonseparable Hilbert spaces ([5], [6], [7]) by determining properties of several classes of operators analogous to the semi-Fredholm operators on a separable space.

We shall use some concepts from earlier papers. Let U|T| be the usual polar factorization of T, and let $E(\cdot)$ be the spectral measure for the nonnegative operator |T|. In [5] we defined ess nul T by the equation

ess null
$$T = \inf\{(\dim E([0, \varepsilon))H : \varepsilon > 0\},\$$

and by definition ess def T is ess nul T^* . In [5] we showed that the closure of the invertible operators is the set of operators T such that ess nul $T = \cos \det T$.

In [7] we defined the modulus of invertibility, denoted $\rho(T)$, by the equation

$$\rho(T) = \inf\{\lambda : \dim E((\lambda - \varepsilon, \lambda + \varepsilon))H = \dim H \text{ for } \varepsilon > 0\}.$$

This quantity is related to the distance between T and the invertible operators. It follows from Theorem 4 in [8] that $\rho(T)$ is precisely the distance from T

Received by the editors May 27, 1994.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A58, 47A53; Secondary 47A05.

Key words and phrases. Semi-Fredholm operator, nonseparable Hilbert space, essential nullity, modulus of invertibility, stability theorem.

to the set $\{A : \text{ess nul } A = 0\}$. In this paper we use a natural generalization of $\rho(T)$ defined in §2.

Recall that the minimum modulus of T, denote m(T), is defined to be $\inf\{\|Tf\|\colon \|f\|=1\}$. The essential spectrum of T, denoted $\sigma_e(T)$, is the set $\{z\colon (T-zI) \text{ is not Fredholm}\}$, and the essential minimum modulus $m_e(T)$ is defined to be $\inf\{\lambda\colon \lambda\in\sigma_e(|T|)\}$. In [2] we showed that $m_e(T)$ was the minimum modulus of the projection of T into the Calkin algebra, which is defined in the next section. In [2] we computed the distance from T to the invertible operators in terms of $m_e(T)$. In this paper we shall use a generalization of $m_e(T)$.

We shall use the following standard notation. The closure of a set $\mathcal S$ is denoted $\mathcal S^-$. The restriction of T to a subspace H_0 is denoted $T|H_0$.

2. Preliminary results

We begin by defining a set of operators that form a closed two-sided ideal for the ring of operators $\mathcal{B}(H)$. We say that A belongs to \mathcal{I}_{β} provided that any (closed) subspace K contained in the range of A, denoted AH, has the property that $\dim K < \beta$. The next theorem will relate the preceding definition to other definitions that have appeared in the literature.

Theorem 1. The following are equivalent.

- (i) $A \in \mathcal{S}_{\beta}$.
- (ii) There is a sequence $\{A_k\} \subset \mathcal{B}(H)$ such that $||A A_k|| \to 0$ as $k \to \infty$ and $\dim(A_k H)^- < \beta$.
- (iii) For each positive ε there is a subspace H_{ε} such that $||A|H_{\varepsilon}|| < \varepsilon$ and $\dim(H_{\varepsilon})^{\perp} < \beta$.

Proof. (i) \Rightarrow (ii) Let U|A| be the usual polar factorization of A, and let $E(\cdot)$ be the spectral measure for |A|. Let a positive ε be given, and let H_{ε} denote $E([\varepsilon,\infty))H$. Since |A| is obviously bounded below on H_{ε} and U is isometric on $(|A|H)^-$, we see that $|A|H_{\varepsilon}$ and $AH_{\varepsilon} = U|A|H_{\varepsilon}$ are both closed subspaces. Clearly AH_{ε} is contained in AH, and, consequently, dim $AH_{\varepsilon} < \beta$.

Define the operator A_{ε} to agree with A on H_{ε} and to agree with 0 on $(H_{\varepsilon})^{\perp}$. Clearly $\dim A_{\varepsilon}H < \beta$, and

$$||A - A_{\varepsilon}|| = ||(A - A_{\varepsilon})|(H_{\varepsilon})^{\perp}||$$

= $||A|(H_{\varepsilon})^{\perp}|| = |||A||(H_{\varepsilon})^{\perp}|| < \varepsilon$.

It is clear that (ii) holds.

(ii) \Rightarrow (iii) Let positive ε be given, and choose k such that $\|A-A_k\|<\varepsilon$ with $\dim(A_kH)^-<\beta$. Let $K_\varepsilon=((A_k)^*H)^-$, and note that A_k is zero on $(K_\varepsilon)^\perp$. Clearly, $\|A|(K_\varepsilon)^\perp\|<\varepsilon$ holds. Let $H_\varepsilon=(K_\varepsilon)^\perp$, and note that

$$\dim(H_{\varepsilon})^{\perp}=\dim K_{\varepsilon}=\dim(A_kH)<\beta.$$

(iii) \Rightarrow (i) Let K be a (closed) subspace contained in AH, and let A^+ be the inverse of $A|(A^*H)^-$. Let $H_0=A^+K$, and note that $A|H_0$ maps H_0 onto K in a one-to-one way. Thus, H_0 and K have the same dimension, and there is a positive ε such that

$$||Af|| \ge 2\varepsilon ||f||$$
 for $f \in H_0$.

By hypothesis there is a subspace H_{ε} such that $\|A|H_{\varepsilon}\| < \varepsilon$ and $\dim(H_{\varepsilon})^{\perp} < \beta$. Let P be the projection onto $(H_{\varepsilon})^{\perp}$. If f is a nonzero vector belonging to $\ker P|H_0$ then $f=(I-P)f\in H_{\varepsilon}$ and $\|Af\|\leq \varepsilon\|f\|$. This contradicts the construction of H_0 , and so we conclude that $P|H_0$ is one-to-one. It follows that

$$\dim K = \dim H_0 = \dim PH_0 \leq \dim(H_{\varepsilon})^{\perp} < \beta$$
,

which verifies (i).

We need a modest generalization of the modules of invertibility, which was defined in [7]. Let β be an infinite cardinal number that does not exceed dim H. Define $\rho_{\beta}(T)$ by the equation

$$\rho_{\beta}(T) = \inf\{\lambda : \dim E((\lambda - \delta, \lambda + \delta))H \ge \beta \text{ for } \delta > 0\}$$

where $E(\cdot)$ is the spectral measure for $|T| = (T^*T)^{1/2}$. Consideration of the function $u(x) = \dim E([0, x))H$ shows that the set of λ above cannot be empty. It is clear that $\gamma \ge \beta$ implies $\rho_{\gamma}(T) \ge \rho_{\beta}(T)$.

The first part of the next result is well known (see [11]); the rest of it is new.

Theorem 2. \mathcal{I}_{β} is a closed two-sided ideal of $\mathcal{B}(H)$, and $\mathcal{B}(H)/\mathcal{I}_{\beta}$ is a C^* -algebra. If $m_{\beta}(T)$ denotes the minimum modulus of the image of T in $\mathcal{B}(H)/\mathcal{I}_{\beta}$, denoted [T], then $m_{\beta}(T) > 0$ if and only if [T] is left-invertible. Furthermore, $m_{\beta}(T) = \rho_{\beta}(T)$.

Proof. It is routine to show that \mathcal{I}_{β} is a closed two-sided ideal; see Theorem 0 of [11]. It follows from Theorem 5.38 of [10] that $\beta(H)/\mathcal{I}_{\beta}$ is a C^* -algebra provided the involution $[T]^*$ is defined to be $[T^*]$. Let this C^* -algebra be represented as an algebra of operators. Thus, $m_{\beta}(T)$ is meaningful. Since the square root is the limit of polynomials, we have

$$|[T]| = ([T]^*[T])^{1/2} = ([T^*T])^{1/2} = [(T^*T)^{1/2}] = [|T|].$$

If $\sigma(A)$ denotes the spectrum of A, then it is elementary to see that

$$m(A) = \inf\{\lambda \colon \lambda \in \sigma(|A|)\}$$

and, thus,

$$m_{\beta}(T) = \inf\{\lambda \colon \lambda \in \sigma([|T|]).$$

Suppose [B] is a left inverse for [T]. For the sake of a contradiction assume that $m_{\beta}(T) = 0$ and choose a sequence of unit vectors $\{g_1, g_2, \ldots\}$ from the space K on which $\mathcal{B}(H)/\mathcal{I}_{\beta}$ is represented such that $||[T]g_k|| \to 0$. Since

$$1 = \|g_k\| = \|[B][T]g_k\| \le \|[B]\| \|[T]g_k\|$$

holds, we have a contradiction. Thus, $m_{\beta}(T)$ is positive provided [T] is left-invertible.

In order to prove the converse we assume that $m_{\beta}(T) > 0$. Choose ε_0 such that $0 < \varepsilon < 2\varepsilon_0$ implies that $\dim E([0, \varepsilon))H = \operatorname{ess\ nul\ } T$. Since $[E([0, \varepsilon))]$ is a nonnegative idempotent, it is a projection. If g is a unit vector in the range of $[E([0, \varepsilon))]$, then

$$\varepsilon > \|[T][E([0,\varepsilon))]g\| \geq m_{\beta}(T)$$
,

which implies that no such unit vector exists. Thus, $\dim E([0, \varepsilon))H = \operatorname{ess} \operatorname{nul} T$ is less than β .

Define R on $E((\varepsilon_0, \infty))H$ to be the inverse of $|T||E((\varepsilon_0, \infty))H$ and on $E([0, \varepsilon_0])H$ let it be zero. The preceding paragraph implies that $[E([0, \varepsilon_0])] = [0]$ or $[E((\varepsilon_0, \infty))] = [I]$. Since

$$(RU^*)T = RU^*U|T| = R|T| = E((\varepsilon_0, \infty)),$$

we see that [T] is left-invertible.

Now we direct our attention to proving that $m_{\beta}(T) = \rho_{\beta}(T)$. First, we recall a useful fact from Theorem 2.6 of [11]. The coset [T] is left-invertible if and only if T is bounded below on some subspace with codimension less than β .

Consider the case that $m_{\beta}(T)=0$. So [T] is not left-invertible. If $\varepsilon>0$ and $E(\cdot)$ is the spectral measure for |T|, then |T| is bounded below on $E((\varepsilon,\infty))H$. According to the preceding paragraph, the codimension of $E((\varepsilon,\infty))H$, which is $\dim E([0,\varepsilon])H$, must not be less than β . It follows from

$$\dim E([0, \varepsilon])H \geq \beta$$

and the arbitrariness of ε that $\rho_{\beta}(T) = 0$.

Conversely, assume that $\rho_{\beta}(|T|) = 0$ and note that $\dim E([0, \varepsilon])H \geq \beta$ for all positive ε sufficiently small. If $m_{\beta}(T)$ were positive, then there would be a subspace H_0 such that $T|H_0$ is bounded below and $\operatorname{codim} H_0 < \beta$. If Q is the orthogonal projection onto $(H_0)^{\perp}$ and ε is a positive number such that $||Tf|| \geq 2\varepsilon ||f||$ for $f \in H_0$, then the restriction of Q to $E([0, \varepsilon])H$ must have nontrivial kernel. Suppose $g \in E([0, \varepsilon])H$ and Qg = 0. Since $g \in H_0 \cap E([0, \varepsilon])H$, we have a contradiction; this proves that no subspace such as H_0 exists. Hence, $m_{\beta}(T) = 0$, and we have proved that $m_{\beta}(T) = 0$ if and only if $\rho_{\beta}(T) = 0$.

For the sake of a contradiction suppose $m_{\beta}(T)$ and $\rho_{\beta}(T)$ are positive and

$$m_{\beta}(T) = \lambda < \rho_{\beta}(T).$$

Then $m_{\beta}(|T|-\lambda)=0$ while $\rho_{\beta}(|T|-\lambda)>0$, which is a contradiction. A similar argument dismisses the opposite inequality, and we have proved that $m_{\beta}(T)=\rho_{\beta}(T)$.

If $\beta = \aleph_0$, then it is well known that \mathscr{I}_{β} is the set of compact operators, and $\mathscr{B}(H)/\mathscr{I}_{\beta}$ is the usual Calkin algebra. In that case the notation $m_{\beta}(T)$ is replaced with the notation $m_{e}(T)$ for the essential minimum modulus, which was studied in [2]. Of course, in that case $\rho_{\beta}(T)$ is the modulus of invertibility $\rho(T)$.

3. BASIC RESULTS

Let β be an infinite cardinal number that does not exceed dim H. We say that A is β -left-invertible provided there is an operator B such that (I-BA) belongs to \mathcal{S}_{β} . Define β -right-invertible analogously. We say that A is β -semi-invertible if it has at least one of the two preceding properties and that it is β -Fredholm if it has both properties.

If H is a separable Hilbert space and $\beta = \dim H$, then the preceding concepts reduce to "left-semi-Fredholm", and "right-semi-Fredholm", "semi-Fredholm", and "Fredholm", respectively. A strong argument can be made that the generalization that is most analogous to the original concept is obtained by setting $\beta = \dim H$ in the case that H is non-separable.

We can give some enlightening characterizations of the previously defined concepts.

Theorem 3. The following are equivalent.

- (i) T is β -left-innertible.
- (ii) $\rho_{\beta}(T) > 0$.
- (iii) ess nul $T < \beta$.
- (iv) For all positive ε sufficiently small the inequality $||T|H_{\varepsilon}|| < \varepsilon$ implies that dim $H_{\varepsilon} < \beta$.

Proof. (i) \Rightarrow (ii) This follows from Theorem 2.

(ii) \Rightarrow (iii) For brevity let $\tau = \rho_{\beta}(T)$ and choose λ to satisfy the inequalities $0 \le \lambda < \tau$. For each λ there is a positive number δ_{λ} such that

$$\dim E((\lambda - \delta_{\lambda}, \lambda + \delta_{\lambda}))H < \beta.$$

Choose positive ε sufficiently small that dim $E([0, \varepsilon))H = \text{ess nul } T$ and $\varepsilon < \tau$; note that $\{(\lambda - \delta_{\lambda}, \lambda + \delta_{\lambda}) : 0 \le \lambda < \tau\}$ is an open cover of $[0, \varepsilon]$. Let $\{(\lambda_1 - \delta_1, \lambda_1 + \delta_1), \ldots, (\lambda_n - \delta_n, \lambda_n + \delta_n)\}$ be a finite subcover. We note that

$$\dim E([0, \varepsilon))H \leq \sum_{j=1}^{n} \dim E((\lambda_{j} - \delta_{j}, \lambda_{j} + \delta_{j}))H$$

$$< n\beta = \beta.$$

Since ε was arbitrarily small, it follows that ess nul $T < \beta$.

- (iii) \Rightarrow (iv) Choose positive ε sufficiently small that $\dim E([0, \varepsilon))H = \operatorname{ess} \operatorname{nul} T$. By Lemma 4 of [5] it follows that $||T|H_{\varepsilon}|| < \varepsilon$ implies that $\dim H_{\varepsilon} \leq \operatorname{ess} \operatorname{nul} T < \beta$.
- (iv) \Rightarrow (i) Theorem 2 showed the equivalence "T is β -left-invertible" and " $m_{\beta}(T) > 0$ "; the final conclusion of Theorem 2 shows that this is equivalent to " $\rho_{\beta}(T) > 0$ ". Thus, it suffices to show that (iv) implies $\rho_{\beta}(T) > 0$.

Let ε be a positive number such as promised in (iv), and let $E(\cdot)$ be the spectral measure for |T|. Let $H_{\varepsilon} = E([0, \varepsilon/2])H$, and note that $||T|H_{\varepsilon}|| < \varepsilon$. Thus, we know that $\dim H_{\varepsilon} < \beta$. It follows that we can choose positive δ for any λ satisfying $0 \le \lambda < \varepsilon/2$ such that $\dim E((\lambda - \delta, \lambda + \delta))H \le \dim H_{\varepsilon} < \beta$. It is now clear that $\rho_{\beta}(T) \ge \varepsilon/2$, which concludes the proof.

We omit the proof of the next theorem since it can be proved by analogy to the proof of Theorem 3 or deduced as a consequence of that theorem.

Theorem 4. The following are equivalent.

- (i) T is β -right-invertible.
- (ii) $\rho_{\beta}(T^*) > 0$.
- (iii) ess def $T < \beta$.
- (iv) For all positive ε sufficiently small the inequality $||T^*|H_{\varepsilon}|| < \varepsilon$ implies that dim $H_{\varepsilon} < \beta$.

The next theorem follows from Theorems 3 and 4. Part (iii) of the next theorem gives a particularly simple characterization of " β -Fredholm".

Theorem 5. The following are equivalent.

- (i) T is β -Fredholm.
- (ii) $\min\{\rho_{\beta}(T), \rho_{\beta}(T^*)\} > 0$.

- (iii) $\max\{\text{ess nul } T, \text{ ess def } T\} < \beta$.
- (iv) For all positive ε sufficiently small either of the inequalities $||T|H_{\varepsilon}|| < \varepsilon$ or $||T^*|H_{\varepsilon}|| < \varepsilon$ implies that dim $H_{\varepsilon} < \beta$.

If $\rho_{\beta}(T)$ and $\rho_{\beta}(T^*)$ are both positive, then they are equal. This follows from the fact that $\rho_{\beta}(A) = m_{\beta}(A)$, proved in Theorem 2, and the argument used to prove part (vii) of Theorem 2 of [2].

Let \mathcal{S}_{β} denote the β -semi-invertible operators in $\mathcal{B}(H)$. The next theorem establishes some properties analogous to familiar properties of the semi-Fredholm operators.

Theorem 6. (i) \mathcal{S}_{β} is open in operator norm.

- (ii) \mathcal{S}_{β} is dense in $\mathcal{B}(H)$.
- (iii) If every subspace of KH has dimension less than β and $A \in \mathcal{S}_{\beta}$, then $(A + K) \in \mathcal{S}_{\beta}$.
- (iv) If A and B are β -left-invertible (β -right-invertible), then AB is the same.
- (v) If $A \in \mathcal{S}_{\beta}$ and B is β -Fredholm, then $AB, BA \in \mathcal{S}_{\beta}$.
- (vi) If B is invertible and $A \in \mathcal{S}_{\beta}$, then $BAB^{-1} \in \mathcal{S}_{\beta}$.

Proof. (i) In view of Theorems 3 and 4, for each $T \in \mathcal{S}_{\beta}$ we have either $\rho_{\beta}(T) > 0$ or $\rho_{\beta}(T^*) > 0$. For a representative case we assume the former. Recalling the notation and conventions in Theorem 2 and its proof, we note that $m_{\beta}(T) > 0$. Let $\delta = m_{\beta}(T)$, and choose A such that $||T - A|| < \delta$.

Let g be any unit vector in the Hilbert space on which $\mathscr{B}(H)/\mathscr{I}_{\beta}$ is represented. In the notation of the proof of Theorem 2 we have

$$||[A]g|| \ge ||[T]g|| - ||[T - A]g|| \ge \delta - ||T - A|| > 0.$$

We may conclude that

$$\rho_{\beta}(A) = m_{\beta}(A) \geq \delta - ||T - A|| > 0.$$

It follows that $A \in \mathcal{S}_{\beta}$ and that \mathcal{S}_{β} is open.

(ii) It suffices to approximate a given $T \notin \mathcal{S}_{\beta}$. Let positive ε be given, and let T = U|T| be the usual polar factorization of T. Let $E(\cdot)$ be the spectral measure for |T|; define R to coincide with |T| on $E([\varepsilon/3, \infty))H$, and let it coincide with $(\varepsilon/3)I$ on $E([0, \varepsilon/3))H$. Note that

$$||Rf|| \ge (\varepsilon/3)||f||$$
 for $f \in H$.

Define A to be UR on $E((0, \infty))H$ and R on $E(\{0\})H$; note that it is left-invertible since it is bounded below. Since we have

$$||T - A|| \le |||T| - R|| = ||(|T| - R)|E([0, \varepsilon/3))H|| < \varepsilon,$$

we see that $T \in (\mathscr{S}_{\beta})^-$, as desired.

- (iii) Since [A+K] = [A], we see that $m_{\beta}(A+K) = m_{\beta}(A)$ and this follows from Theorems 2, 3, and 4.
- (iv) If D and C are β -left-inverses for A and B, respectively, then CD is a β -left-inverse for AB.
- (v) This follows from (iv) since B has both a β -left-inverse and a β -right-inverse.

(vi) If C is a β -left-inverse for A, then BCB^{-1} is a β -left-inverse for BAB^{-1} .

4. A STABILITY THEOREM

Now we are prepared to prove the kind of stability theorem that has been significant in perturbation theory.

Theorem 7. (i) If $\delta_1 = \rho_{\beta}(T)$ and $||T - A|| < \delta_1$, then A is β -left-inertible.

- (ii) If $\delta_2 = \rho_{\beta}(T^*)$ and $||T A|| < \delta_2$, then A is β -right-invertible.
- (iii) If $\delta = \min\{\delta_1, \delta_2\}$ and $||T A|| < \delta$, then A is β -Fredholm.
- (iv) Each of the above statements is false if the δ constant is replaced with a larger number.

Proof. The proof of part (i) of Theorem 6 actually proved part (i) above. To prove (ii) apply (i) to T^* and A^* . Part (iii) follows from (i) and (ii).

In order to prove (iv) we assume that a positive ε is given. Let $E(\)$ represent the spectral measure for |T| where T=U|T| is the usual polar factorization. Let Q denote the projection $E([0\,,\,\varepsilon+\rho_{\beta}(T)))$, and let H_{ε} denote QH. By the definition of $\rho_{\beta}(T)$ we know that $\dim H_{\varepsilon} \geq \beta$. Define B to coincide with T on $(H_{\varepsilon})^{\perp}$ and to be zero on H_{ε} ; so B=T(I-Q). Note that

$$||T - B|| = ||T|H_{\varepsilon}|| \le \varepsilon + \rho_{\gamma}(T).$$

Since

ess nul
$$B = \text{nul } B = \dim H_{\varepsilon} \ge \beta$$
,

we see that B is not β -left-invertible. This proves that δ_1 is the largest constant that makes (i) true.

Applying the construction in the preceding paragraph to T^* shows that δ_2 is the largest constant that makes (ii) true. It follows that replacing δ in part (iv) with a larger constant will result in the loss of either " β -left-invertible" or " β -right-invertible", which means that " β -Fredholm" is lost.

If one chooses β in Theorem 7 to be \aleph_0 , so that \mathscr{I}_β consists of the compact operators, then part (i) of the previous theorem gives the distance from a left-semi-Fredholm operator to the set of operators that are not left-semi-Fredholm. If $\beta = \aleph_0$, then part (ii) describes the distance from a right-semi-Fredholm operator to the set of operators that are not right-semi-Fredholm, and part (iii) computes the distance from a Fredholm operator to the complement of the Fredholm operators.

REFERENCES

- 1. C. Apostol, L. A. Fialkow, D. A. Herrero, and D. Voiculescu, Approximation of Hilbert space operators, Vol. II, Pitman, Boston, 1984.
- 2. R. H. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517.
- 3. _____, Approximation by operators with fixed nullity, Proc. Amer. Math. Soc. 103 (1988), 141-144.
- 4. _____, The distance to operators with a fixed index, Acta Sci. Math. (Szeged) 54 (1990), 139-143.
- 5. _____, Closure of invertible operators on a Hilbert space, Proc. Amer. Math. Soc. 108 (1990), 721-726.

- 6. _____, Approximating Fredholm operators on a nonseparable Hilbert space, Glasgow Math. J. 35 (1993), 167-178.
- 7. _____, Distance to invertible operators without separability, Proc. Amer. Math. Soc. 116 (1992), 489-497.
- 8. _____, Largely singular operators, J. Math. Anal. Appl. 188 (1994), 141-150.
- 9. L. Burlando, Distance formulas on operators whose kernel has fixed Hilbert dimension, Rend. Mat. (7) 10 (1990), 209-238.
- 10. R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972
- 11. G. Edgar, J. Ernest, and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 121 (1971), 61-80.
- 12. R. Harte, Regular boundary elements, Proc. Amer. Math. Soc. 99 (1987), 328-330.
- 13. D. A. Herrero, Approximation of Hilbert space operators, Vol. I, Pitman, Boston, 1982.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30602