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Abstract. On nonseparable Hubert spaces there are multiple sets of operators

that are analogous to the semi-Fredholm operators on a separable space. We

develop the properties of these sets and relate those properties to some recent

research. We conclude with a theorem that indicates precisely how far one

can go from a given generalized semi-Fredholm operator (or generalized Fred-

holm operator) and retain the property of generalized semi-Fredholmness (or

generalized Fredholmness).

1. Introduction

By "operator" we mean a bounded linear operator T defined on a Hubert

space H ; we do not assume H to be separable. Let ¿%(H) denote the operators
on H. When H is not separable there are multiple sets of operators that might

be used as natural generalizations of the Fredholm operators on a separable

Hubert space. See Definition 2.7 and Theorem 2.8 of [11], and the references

listed there. Much less attention has been given to the semi-Fredholm operators.

This paper continues our study of nonseparable Hubert spaces ([5], [6], [7]) by
determining properties of several classes of operators analogous to the semi-

Fredholm operators on a separable space.
We shall use some concepts from earlier papers. Let c7|F| be the usual polar

factorization of T, and let E(-) be the spectral measure for the nonnegative
operator \T\. In [5] we defined ess nul T by the equation

ess null T = inf{(dimF([0, e))H:e>0},

and by definition ess def T is ess nul T*. In [5] we showed that the closure

of the invertible operators is the set of operators T such that ess nul T =

ess def T.
In [7] we defined the modulus of invertibility, denoted p(T), by the equation

p(T) = inf{A: dimF((A - e, X + e))H = dimH for e > 0}.

This quantity is related to the distance between T and the invertible operators.

It follows from Theorem 4 in [8] that p(T) is precisely the distance from T
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to the set {A: ess nul A — 0} . In this paper we use a natural generalization of

p(T) defined in §2.
Recall that the minimum modulus of T, denote m(T), is defined to be

inf{||r/||: 11/11 = 1} . The essential spectrum of T, denoted ae(T), is the set
{z: (T - zl) is not Fredholm}, and the essential minimum modulus me(T) is

defined to be inf{A: X € ae(\T\)} . In [2] we showed that me(T) was the mini-

mum modulus of the projection of T into the Calkin algebra, which is defined

in the next section. In [2] we computed the distance from T to the invertible

operators in terms of me(T). In this paper we shall use a generalization of

me(T).

We shall use the following standard notation. The closure of a set 5? is
denoted 5?~ . The restriction of T to a subspace Ho is denoted T\H0 .

2. Preliminary results

We begin by defining a set of operators that form a closed two-sided ideal

for the ring of operators 38 (H). We say that A belongs to J^ provided that
any (closed) subspace K contained in the range of A, denoted AH, has the

property that dim K < ß. The next theorem will relate the preceding definition

to other definitions that have appeared in the literature.

Theorem 1. The following are equivalent.

(i)  AeSß.
(ii) There is a sequence {Ak} c 38(H) such that \\A - Ak\\ ̂  0 as k —> oo

and dim(AkH)~ < ß.
(iii) For each positive e there is a subspace HE such that \\A\He\\ < e and

dim(//£)x < ß.

Proof, (i) => (ii) Let U\A\ be the usual polar factorization of A, and let E(-)
be the spectral measure for \A\. Let a positive e be given, and let He denote

E([e, oo))H. Since \A\ is obviously bounded below on Ht and U is isometric

on (\A\H)~ , we see that \A\He and AHe = U\A\He are both closed subspaces.

Clearly AHe is contained in AH, and, consequently, dim AH£ < ß .

Define the operator AE to agree with A on HE and to agree with 0 on (H)1-.

Clearly dimA£H < ß , and

WA-AeW^WiA-AeMH^W

= \\A\(He)J-\\ = \\\A\\(He)±\\<e.

It is clear that (ii) holds.
(ii) => (iii) Let positive e be given, and choose k such that \\A - Ak\\ < e

with dim(AicH)~ < ß. Let Ke = ((Ak)*H)~, and note that Ak is zero on
(Kt)L . Clearly, PK^)-1!! < e holds. Let He = (K^, and note that

dim(He)1- = dimKe = dim(AkH) < ß.

(iii) =!> (i) Let K be a (closed) subspace contained in AH, and let A+ be

the inverse of A\(A*H)~ . Let H0 = A+K, and note that A\Hq maps Ho onto
AT in a one-to-one way. Thus, Ho and K have the same dimension, and there

is a positive e such that

P/U > 2e||/||    for/eflb.
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By hypothesis there is a subspace He suchthat ||^|//£|| < e and dm\(H£)x <

ß . Let P be the projection onto (H)1-. If / is a nonzero vector belonging

to kerP\H0 then / = (/ - P)f e H and \\Af\\ < e\\f\\. This contradicts the
construction of Ho, and so we conclude that P\Ho is one-to-one. It follows

that
dim A: = dimflo = dim PH0 < dim(i/£)-L < ß,

which verifies (i).
We need a modest generalization of the modules of invertibility, which was

defined in [7]. Let ß be an infinite cardinal number that does not exceed

dim//. Define pß(T) by the equation

pß(T) = inf{A: dimF((A -6,X + S))H >ß   for Ô > 0}

where F(-) is the spectral measure for |F| = (T*T)XI2. Consideration of the

function u(x) = dimF([0, x))H shows that the set of X above cannot be

empty. It is clear that y > ß implies py(T) > Pß(T).
The first part of the next result is well known (see [11]); the rest of it is new.

Theorem 2. J^ is a closed two-sided ideal of 38(H), and 38(H)¡^ is a
C*-algebra. If mß(T) denotes the minimum modulus of the image of T in
38(H)/<7ß , denoted [T], then mß(T) > 0 if and only if [T] is left-invertible.
Furthermore, mß(T) = Pß(T).

Proof. It is routine to show that ^ is a closed two-sided ideal; see Theorem

0 of [11]. It follows from Theorem 5.38 of [10] that ß(H)/Sß is a C*-algebra
provided the involution [T]* is defined to be [T*]. Let this C*-algebra be

represented as an algebra of operators. Thus, mß(T) is meaningful. Since the

square root is the limit of polynomials, we have

\[T]\ = ([T]*[T])i/2 = ([T*T])l/2 = [(T*T)]/2] = [\T\].

If a (A) denotes the spectrum of A , then it is elementary to see that

m(A) = inf{¿: X e a(\A\)}

and, thus,

mß(T) = mf{X:Xeo([\T\]).

Suppose [B] is a left inverse for [T]. For the sake of a contradiction assume

that mß(T) = 0 and choose a sequence of unit vectors {g\, g2, ■■■} from the

space K on which 38(H)/J^ is represented such that ||[T']gi:|| -* 0. Since

i = ii^ii = ipjm^ii<ip]|iiimgfcii
holds, we have a contradiction. Thus, mß(T) is positive provided [T] is left-

invertible.
In order to prove the converse we assume that mß(T) > 0. Choose Co such

that 0 < e < 2e0 implies that dimF([0, e))H = ess nul T. Since [F([0, e))] is
a nonnegative idempotent, it is a projection. If g is a unit vector in the range

of [F([0,e))],then

e>\\[T][E([0,e))]g\\>mß(T),

which implies that no such unit vector exists. Thus, dim F([0, s))H = ess nul T

is less than ß .
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Define R on F((e0, oo))H to be the inverse of |F| |F((e0, oo))H and on

£([0> £o])H let it be zero. The preceding paragraph implies that [F([0, £o])] =

[0] or [F((e0,oo))] = [/]. Since

(RU*)T = RU*U\T\ = R\T\ = E((e0, oo)),

we see that [T] is left-invertible.

Now we direct our attention to proving that mß(T) = Pß(T). First, we recall

a useful fact from Theorem 2.6 of [11]. The coset [T] is left-invertible if and

only if T is bounded below on some subspace with codimension less than ß .
Consider the case that mß(T) = 0. So [T] is not left-invertible. If e > 0

and E(-) is the spectral measure for \T\, then |F| is bounded below on
E((e, oo))H. According to the preceding paragraph, the codimension of

E((e, oo))//, which is dimF([0, e])H, must not be less than ß. It follows
from

dimE([0,e])H>ß

and the arbitrariness of e that ßß(T) — 0.

Conversely, assume that Pß(\T\) - 0 and note that dimF([0, e])H > ß
for all positive e sufficiently small. If mß(T) were positive, then there would

be a subspace Ho such that T\Ho is bounded below and codim//n < ß. If
Q is the orthogonal projection onto (Ho)1- and e is a positive number such

that \\Tf\\ > 2e\\f\\ for f e H0, then the restriction of Q to E([0,e])H
must have nontrivial kernel. Suppose g e E([0, e])H and Qg = 0. Since
g e Ho n E([0, e])H, we have a contradiction; this proves that no subspace
such as Ho exists. Hence, mß(T) - 0, and we have proved that mß(T) = 0 if
and only if Pß(T) = 0.

For the sake of a contradiction suppose mß(T) and ßß(T) are positive and

mß(T)=X<pß(T).

Then mß(\T\ - X) - 0 while Pß(\T\ - X) > 0, which is a contradiction. A
similar argument dismisses the opposite inequality, and we have proved that
mß(T) = pß(T).

If ß = N0, then it is well known that J^ is the set of compact operators,
and 38(H)IJ^ß is the usual Calkin algebra. In that case the notation mß(T) is
replaced with the notation me(T) for the essential minimum modulus, which
was studied in [2]. Of course, in that case Pß(T) is the modulus of invertibility

P(T).

3. Basic results

Let ß be an infinite cardinal number that does not exceed dim H. We say

that A is ß-left-invertible provided there is an operator B such that (/ - BA)
belongs to J^. Define ß-right-invertible analogously. We say that A is ß-
semi-invertible if it has at least one of the two preceding properties and that it
is ß-Fredholm if it has both properties.

If H is a separable Hubert space and ß = dim//, then the preceding
concepts reduce to "left-semi-Fredholm", and "right-semi-Fredholm", "semi-
Fredholm", and "Fredholm", respectively. A strong argument can be made that
the generalization that is most analogous to the original concept is obtained by
setting ß = dim H in the case that H is non-separable.
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We can give some enlightening characterizations of the previously defined

concepts.

Theorem 3. The following are equivalent.

(i)   T is ß-left-ivnertible.

(ii)   pß(T)>0.
(iii)   ess nul T < ß.
(iv) For all positive e sufficiently small the inequality \\T\He\\ <e implies

that dim H£ < ß.

Proof,  (i) => (ii) This follows from Theorem 2.
(ii) => (iii) For brevity let x — Pß(T) and choose X to satisfy the inequalities

0 < X < x. For each X there is a positive number ax such that

dimE((X -Sx, A + öx))H<ß.

Choose positive e sufficiently small that dimF([0, e))H = ess nul T and
e < t ; note that {(X - Sx, X + Sx) : 0 < X < x} is an open cover of [0, e]. Let
{(X\ - ô\, X\ + Si),... , (Xn - S„ , X„ + ô„)} be a finite subcover. We note that

n

dimF([0, e))// < Y, dimE((Xj - ôj, X, + ôj))H
7=1

<nß = ß.

Since e was arbitrarily small, it follows that ess nul T < ß .
(iii) =>■ (iv) Choose positive e sufficiently small that dimE([0, e))H =

ess nul T. By Lemma 4 of [5] it follows that || T\H£ || < e implies that dim HE <
ess nul T < ß .

(iv) =>■ (i) Theorem 2 showed the equivalence " T is /Meft-invertible" and
" mß(T) > 0 "; the final conclusion of Theorem 2 shows that this is equivalent

to " pß(T) > 0 ". Thus, it suffices to show that (iv) implies pß(T)>0.
Let e be a positive number such as promised in (iv), and let E(-) be the

spectral measure for |F|. Let HE = E([0, e/2])H, and note that ||F|//e|| < e.
Thus, we know that dim H£ < ß . It follows that we can choose positive Ô for

any X satisfying 0 < X < e/2 such that dimE((X-S, X + S))H < dim//£ < ß .
It is now clear that Pß(T)> e/2, which concludes the proof.

We omit the proof of the next theorem since it can be proved by analogy to
the proof of Theorem 3 or deduced as a consequence of that theorem.

Theorem 4. The following are equivalent.

(i)   T is ß-right-invertible.

(ii)   Pß(T*)>0.
(iii)  ess def T < ß .
(iv) For all positive e sufficiently small the inequality ||r*|//£|| < e implies

that dim H£< ß.

The next theorem follows from Theorems 3 and 4. Part (iii) of the next
theorem gives a particularly simple characterization of " /?-Fredholm".

Theorem 5. The following are equivalent.

(i)   T is ß-Fredholm.
(ii)   min{pß(T),Pß(T*)}>0.
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(iii)   max{essnul T, ess def T} < ß .

(iv) For all positive e sufficiently small either of the inequalities \\T\H£\\ < e

or \\T*\H£\\ < e implies that dimHE < ß.

If Pß(T) and Pß(T*) are both positive, then they are equal. This follows

from the fact that Pß(A) — mß(A), proved in Theorem 2, and the argument

used to prove part (vii) of Theorem 2 of [2].
Let S?ß denote the /3-semi-invertible operators in 38(H). The next theo-

rem establishes some properties analogous to familiar properties of the semi-

Fredholm operators.

Theorem 6. (i) S^ß is open in operator norm.

(ii)  S?ß is dense in 38(H).
(iii) If every subspace of KH has dimension less than ß and A e S*ß, then

(A + K)€&ß.
(iv) // A and B are ß-left-invertible ( ß-right-invertible), then AB is the

same.
(v) If AeS^ß and B is ß-Fredholm, then AB,BAe<9>ß.

(vi) // B is invertible and AeS'ß, then BAB~X e S"ß .

Proof, (i) In view of Theorems 3 and 4, for each T e 5?ß we have either

Pß(T) > 0 or pß(T*) > 0. For a representative case we assume the former.
Recalling the notation and conventions in Theorem 2 and its proof, we note

that mß(T) > 0. Let ô = mß(T), and choose A such that ||F - A\\ < Ô .
Let g be any unit vector in the Hilbert space on which 38(H)jJfß is repre-

sented. In the notation of the proof of Theorem 2 we have

IIMtell > Hi™ - \\[T - A]g\\ > S - \\T- A\\ > 0.

We may conclude that

Pß(A) = mß(A)>o-\\T-A\\>0.

It follows that A £ S?ß and that S?ß is open.
(ii) It suffices to approximate a given T £ 3?ß . Let positive e be given, and

let T = U\T\ be the usual polar factorization of T. Let E(-) be the spectral
measure for |F| ; define JR to coincide with |F| on E([e/3, oo))//, and let it

coincide with (e/3)/ on F([0, e/3))//. Note that

IWII > (e/3)||/||   for/EH.

Define A to be UR on F((0, oo))// and R on E({0})H; note that it is
left-invertible since it is bounded below. Since we have

||F- A\\ <\\\T\- R\\ = ||(|n - R)\E([0, e/3))H\\ < e,

we see that T e (^)~ , as desired.
(iii) Since [A + K] = [A], we see that mß(A 4- K) = mß(A) and this follows

from Theorems 2, 3, and 4.
(iv) If D and C are /Meft-inverses for A and B, respectively, then CD

is a /J-left-inverse for AB .
(v) This follows from (iv) since B has both a /5-left-inverse and a /?-right-

inverse.



GENERALIZATIONS OF SEMI-FREDHOLM OPERATORS 3763

(vi) If C is a /5-left-inverse for A, then BCB~X is a ß-left-inverse for

BAB~X .

4. A STABILITY THEOREM

Now we are prepared to prove the kind of stability theorem that has been
significant in perturbation theory.

Theorem 7. (i) // S\ = pß(T) and \\T - A\\ < Sx, then A is ß-left-inertible.

(ii) If ô2 = pß(T*) and \\T-A\\<Ô2, then A is ß-right-invertible.
(iii) If Ö = min{f5[, ô2} and \\T - A\\ < ô, then A is ß-Fredholm.
(iv) Each of the above statements is false if the S constant is replaced with a

larger number.

Proof. The proof of part (i) of Theorem 6 actually proved part (i) above. To

prove (ii) apply (i) to T* and A*. Part (iii) follows from (i) and (ii).

In order to prove (iv) we assume that a positive e is given. Let E( ) represent

the spectral measure for |F| where T - U\T\ is the usual polar factorization.
Let Q denote the projection E([0, e + Pß(T))), and let HE denote QH. By
the definition of Pß(T) we know that dim//£ > ß . Define B to coincide with

T on (//c)-1- and to be zero on HE ; so B = T(I - Q). Note that

\\T-B\\ = \\T\H£\\<e + py(T).

Since

ess nul/? = nul/? = dim//£ > ß,

we see that B is not /3-left-invertible. This proves that ô\ is the largest constant

that makes (i) true.
Applying the construction in the preceding paragraph to T* shows that ô2

is the largest constant that makes (ii) true. It follows that replacing S in part
(iv) with a larger constant will result in the loss of either " /5-left-invertible" or

" /?-right-invertible", which means that " /3-Fredholm" is lost.
If one chooses ß in Theorem 7 to be No , so that J¿¡ consists of the compact

operators, then part (i) of the previous theorem gives the distance from a left-
semi-Fredholm operator to the set of operators that are not left-semi-Fredholm.

If ß — N0, then part (ii) describes the distance from a right-semi-Fredholm
operator to the set of operators that are not right-semi-Fredholm, and part (iii)
computes the distance from a Fredholm operator to the complement of the

Fredholm operators.
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