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Abstract. We show that if {A, B) is discrete where A , B e SL(2, C) and

if tT{ABA-lB-1) ¿ 2, It(ABAB-1) ¿ 2 , and \tr2(A) - 4| < 2(cos(2s/7)+

cos(7t/7)- 1) = 1.0489... ,then

\tT(ABA~lB-l)-2\ >2-2cos(7t/7) = 0.198... .

It follows from above that if {X, Y) is discrete with tc(X) = tr(r") / 0 and
tT(XYX-lY~l) ¿2, then

Itr^KA-'r-1) - 2| > 2 - 2cos(tt/7) = 0.198... .

Both inequalities are sharp.

1. Introduction

A subgroup of SL(2, C) is said to be discrete if it does not contain any
convergent sequences of distinct elements. There is an important necessary

condition due to Jorgensen [8] for a two-generator group to be discrete.

If A and B generate a discrete subgroup of SL(2, C), then

(1.1) \\t2(A) -4\ + \lr(ABA-xB~x) - 2| > 1,

unless BAB~X e {A, A~x}, in which case the subgroup is elementary.

The commutator trace is not uniformly bounded away from 2. In other
words, there does not exist a positive real number K such that \\x(ABA~xB~x )—

21 > K holds whenever A and B generate a nonelementary discrete group [10].

However, Jorgensen has shown that

(1.2) |tr(A-yjr1y-1)-2|> 0.125

if X and Y with equal traces generate a nonelementary discrete subgroup [11].

Inequality (1.2) was sharpened by Gehring and Martin [4] to give

(1.3) |tr(Xy^-'y-1)-2|> 0.193,

and they conjectured that

(1.4) \\r(XYX~x Y~x) - 2| > 2 - 2cos(tt/7) = 0.198...
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if tr(XYX-xY~x) ± 2, tr2(X) = tr2(Y) ¿ 0, and X, Y generate a discrete

subgroup.
We show that tr (ABA~XB~X) - 2 is bounded away from zero if |tr2(^4) - 4|

is not too large. In particular, if A and B generate a discrete group and if
tr(ABA~xB-x) ¿2, tr(ABAB~x) ̂  2, and

|tr2(^) - 4| < 2(cos(27t/7) + cos(n/l) - 1) = 1.0489

then

|tr(^5^-'5-')-2| >2-2cos(n/7) = 0.198....

We show in section 4 that the conjecture (1.4) of Gehring and Martin is true.
We then apply these results to get many other inequalities.

2. Notation

Let M denote the group of all Möbius transformations of the extended com-

plex plane C = C U {oo} . We associate with each

.    az + b    _. ,    ,
f =-j e M,       ad-bc=l,
J     cz + d

the matrix

A=(ac   J)eSL(2'C)

and set tr(/) = Xr(A), where Xr(A) denotes the trace of A. Note that tr(/) is
defined up to sign.

For each / and g in M we let [/, g] denote the multiplicative commutator

fgf~xg~x. We call the three complex numbers

ß(f) = tr2(/) - 4,        ß(g) = ^(g) -4,        y(f, g) = tr([/, g]) - 2

the parameters of the two-generator group (/, g) and write

var((f,g)) = (y(f,g),ß(f),ß(g)).

These parameters are independent of the choice of representative matrices for

/ and g, and they determine (/, g) up to conjugacy whenever y(f, g) ^ 0
[2]. But see [1] for three-generator groups. Note that y(f, g) ^ 0 if and only

if / and g do not have a common fixed point in C.

3. A SHARP bound

3.1.   Theorem. If (f, g) is discrete with y(f, g) ¿ 0 and ß(g) ^ -4 and if

(3.2) \ß(f)\ <c = 2(cos(27t/7) + cos(tt/7) - 1) = 1.0489

then

(3.3) \y(f, g)\>d = 2 - 2cos(7t/7) = 0.198... .

Inequality (3.3) holds when (f, g) is the (2,3,7) triangle group with parameters

ß{f) = ß{g) = c, y(f,g) = -d.
Proof. Set

m = mf{\y(f, g)\ : \ß{f)\ < c, y(f, g)¿0, ß(g) f -4, (/, g) discrete}.

Suppose that m < d = 2 - 2cos(n/l). We will obtain a contradiction.
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For each e with 0 < e < \(d - m), there exist /, g such that

\Y(f,g)\<m + e,    \ß(f)\<c,    ß(g)t-4.

If y(/> í?) = ß(f) > then / is of order 3, 4 or 6 by [4, Lemma 2.10], and hence
\y{f ■> S)\ - \ß{f)\ > 1 • This contradicts the assumption that \y(f, g)\ < d.
Thus we may assume that y(f, g) / ß(f). By [7, Lemma 2.29], there exists an

elliptic h of order 2 such that (/, h) is discrete with y(f, h) = y(f, g).
We will use the following two formulae for F and G in M :

y([F, G], F[F, G]F~X) = -y2(F, G)(y(F, G) - ß(F))(ß(F) + 4),

ß([F,G]) = y(F,G)(y(F,G) + 4).

We define

fo = f,      g0 - h ,      fn+l =[fn, gn],      gn+\ = fn[fn , gn]fñ  •

If \ß{f2)\ < c and y(f2, g2) ¿ 0, then by the definition of m, \y(f2, g2)\ > m.
Let y = y(f,h), ß = ß(f). We have

l7(/i, *i)[ -1 - y2(y - ß)(ß + 4)| < d2(d + c)(c + 4) = d(d + c),

\ß(f2)\ = \Y(f,gi)(v(f,gi) + 4)\<c

So, \y(f2, g2)\ >m, that is,

(3.4) \y\y - ß)2(ß + 4)2(y(y - ß)(ß + 4) + y + 4)(y + 2)2| > m.

Set p(y, ß) = y\y - ß)2(ß + 4)2(y(y - ß)(ß + 4) + y + 4)(y + 2)2.
Consider one of the polynomials in [7, Lemma 2.1],

y(f, hf-xh~x fhfh~xf~xh) = y(y2 - (ß - l)y - (ß - I))2.

We consider three cases.

Case 1. Suppose that y2 - (ß - l)y - (ß - 1) = 0. Then

R     14    yl n<v   /n     y4(5 + 5y + y2)2(y + 2)4ß = l + T+r^' p{y'ß) =-(¡TW-•

Let
. .      z4(5 + 5z + z2)2(z + 2)4

q{z) =-(TTzY-•

It is easy to check that
max|?(z)| = 1,

and this maximum is obtained when z = -d.

Since m + \(d -m) <d, there is a constant a such that

max      \q(z)\ <a < I.
\z\<m+\(d-m)

By (3.4),
(m + e)a > \yp(y, ß)\ > m.

Thus

e > (1 ~a)m/a.

By [4, Lemma 3.25], m > 0.193. Taking e < mm{(d-m)/2, (1 -a)m/a) will
give a contradiction.
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Case 2. Suppose that ß(hf~xh~xfhfh~xf~xh) = -4. If ß = 0, then
171 > 1 by the Shimizu-Leutbecher inequality [13, U.C.5]. This contradicts the
assumption that \y\ < d. If ß ^ 0, then we may assume that / and h are
represented by

A-(U     °  \        R- Ie"    e^2\
A-{0    l/u)'    ß-\e2x   e22J-

Thus ß = (u- l/u)2, y = -ex2e2x(u - l/u)2. Elementary calculations show

that

BA~XB-XABAB-XA~XB

(      exx((y+\)2-yu-2) ex2(y2 - (ß - l)y - (ß - l))\

' \e2i(72 - (ß - i)7 - (ß - i)) e22((y + I)2 - yu2)       )'

Since hf~xh~x fhfh~x f~xh is of order two,

(3.5) exx((y + l)2 - yu~2) + e22((y + I)2 - yu2) = 0.

Notice that exx +e22 = 0 (h is of order two). If exx ̂  0, then (3.5) implies
that ß(ß + 4) - 0, a contradiction. If exx =0, then ex2e2x = -1. Hence
y — ß, another contradiction.

Case 3. Suppose that Case 1 and Case 2 do not hold. By the definition of

m,

\y(f, hf-xh-xfhfh-xf-xh)\ = \y(y2 - (ß - l)y - (ß - l))2\ > m.

It follows that

(3.6) \ß-l\> 1±3(^m/(m + e)-d2).

Let

ß = pew ,    -n<6<n,    s = -—-j(y/m/(m + e) - d2).

From (3.6), we have

(3.7) cos0<-!-(1+/>2-í2).

We apply Jorgensen's inequality (1.1) to get p = \ß\ > 1 - d. Thus 1 - d <
p < c. It follows from (3.7) that

COS0< ^-(l+C2-52).
~ 2c

By taking sufficiently small e , we obtain |0| > 0.8 . We now expand p(y, ß)

to get
10

p(v,ß) = Y,p»wyn>

where p„(z) = (z + 4)2qn(z) and

qA(z) = l6z2, tf8(z) = 3z3-46z + 24,

q5(z) = -4z(z3 + 4z2 - 5z + 8), q9(z) = -3z2 - 8z + 17,

q6(z) = -4(z4 + z3 - 14z2 + 10z - 4), qx0(z) = z + 4.

q7(z) = -(z - l)(z3 - 7z2 - 44z + 20),
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Consider the nonnegative subharmonic function w(z) = Yln°=4 \Pn(z)\d" in the

region D = {1 - d < \z\ < c, 0.8 < argz < 27i - 0.8}. w(z) assumes its
maximum on one of the four boundaries

Bx = {«?''* : 0.8 < <$> < 2n - 0.8}, B3 = {xei0* : l-d<x<c},

B2 = {(1 - d)e¡+ : 0.& < <f> < 2n - 0.8},    Ä, = {xe~m : 1 - d < x < c}.

It is easy to check that

IPiol^/10 < 1.210-5, |/>6|¿6<7.410-2,

\p9\d9 < 1.9 10-4, |p5|^5<2.210-',

|/?8|¿/8 < 2.4 10-3, \p4\d4< 6.23 I0~x,

|p7|i/7<1.710-2,

for z eBx

for z e B2; and

ho|i/10<9.210-6, [/76|öf6 < 6.1 10-2,

|/79|¿/9 < 1.6 10-4, |/>5|¿5< 1.510-',

\p$\ds < 1.9 10-3, |p4|^4<3.410-',

|p7|úf7<1.310-2,

|p,o|¿10<1.110-5, |p6|í/6<4.110-2,

\p9\d9 < 1.6 10-4, \p5\d5 < 1.2 10-',

Ip8|í/8< 1.910-3, |p4|¿4< 6.23 irr1

\P1\d1 < 9.410-3,

for z e fi3 U At. Thus

10

\p(y,ß)\<maxJ2\Pn(z)\dn<0.94,

and hence 0.94(m + e)> \yp(y, ß)\ > m by (3.4), a contradiction.
Therefore m > d.  Let (cf>, y/) denote the (2,3,7) triangle group with

d)2 = y/3 = ((ßy/)1 = id, and set / = [<f>, y/], h = <$>yi, g = hfh~x. Then

ß{f) = ß(g) = 2(cos(2n/7) + cos(7T/7) - 1) = c,

7(f, g) = Y(f, h)(y(f, h) - ß(f)) = 2cos(7t/7) - 2 = -d.   D

3.8. Corollary. If (/, g) is discrete with y(f, g) # 0 and y(f, g) ¿ ß(f)
and if \ß(f)\ < 2(cos(2n/l) + cos(n/7) - 1) = 1.0489... , then

(3.9) |y(/,g)|>2-2cos(«/7) = 0.198....

Inequality (3.9) is sharp.

Proof. We observe that y(f, g) = y(f, fg). Thus if g or fg is not of order
two, then (3.9) holds by Theorem 3.1. Suppose that g and fg are both of
order two. Then ß(fgfg~x) = ß(fgfg) = 0. Since

ßifgfg-') = (ß(f) - 7(f, g))(ß(f) - Vif, g) + 4),
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we have ß(f) - y(f, g) + 4 = 0. Thus

IK/.*)l = lJÍ(.0 + 4|>4-c,

and hence (3.9) holds.
The example in Theorem 3.1 shows (3.9) is sharp.   G

4. Equal trace problem

4.1.   Theorem. Suppose that (f, g) is a discrete subgroup of M with y(f, g) ¿

0 and ß(f) = ß(g) # -4. Then

(4.2) \y(f, g)\ > 2 - 2cos(7t/7) = 0.198... .

Inequality (4.2) is sharp.

Proof. We use [4, Lemma 3.18]: For any discrete subgroup (/, g) with y(f, g)
¿0 and ß(f) = ß{g)jt-4,if

(4.3) min{\ß(f)\, \ß(fg)\, \ß(fg~l)\} > c = 2(cos(27r/7) + Cos(7r/7) - 1),

then |y(/,£)|>rf = 2-2cos(ji/7).
If (4.3) holds, then (4.2) follows from [4, Lemma 3.18]. Otherwise, since

y(f, g) = y{fg, g) = 7(fg~x ,g),

we may assume by relabeling that \ß(f)\ < c.  By assumption, ß(g) ^ -4.

Hence |y(/, g)\ > d by Theorem 3.1.
Finally the example in Theorem 3.1 shows (4.2) is sharp.   G

5. Some consequences of Theorem 4.1

5.1.   Theorem. Suppose that (f, g) is a discrete subgroup of M with y(f, g) ¿

0 and y(f, g) # ß(f). If f is not of order two, then

(5.2) \7(f,g)(7(f,g) ~ß(f))\ >2-2cos(7T/7) = 0.198... ,

(5.3) \7(f, g)(ß(f) + 4)| >2-2cos(7t/7) = 0.198... ,

(5.4) \(ß(f) -7(f, g))(ß(f) + 4)| >2-2cos(;r/7) = 0.198....

Each of these inequalities is sharp.

Proof. Consider the subgroup (/, gfg~x).

ß(gfg~l) = ß(f) ¥> -4,     7(f, gfg-1) = 7(f, g)(7(f, g) - ß(f)) Ï 0.

So, \y(f, gfg~x)\ > d = 2 - 2cos(n/l) by Theorem 4.1. The example in [4,
p. 210] shows (5.2) is sharp.

By [7, Lemma 2.29], there exists an elliptic h of order 2 such that (/, h) is

discrete and y(f', h) - y(f, g). Thus

ß(hf) = ß(fh) = y(f, g) - ß(f) -4^-4,

7(hf, fh) = 7(f2, h) = y(f, h)(ß(f) + 4) ¿ 0.

So, |y(hf, fh)\>d by Theorem 4.1. The example in [4, p. 210] and the fact
that 7(fh, h)(ß(fh) + 4) = y(f, h)(y(f, g) - ß(f)) show that (5.3) is sharp.
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By [7, Lemma 2.29], there exists an elliptic h of order 2 such that (/, h) is

discrete and y(f, h) - ß(f) - y(f, g)_. Thus (5.4) follows from (5.3). The
example for (5.3) and the property of h show that (5.4) is sharp.   G

5.5. Remark. Many universal constraints for a discrete Möbius group G are

obtained by studying the sequence {tr([/, g„])} where / and gx are in G,

gn+i - gnfgñ1 • Among these results are the Shimizu-Leutbecher inequality,
Jorgensen's inequality, and some variants in [3], [5], [7], [14], and [15]. It
follows from (5.2) that

Mf,gn]-2\>d,     forall«>l,

in the above process. One example is the (2,3,7) triangle group (/, gx) for

which y(f, gx) = 2cos(2tt/7) - 1, ß(f) = c. Thus

tr[/, g„]-2 = 2cos(jr/7)-2 = -.198... ,     forn = 2k,

tr[f,gn]-2 = 2cos(2n/l)-l = .2469... ,    forn = 2Jfc+l.

See [6] for more about the iterated commutators.

If / is the square of some element in a discrete group, then \y(f, g)\ > d
by (5.3). For example, let (/, g) be a discrete group with y(f, g) ^ 0. The

Lie product of / and g defines a Möbius transformation </> which is elliptic of
order two. The mapping <frf~xg~x is a square root of fgf~xg~x [9, Section

4]. By (5.2), \y(fgf-xg-x, f)\ = \y(f, g)(y(f, g) - ß(f))\ >d.

5.6. Theorem. Suppose that (/, g) is discrete with y(f, g) ^ 0.

If ß(f) Ï-I, then   \y(f,g)\ + \ß(f)+l\>cx,    .426 < c, < .493....

lfß(f)±-2, then   \y(f,g)\ + \ß(f) + 2\>c2,    .806 < c2 < I.

Ifß(f)i-1, then   |y(/,g)| + IW) + 3|>c3,    .908<c3<l.

Ifß(f)i-4, then   \y(f,g)\ + \ß(f) + 4\>c4,    .890 < c4 < 1.048... .

Proof. Let y = y(f, g), ß = ß(f). It follows from (5.3) and the Arithmetic-
Geometric Mean inequality that c4 > 2\fd = .89... . If we replace / by f2
in (5.3) and minimize |y| + |/? + 2| subject to the constraint

\7(f2 ,g)(ß(f2) + 4)| = \7(ß + 4)(ß + 2)2\ > d,

we get c2 > .806. Next we replace / by /3 in (5.2) and (5.3). Minimizing

\y\ + \ß + 31 subject to the constraint

|7(/3, g)(7(f, g) - ß(f3))\ = \7(ß + 3)4(7 - ß)\ > d

gives Ci > .908. Minimizing |y| + \ß + l\ subject to the constraint

\7(f, g)(ß(f3) + 4)| = \7(ß + 3)2(/? + 4)(ß + l)2\ > d

gives cx > .426.
We now give the upper bounds. Since 7X - 2 cos(2n/l) - 1, ßx - 7X - I,

ß[ - -4 are discrete parameters, cx < 2(2co%(2n/l) - 1) = .493... . By [10],

for 1 < a < oo, 73 = 4(a - l/a)~2, ßi = -4, ß'3 - -(a + I/a)2 are discrete
parameters. Thus \7i\ + |/?3 + 3| -» 1 as a -> oo. Hence c3 < 1. Since

ß2 = (\/5 - 5)/2, y2 - ß2 + 1, ß2 - -4 are discrete parameters, c2 < 1.
Note that y = 2cos(27t/7) - 1, ß = c, ß' = c are discrete parameters. So
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74 = 2cos(27r/7) - 1, ß4 = y - ß - 4, ß\ = -4 are discrete parameters. Thus

C4< N + IA + 4| = c= 1.048... .    G

5.7. Remark. There are some similar results in [14] and [15]. Gehring and

Martin have shown that \y(f,g)\ + \ß(f) + l\>l if y(f, g) ¿0, ß(f)^-l,
and y(f, g) + ß(f) + 1.

5.8. Lemma. Suppose that A and B generate a discrete nonelementary sub-

group of SL(2, C). Then

p-i||||5-i||>rc,        .46<fc<.52....

Proof. For any C e SL(2, C), we define m(C) = ||C - C-,|| where || • || is
the usual Hilbert-Schmidt norm of a matrix (see [5]). Then

4||C-i||2 = 2|tr(C)-2|2 + m2(C),

\\A - i||2 \\B - i||2 = \\tr(A) - 2\2\tr(B) - 2|2 + l-\tr(A) - 2\2m2(B)

+ htr(B) - 2\2m2(A) + ^m2(A)m2(B).
o 10

Let x = min{|tr2(^) - 4|, |tr2(5) - 4|} . By [5, Theorem 2.7],

(5.9) m2(C) > 2|tr2(C) - 4|,    m2(A)m2(B) > 16|trL4, B] - 2\.

If x < 0.8 , then p-/|| ||Ä-/|| > 0.46 by (5.9) and Jorgensen's inequality. If

0.8 < x < c, then we replace m2(A)m2(B) by 16úí and get \\A -1\\ \\B -1\\ >
0.46. If jc > c, then ||^ - i|| \\B - i|| > 0.46 by (5.9).

Let ((f), y/) denote the (2,3,7) triangle group with 4>2 = y/3 = (<f>y/)7 = id.
The transformations <f> and y/ can be represented by the matrices

j_(-cosb     -p \       R_(e'a     0   \

sina\    P       cosbj'    D     \0    e'ia J '

where a = n/3, b = n/7 and p = (cos2 b - sin2 a)xl2 [12, p. 88]. We set
C = [A, B] and D = AB. Then

y(C,D) = 2cos(27r/7) - 1,     ß(C) = c,    ß(D) = 2cos(2tt/7) - 2.

We can find a Möbius transformation h which sends the fixed points of C to

{w, -w} and sends the fixed points of D to {l/w, -l/w} . By [5, Lemma
2.12], such a w satisfies the equation

2^2_1¿   7(C,D)(w¿-i/wzy = i6
ß(C)ß(DY

Let u = \w\2 + 1/M2 and v = 2cos(2n/l) - 1. Then m2(hCh~x) = uß(C)
and m2(hDh~x) = -uß(D) by [5, Lemma 2.10]. Therefore,

\\hCh~x -I\\\\hDh-x -1\\
/ i i _\l/2

= I v + jv2d2 + j(v2 - v3 + cd2)\fv/c(l - v) J

= .5214....   G

5.10.   Remark. Waterman has shown that |\A -1\ \ \\B -1\\ > \[2 - 1 by means
of Jorgensen's inequality [16].
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Set E — BCB~X . By [5, Lemma 2.27], there exists an A in M such
that m2(hCh~x) = 2ß(C) and m2(hEh~x) = 2ß(E). So \\hCh~x - I\\ =
\\hEh~x -i|| = ((v2 + c)/2)xl2 = .7449... . Therefore, if (A,B) is a discrete
nonelementary subgroup of SL(2, C), then

max{p-i||, ||5-i||}>/,        .67<f<.74....
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