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Abstract. We demonstrate that the period 3 hyperbolic components of the

Mandelbrot set consist of the image of the unit disk by the maps

7     20 r . u /   , ,     2kni\        1   "I2
____^mh^(z) + _j__     ,

with
. 1        .     /88-27z\

w(z) = -Arcsinh   -■=-    ,
3 V   80\/5   J

for A: = 0, 1,2.

1. Introduction

If /: C -» C is a holomorphic map and z satisfies f(z) = z, then z is called
an attractive, repelling, or indifferent fixed point when |/'(z)| < 1, |/'(z)| > 1,
or |/'(z)| = 1, respectively (see [2]). By considering the «-fold composition
f°n , the periodic points, those points satisfying f°"(z) = z, can be classified in
the same way. It is an amazing fact that the repelling periodic cycles outnumber
the attractive cycles dramatically. In fact, an attractive periodic cycle in the

complex plane will always attract a critical point; that is, if £ e C is an attractive

periodic point, then it is a limit point of the sequence (f°"(x))n, for some point
x e C satisfying f'(x) = 0. Thus, the quadratic family Pc(z) = z2 + c can

have at most one attractive periodic cycle in the plane, and this cycle will attract

the critical point 0.
When the iterates of the critical point remain bounded, the closure of all

the repelling periodic points (the Julia set) will be a connected set. This is the
motivation for the definition of the Mandelbrot set

M = {c|Pc°"(0) -h oo as n -> oo}.
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It is a compact subset of C which has received much popular as well as math-

ematical interest.
It is conjectured that the interior of M consists of hyperbolic components

for which the corresponding polynomial Pc(z) has an attractive periodic point
¿;(c) of fixed period. For example, we may compute the c values for which
Pc(z) has an attractive fixed point by solving Pc(z) = z with the restriction

|Pc'(z)| < 1. The solution consists of the open cardioid with boundary given by

\eif - \e2it for 0 < t < 2n. This cardioid is a hyperbolic component of M
which consists of those values of c for which P°"(0) converges to an attractive

fixed point as n-»oo.

If IF is a hyperbolic component of period n, then there is an analytic
bijection called the Hubbard-Douady map of W onto the unit disk D

p: W^D

given by

evaluated at z = Ç(c). Moreover, the Hubbard-Douady map p extends con-

tinuously to a homeomorphism

p-.W^D

(see [1]). An explicit formula for ~p~x can easily be computed for hyperbolic

components of periods 1 and 2. We will find an explicit formula for ~p~x in

the period 3 case and discuss the period 4 case.

2. The periodic points

If £, is a periodic point of Pc(z) of period n , then it is a root of the degree

2" polynomial

(1) Pc°n(z)-z = 0.

However, the roots of (1) will also contain periodic points of any period d

which divides n . This means that if d\n , then (P°d(z) - z)\(P°n(z) - z), and

therefore
P°"(z)-z

P?d(z) - z

is a polynomial.
We let Fn(z) denote the polynomial whose roots are the periodic points of

Pc with minimal period n. We think of F„(z) as a polynomial of the field
Q(c).

Remarks. 1. If n is prime, then

2. In general

F?(z)-z = l[Fd(z),
d\n
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d\n

3. Using the Möbius inversion formula gives

d\n

where p is the Möbius function.

We can compute

F3(z) = z6 + z5 + (1 + 3c)z4 + (1 + 2c)z3 + (3c2 + 3c + l)z2

+ (C2 + 2C+ l)z-|-C3 + 2c2 + C + 1.

2.1. The multiplier equations. We are seeking a relationship between the pa-

rameter c and the multiplier p — jZP°n(z) evaluated at the periodic points.

If £ is a solution of equation (1), then since P'c(z) = 2z, the chain rule gives

p = 2»llP!i(t).
i=0

The hyperbolic components are thus exactly the c values for which \p\ < 1. We
will work with the quantity X - 2~np which makes the computations cleaner.

In principle, it is easy to find the relationship between c and X by eliminating
the indeterminate z using the resultant of the polynomials

X-"f[Pc°'(z)
(=0

and F„(z). For « = 1,2, and 3, we get

EX(X, c) = c-X(l -X) = c-X + X2,

E2(X, c) - -c + X-l,

and

E3(X, c) = c3 + 2c2 + (1 - X)c + (1 - A)2.

The polynomials En give the locus of parameters c and multipliers X such that

Pc has an «-cycle with multiplier X. At this point, we can, in principle, solve for

X in terms of c and be done. However, this leads to branching problems. We
seek a branch-free, closed form solution for c(X), and for this, we must factor

F-$(z) explicitly. In fact, the resultants become large fast, and so in general,
the relationship between c and X must be computed by factoring the Fn(z)

explicitly (see the last section for £4). Several people ([3], [5]) have carried out
this computation up to Ej. We_will outline this process in the period 3 case
and use it to find the map p~x : D —> W.

2.2. Factoring periodic-point polynomials. The roots of F„(z) come in groups
of periodic cycles:

^,Pc(Q,...,P°"-x(0

»,Pe(«),...,Pe0"-'(»)
d,Pc(6),...,P°"-x(9)
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so that

Fn(z)=n^ - p?m n^ - *?'(*)) n(z - pcii°)) ■■■■
i i i

Let a, ß ,y,... denote a generic «-cycle S,, PC(Ç), ... , Pc°"_1 (£), and define
the associated cycle polynomial T(z) by

r(z) = nu-^°'(0) = ^-EQZ',"1+E^2""2-Ea^z""3 + --- .

where ^2 a, ^2 aß, ... denote the elementary symmetric functions associated

with the periodic cycle. To each cycle, we associate a parameter Q^ = £ a =

Z^,P°'(0 which indexes the cycle polynomial

Fn(z) = l[Tn(z),
a

where the product is taken of all the roots of a resolvent equation Res(z) =

nie=(z - ß^), and H is a set containing one element of each periodic cycle.
The next proposition shows that all the coefficients of Tq can be written in

terms of £2.

Proposition 1 (Lagrange). Tç^(z) e Q(c)(Si¡)[z] for all but finitely many values

of c.

Proposition 2.  Res(z) € Q(c)[z].

Proof. Let E be the splitting field of Fn(z) over Q(c). This is a Galois exten-

sion of Q(c) and of Q(c)(Q{). Choose a e Gal(£\ Q(c)(fíí)) and c e C-A,
where A is the (finite) zero set of the discriminant of F„ . Now, a fixes £2¿,

so
a(Q = P°'(Q,

for some i. Thus, if / is any symmetric function of the points in a periodic
cycle, a(f) — f. But the coefficients of Tq, are precisely these symmetric

functions.
The proof of Proposition 2 is the same. In this case, we consider the action

of Gal(is, Q(c)) on the coefficients of Res(z).   D

We are interested in the symmetric function which is the product

(=0

since this is exactly X.
We now compute a key relationship between the symmetric functions £ a >

Y, aß of the periodic cycle

" = Ea = E^) = E(a2+c),

so

J]q2 = Q-«c.

But

«2 = (E«)2 = E«2 + 2E^>



PERIOD 3  HYPERBOLIC COMPONENTS OF THE MANDELBROT SET 3735

SO

(2) 5>/? = ±(fl2-n + «c).

By working with F¿(z), lengthy direct calculations show that (for n = 3)

(3) $>/? = c-Q-l

and

(4) ^2aßy = aßy = X = cCi + c+l.

In this case, we obtain a factorization of i*3(z) into two cubics in Z(c)(Q)[z].

Namely,

F)(z)=       Yl      z3-Qz2-(fl-c+l)z-cQ-c-l,
{O|Res(£î)=0}

where Res(Q) = Ù2 + c + 2 follows from equations (2) and (3). The roots of

each cubic are precisely the points of one periodic cycle.

Remark. In principle, this factorization method is due to Lagrange. In fact, the
period 3 (and period 4) case appeared over 100 years ago in books by E. Netto
(see, for example, [4]).

The relations (2), (3), and (4) between the symmetric functions also lead to

(5) c = -2-£2-Q2

and

(6) /l = -l-3Q-2Q2-£23.

We now take a brief look at the solutions of cubics.

3. The cubic solution

The reader may verify that the solution of

z3 + az + b = 0

is given by

z = 2W ̂sinh ( ̂ Arcsinh ( - =- J + —r— J ,        k = 0,1,2,

where y2 = jj • This may be done by letting z = 2rsinh 8 and using the identity

sinh(30) = 3sinh 6 + 4sinh30.

4. The period 3 components

The curve

E3(X, c) = c3 + 2c2 + (1 -X)c + (1 -X)2 = 0

is unicursal with a unique double point at c = 0, X = 1. The parameterization

given by equations (5) and (6) gives a closed form solution for p~x which is
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free from branching. We can use the solution in Section 3 to solve equation

(6), giving

(?)

where

„        2     2v/5 . , (   ,  ,     2kni
Q = -- + ^-smh I co(p) + —^- k = 0, 1,2,

co(p) = ^Arcsinh

This, using equation (5), gives

.  . 7     20
ck(p) = -4 - T sinh   co(p) +

2kni

8-27/A
80v/5   /

)     475.
rC=0,   1,2.

Figure 1 shows two of the period 3 component boundaries, plotted as the

image of the unit circle by the solutions above. Figure 2 shows the hyperbolic

components of periods 1, 2, and 3 derived from EX,E2, and the solutions

above.

Figure 1. The boundary of two of the period 3 com-
ponents of the Mandelbrot set

Figure 2. The boundary of the hyperbolic components

of period 1,2, and 3 of the Mandelbrot set
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5. The period 4 case

Using the invariance of the symmetric functions Yl aßY ' ' '  under applica-

tions of Pc, it is possible to factor

F4(z) = z12 + 6cz10 + z9 + (15c2 + 3c)z8 + 4cz7 + (12c2 + 20c3 + l)z6

+ (6c2 + 2c)z5 + (15c4 + 18c3 + 3c2 + 4c)z4 + (4c2 + 4c3 + l)z3

+ (5c2 + 6c3 + 6c5 + 12c4 + c)z2 + (c4 + 2c3 + c2 + 2c)z

+ 3c5 + c6 + 3c3 + 3c4 + 2c2 + 1

= Yl z4 - Qz3 + Uù2 -ÇI + 4c)z2 + i(Q2 + (l- 2c)Q + 2)z
£2

1       -,       1 -
+ ^cQ2 + 2cß + c2 + c + 1,

where Res(z) = z3 + (4c + 3)z + 4.
It is then possible to compute

E4(X ,c) = c6 + 3c5 + (3 + X)c4 + (3 + X)c3 + (2-X- X2)c2 + (1 - Xf,

which admits the rational parameterization

(8) c = -l-n1 - i«2,

_ 16 + 8fl + 5fl2 - 6Q3 - 4fl4 - 2fl5 - fl6
(9) Á - Ï6Ô2 •

We would like to solve equation (9) for fí in terms of X and substitute this in
equation (8). However, this will be difficult because, in general, the polynomial

Q6 -f- 2Q5 + 4Q4 + 6Q3 + (16A - 5)Q2 - 8Q - 16,

which follows from equation (9), has the symmetric group S(, as its Galois
group over Q(X).
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