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A NATURAL ORTHOGONAL BASIS OF EIGENFUNCTIONS
OF THE HECKE ALGEBRA ACTING ON CAYLEY GRAPHS
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Abstract. This paper discusses the representation of the Hecke algebra of

GL2(F<?) on a class of Cayley graphs and gives a natural construction of an

orthogonal basis of simultaneous eigenfunctions whose eigenvalues are the Soto-

Andrade Sums.

1. Introduction and notation

In [Ev], R. Evans constructed an orthogonal basis of simultaneous eigenfunc-
tions of adjacency operators of a class of Cayley graphs, known to be Ramanu-
jan graphs. In this paper, we give a natural construction of an orthogonal basis

of simultaneous eigenfunctions of such adjacency operators using the theory

of representations of GL2(F9). The eigenvalues given by our basis are also

the Soto-Andrade sums (see [Ev] and [S-A]). Our construction is natural and

conceptual, hence ready to be extended to situations for bigger groups such as

Sp„(F?) and to local fields. One will see that the H-functions constructed by
Evans arise naturally from the theory of representations of GL2(F9) : they are

^¥a * rjn for cuspidal representations n .

We set up some notation in this section. We discuss the structure of a Hecke

algebra of GL2(F9) in the next section. In Section 3, we construct the above-
mentioned basis. In Section 4, we view the adjacency operators as elements of
the Hecke algebra and find their eigenvalues to be Soto-Andrade sums.

After this paper was finished, the author received several papers from Audrey
Terras. She and the UCSD group have done extensive study on the finite analog
of the Poincaré upper half plane, which is very closely related with the Hecke

algebra we are discussing here. For the works of the UCSD group, see [A-V]

and references therein.

Throughout this paper, F = ¥q is a finite field with q elements ( q is a power

of odd prime); e is a fixed non-square element in F ; x is a fixed multiplicative
character of F* of order q - 1 ; and w is a fixed multiplicative character of the

quadratic extension F(</ë) of order q2 - 1. Denote x{q~X)/2 by J,i.e. s(x)
is the quadratic symbol of x in F . Let N(z) denote the norm of z e F(,/Ë)
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to F. Fix a non-trivial additive character y/ of ¥q . Let G = GL2(F9),

We have # n i> = {1}. We identify 07/A: with P. Notice that G acts on
F(y/e) by linear transformation:

iM-Hi».     *,,-(; J)«*.«^
# is the isotropy group of V« • Define a pseudo-distance A on G as follows:

A{gi, ft) =      .'.       . if gi(\/ê) = zi = ai+biy/ë, g2(>/ë) = z2 = a2+b2y/ë.
bxb2

It is easy to see that KgK = Kg'K if and only if A(g, 1) = A(g', 1). For a
finite set X, let \X\ be its cardinality. Finally, we define a function á on F
such that <5(y) = 1 if y = 1 ; S(y) = 0 if y ¿ 1.

2. The Hecke algebra ü((7 , #)

Define Ü(G, £) to be the linear space of all complex functions (p on G

such that <p(kxgk2) = (p(g) for all g e G, kx,k2 e K. It is well known
that H(G, K) is an algebra under the multiplication defined by convolution:

(cpx * <p2)(g) — YjhzG Vi(h)<P2(h~x g). See [Kr] for more properties of the Hecke

algebra.

Proposition 2.1. H(G, K) is a commutative C-algebra.

Proof. It suffices to prove that <px * <p2 = <p2 * (px for all <px, <p2 e H(G, K).

For that purpose and later use as well, we note that KtK = Kt~xK since
A(r, 1) = Air1, 1). Therefore,

fpi*(piif) = <P\ *<P2(t~x)

= Yl<PiW<p2(h-xrx)
h&G

= Y/<P2((th)-x)<px(h)
heG

= Y,<P2(th)<px(h-x)
heG

= Y.(f2^>>(p^~xt) = (p2*(px(t). u

g€G

Since a double coset KgK is determined by A(g, 1), we denote the double
coset KgK by Da if A(g, 1) = a. There are q double cosets, each corre-

sponding to an element a in F. Let q>a be the characteristic function of Da .
H(G, K) is spanned by {(pa\a 6 F}. Hence H(G, K) is a ^-dimensional

C-algebra. Since C is an algebraically closed field, H(G, K) is isomorphic
to C®q as a C-algebra. Therefore, there are q non-zero idempotent elements

nx,... ,nq e H(G, K) such that 17, * rjj■ = 0 if 1 ̂  j and r¡¡ * n¡ = t]¡. Now we
can explicitly construct these idempotents.
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An irreducible representation n of G is called spherical if Res£(7i) contains

the identity representation of K. For every spherical irreducible representation
n of G, define

»?£(£) = Tj?r £ M**)»
'     ' keK

where an is the trace function of n. It is easy to see that r\'n e H(G, K) and

Lemma 2.2. n'n¡ *n'M2 = 0 if nx Si n2; r\'n * n'n = gJg^ .

Proof. Let nx, n2 be two spherical representations of G. Let us denote by
( , ) both invariant inner products on the spaces of nx and n2. Let {u} and
{v} be orthonormal bases of the spaces of nx and n2 respectively. (If nx = n2,
we assume {u} is identified with {v} .) From the elementary theory of group
representation, we have

heG

= £l*r' E ^(kxh)\K\~x £ ^2(k2h~xg)
heG k,eK k2€K

= i*r2 E Y.^M^i.hh-'kig)
k¡,k2£KheG

= \K\-2   E   T,a^h)a^-lkigk2)
k,,k2eKheG

= \K\~2   E   EEX>i(A)n, n>(K2(A->2(*i**2)*, ▼)
k¡,k2eK   u      v   heG

= 0   if nx Si n2.

But if nx = n2 Si n, we have

l'nl*ti2(g) = \K\-2   £   J^^J^u, v)(n(kxgk2)v,u)
k¡,k2eK   u      v ^    '

\G\
i

= i*r2 E E^^^)«^)
k,,k2eK   u v   '

From the table on page 70 of [P-S], there are q spherical irreducible repre-
sentations of G, and they are

pVj (vj = (oi(9~^, j = I, ... , (q - l)/2) with dimension = q - 1 ;

le with dimension = 1 ;

p(s, s) with dimension = q ;

P(Xj, XJ) U = 1, • • ■ , {Q - 3)/2) with dimension = q+\.
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We note here that dimHom(l/¡;, Res^n) = 1, hence n'n(l) = 1 for these n.

For these spherical irreducible representations n, define n„ = d'jy n'n . De-

note no = ni ; t]j = np(xj,Xj), j = 1,..., (q - 3)/2; n{q-Xy2 = np{SiS) and

t]{q-X)/2+j = fy„,, j = 1,..., (q - l)/2. Then we have

Theorem 2.3. n¡, j = 0, ... , q - 1, are the q idempotents in H(G, K) such

that rji * rjj■• = 0 // i # j and r\j * r\j = r\¡.

Lemma 2.4.  fjj(h) = r\j(h~x) - r\j(h), i.e. these n¡ are real-valued functions.

Proof. The reason is that all the spherical representations used to construct r\¡

are isomorphic to their contragradients and KhK — Kh~xK.   D

3. The representations of H(G, K)

Let L2(P) be the space of all (square-summable) complex functions on P.
An element of L2(P) can also be viewed as a right A"-invariant function on G.

H(G, K) acts on L2(P) by convolution, i.e. for <p e H(G, K), f e L2(P),

T,(f)(p) = (f*9)(p) = Y,f(ph-x)<p(h) = |tf| £ f(ppx-l)<p(px).
heG p,ep

Define an inner product ( , ) on L2(P) by setting (/,, f2) = \Zp£Pf\{p)f2(p) ■

It is easy to see (T9(fx), f2) = (f , T0(f2)), where 0(h) = 0(h~x). Hence
the commutative finite-dimensional C-algebra H(G, K) acts selfadjointly on
L2(P). There exists a basis of simultaneous eigenfunctions of H(G, K). Now

we are going to construct such a basis explicitly.

We recall that ^ is a fixed multiplicative character of F* of order q - 1,

y is a fixed non-trivial additive character of F and ô(y) = 1 if y = 1 ;
S (y) = 0 if y t¿ 1 . Let us now define some right ÄT-invariant functions on G,

or equivalently functions on P. For each character x' of F*, define Xi(g) =

X'(y) where gK = ( yQx{ )K. We note that Xi(P\P2) = Xi{P\ )Xi{p2) for px,p2e

P. For each a e F*, define xVa(g) = ô(y)y/(ax) where gK = CQ*)K. We

need the following lemma.

Lemma 3.1. Let ua be a vector in the space of a non-trivial spherical repre-

sentation  n  of G such that n((Xu))ua — y/(au)ua for all u e F.    Then

¿ZkeK^ik)^, ua)^0.

Proof. Since Res^rc contains 1/t:, let V0 be the AT-invariant subspace on which

K acts according to 1#. It suffices to show that ua is not perpendicular
to Vq under the G-invariant inner product ( , ). Assume the contrary, if

("a, Vo) = 0, then (n(k)ua, Vo) = (ua, n(k~x)V0) = 0 and V¿- contains a

AT-and- ( ' " )-invariant subspace of n. But G is generated by K and all the el-

ements ( ' " ), hence V0X contains a G-invariant subspace of n, a contradiction

to the irreducibility of n.   D

Now we can prove

Theorem 3.2. {x¡, T^^a) = *Pa * »/,-, i = 1, ... , q - 1, a e F*} is an orthog-

onal basis consisting of simultaneous eigenfunctions of H(G, K).   Moreover,
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T,j(Xi) = \K\(tlj, Xi)Xi. and TnjÇ¥a * ru) = «Ffl * tfi if i = J',   T^a * r¡,) = 0
if i^j-
Proof. First of all, we have

(Xi, Xj) = E x,(p)Xap) = E E * WOO = { L _ n  t\t3i
pep xeFyef ^ qw     l)   u l ~ J-

Recall from Lemma 2.4 that r¡j(h) - rjj(h~x) = fjj(h). If i ^ j, we have

(Tni<?a) , TuÇVb)) = {Va , T^ÇVi)) = (Va , ^.„(Y*)) = 0.

If i = j,

(r„CPa), r%(Tè)) = <y8, r,fcp¿))

= E^^)E^(^",)^w

= iATiX;*í/(pi)E^^)^^r1)
Pi6P />€/>

\ -i / \ / \
11   \ w-«     w—^. /   17 V   \       _ /  1)17 1717  -L   V   \

■wee*((; ,)~>i:£*.<({¡ ,)<*.<(? t*)
ueFveF' v 7 y€F* x€F \ / \ /

ueFveF'      ^ '   yeF' xeF

«6F        ^ ' xeF

If a = b, {T^ÇVa), Tni(*¥b)) = \K\q £aef *<(( ¡ , ))<?(*")• Let n be the repre-

sentation of G that gives rç, as in Section 2. Let us denote U = {(a")\ue F}

and Cu = the C-span of u. If dim(7t) > 1, from Theorem 16.1 of [P-S] and
Frobenius Reciprocity, we have the decomposition

n\u= 0cue^o.
ceF-

Here and in the sequel, for c e F*, n(( ' "))uc = i//(cu)uc for all u e F, and

n\v acts trivially on W0 . The dimension of ¡V0 = 0, 1, or 2 depending on

whether the dimension ofn = q-l,q,OTq + l respectively. Let {uc|c G F}'

be an orthonormal basis of the space of n such that n((l " ))uc = y/(cu)nc. Here

and in the sequel, the prime ' indicates that for c = 0, uo does not appear, or
stands for one basis element from Wq , or stands for two basis elements from
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Wq depending on the dimension of WQ - 0, or 1, or 2. Then

= W\ E E'<7t^)^(CM)Uc' Ui>
'   ' keKceF

= Tr\ E E'^^X71^)^' Uc>

and

= Q E E E V(cM)(n(rc)uc. uc)^(a«)
ueF keKceF

= q Y¿ E faM"* ' »c> E ^(c ~a)")
keKceF ueF

= q2^2(n(k)ua, Ua) ¿0,

from Lemma 3.1. To verify (/,, T^ÇVa)) = 0, we calculate

Tnj(xù(p) = X, * >fr(p) = E Xi(ph~x)rij(h)
heG

=1*1 E Xi(ppïl)nM = \K\(tij, Xi)-Xi(p).
p¡ep

Now

(Xi,  T^ÇVa)) = (TftMi), Va) = {TVJ(XÙ, Va)

= (t¡j, Xi){Xi,  Va) = (tlj,  Xi)Y,XiÍP)¥aÍP)
peP

= (*lj 7 Xi) E E Xi(y)S(y)y/{ax) = 0.   d

4. Eigenvalues of the adjacency operators

Recall that all the q>a, the characteristic functions of the double cosets Da

(a e F), also make up a basis of H(G, K). Each T9a acts on L2(P) in the
same way up to a factor of |*| as the adjacency operator Aa acts on the Cayley

graphs in [Ev]. We are interested in the eigenvalues of Aa , or equivalently those

of T9a in the canonical representation of H(G, K) on L2(P) . Each n¡ takes

the same value on every element in a double coset Da . We denote the common

value by tji(Da). Let Sa = Da n P. We have the following
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Theorem 4.1. The eigenvalues of Aa on x¡ are \^-\HPesaXiiP) (''■ — 1» ■•• > Q~

1). The eigenvalues of Aa on x¥b*ni are -¿~^-}Sa\ \K\n¡(Da) (i = 1,..., q-\,

VZj), where n¡ is the representation that gives n¡ as in Section 2.

Proof. The first statement is from direct calculation:

MXi){p) = Xi * <Pa(p) = ^2XiiPh~l)<Pa(h)
heG

= \K\ £ Xi(PPl)<Pa(px-1) = |*|  £ XiiPPl)
pi€P p¡esa

= (\K\Y,x,(Pi))-Xi(p).
pies«,

For the second statement, we note at first that

(lit - nu = E liWliiP) = jTï E liWViih'1)
pep '   'heG

1 » *»m- ^^ - dimn'
-tKtm*mi)- i^i -]jf||Gí-

Since AaÇ¥b * Vd -Vb* *1i * q>a and r¡¡ *<pa = Bi(a)r¡i for some number B¡(a),

the eigenvalue is equal to the number B¡(a). Now

(tli * <Pa, m) = Y, 1i * <Pa(p)fii(p)
pep

= ̂ 2^2rli(Ph~l)(Pa(h)f}i(p)
pePheG

= l^lE E 1i(PPÎl)<PMïii(P)
pePp,eP

= l*lE E 1t(PPÏl)m{P)
pePpieSa

= E !>(*)*<(*" V) = £ m^iiPT1)
PieSaheG pieSa

= E^r,) = i^M^)-
Pies»

Hence

Bi{a) = <^^> = JÇLmSaMDa). n

From the discussion in [Ev], one knows that r¡¡(Da) and ¿Z,PesaXi(p) are the

Soto-Andrade sums. It is of great interest to evaluate or even to estimate the

functions r\i(Da), which are essentially the eigenvalues of the Hecke algebra.
The Soto-Andrade sums have been estimated at least in two ways: see [Ka] and
[Li] respectively. See [A-V] and references therein for more information on the

eigenvalues.
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