
proceedings of the
american mathematical society
Volume 123, Number 12, December 1995

HANDLEBODY ORBIFOLDS AND SCHOTTKY
UNIFORMIZATIONS OF HYPERBOLIC 2-ORBIFOLDS

MARCO RENI AND BRUNO ZIMMERMANN

(Communicated by Ronald J. Stern)

Abstract. The retrosection theorem says that any hyperbolic or Riemann sur-

face can be uniformized by a Schottky group. We generalize this theorem to

the case of hyperbolic 2-orbifolds by giving necessary and sufficient conditions

for a hyperbolic 2-orbifold, in terms of its signature, to admit a uniformization

by a Kleinian group which is a finite extension of a Schottky group. Equiva-

lent^, the conditions characterize those hyperbolic 2-orbifolds which occur as

the boundary of a handlebody orbifold, that is, the quotient of a handlebody

by a finite group action.

1. Introduction

Let F be a Fuchsian group, that is a discrete group of Möbius transforma-
tions—or equivalently, hyperbolic isometries—acting on the upper half space
or the interior of the unit disk H2 (Poincaré model of the hyperbolic plane).
We shall always assume that F has compact quotient tf = H2/F which is

a hyperbolic 2-orbifold with signature (g;nx,...,nr); here g denotes the
genus of the quotient which is a closed orientable surface, and nx, ... , nr
are the orders of the branch points (the singular set of the orbifold) of the

branched covering H2 -» H2/F. Then also F has signature (g;nx,... , nr),

and (2 - 2g - £-=1(l - 1/«/)) < 0 (see [12] resp. [15] for information about
orbifolds resp. Fuchsian groups). In case r — 0, or equivalently, if the Fuch-

sian group F is without torsion, the quotient H2/F is a hyperbolic or Riemann
surface without branch points. A classical uniformization theorem sometimes
called the retrosection theorem says that any closed Riemann surface can be
uniformized by a Schottky group (a special type of Kleinian group, i.e. a dis-

crete group of Möbius transformations acting on the 2-sphere; see [6] for the
theory of Kleinian groups). The main result of the present note is a general-

ization of this uniformization theorem to the case of hyperbolic 2-orbifolds, or
equivalently, hyperbolic surfaces with branch or cone points. More precisely,

we give necessary and sufficient conditions, in terms of its signature, such that

a hyperbolic 2-orbifold tf = H2/F can be uniformized by a Kleinian group E
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containing a Schottky group S as a subgroup of finite index (a finite extension

of a Schottky group).
A Schottky group is a discrete group S of Möbius transformations of the

2-sphere S2 defined in the following way. Let Cx, ..., C2g be simple closed

curves on the 2-sphere which are the boundaries of 2g disjoint disks, and let

fx, ... , fg be Möbius transformations such that f maps the interior of C,
to the exterior of Cg+¡. Then the f generate a discrete group S of Möbius
transformations (a Kleinian group), which is called a Schottky group. It is a

free group, and the exterior of all 2g disks forms a fundamental domain for
the action of S on the regular set Cl(S) = S2 - A(S) where A(S) denotes
the limit set of the Kleinian group S (which is a Cantor set in the case of a
Schottky group of rank g > 1 ). The group S operates properly discontinuously

and freely on ii(S), and the quotient Q(S)/S is a closed Riemann surface ^g
of genus g. The retrosection theorem says that every Riemann surface can

be obtained in this way. If g > 1, then the universal covering of the regular

set Q,(S) is the hyperbolic plane H2 and the group consisting of all lifts of

elements of S to H2 is a Fuchsian group F without torsion. In particular,

&g = il(S)/S = H2/F becomes also a hyperbolic surface in a canonical way.

Now let F be an arbitrary Fuchsian group with compact quotient. We say
that the hyperbolic 2-orbifold tf = H2/F can be uniformized by a finite ex-

tension F of a Schottky group if the Kleinian group E contains a Schottky
group S as a subgroup of finite index (in particular, Q(F) = Q(S) ), and if the

hyperbolic quotient orbifold Q,(E)/E is isometric to the hyperbolic orbifold
tf = H2/F , or equivalently, if the Fuchsian group F is the lift of the group E

from Q(F) to the hyperbolic plane (up to conjugation by isometries).
Our main result is the following

Theorem 1. Let (g; nx, ... , nr) be the signature of a closed orientable hyper-

bolic 2-orbifold tf. Then tf can be uniformized by a finite extension E of
a Schottky group, i.e. tf = Q(E)/E, if and only if one of the following three

conditions holds.

(i)  ¿?>0;
(ii) the (unordered) numbers nx, ..., nr occur in pairs;

(iii) among the numbers nx, ... , nr there are at least two disjoint occurrences

out of the following four situations: (2), (3, 3), (3, 4) or (3,5) (possibly two

times the same).

The action of any Kleinian group on the 2-sphere extends to an action on
the 3-ball B3, properly discontinuous and by isometries on its interior which
is a model of hyperbolic 3-space H3. For a Schottky group S, the quotient
(B3 - A(S))/S is a 3-dimensional handlebody 2^ of genus g, with 9~g as
boundary. As a consequence, Theorem 1 has an interpretation in terms of

extensions of finite group actions from surfaces to handlebodies. Let ^ be a
closed orientable surface of genus g > 1 and G a finite group of orientation-
preserving homeomorphisms of «^ . It is no loss of generality to assume that
&g is a hyperbolic surface and that G acts by isometries. Then tf :=&g/G is
a hyperbolic 2-orbifold and we have the following

Proposition. Suppose the G-action on &g extends to a handlebody 2^. Then

the signature of the quotient orbifold tf = &g/G is of one of the three types given

in the theorem.
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The necessary condition in the proposition for a finite group action on a

surface to extend to a handlebody is far from being also sufficient. In fact, the

condition gives only a rough first approximation to the problem which seems
quite intractable in general because it depends too much on the structure of the

finite group G and the specific action (see also [1]). However, for some classes
of finite groups, e.g. cyclic, dihedral or abelian groups, it is easy to obtain

necessary and sufficient conditions.

The conditions in Theorem 1 characterize also those hyperbolic 2-orbifolds
which can be obtained as the boundary of a handlebody orbifold; see the next
section. At the end of the next section we shall characterize those hyperbolic 2-
orbifolds which occur as the boundary of infinitely many different resp. exactly

one handlebody orbifold (Theorem 2).

2. Proofs of Theorem 1 and the Proposition; Theorem 2

Assuming Theorem 1 we will give first the

Proof of the Proposition. Let G be a finite group of orientation-preserving home-
omorphisms of the closed orientable surface £Fg . Each nontrivial element of G
has only isolated fixed points and operates as a rotation in a neighbourhood of
each fixed point (see [3, pages 87 and 224]). It follows that the quotient -Fg/G
is again a closed orientable surface with a finite number of branch points, i.e.
a 2-orbifold tf of some signature (g;nx,... ,nr). This 2-orbifold can be
uniformized by choosing some Fuchsian group of the same signature and so

becomes a hyperbolic 2-orbifold. Lifting the hyperbolic structure to the sur-
face &g this becomes a hyperbolic or Riemann surface such that G acts by
isometries resp. conformai automorphisms.

Now by hypothesis the (/-action on «^ extends to a handlebody 2^ . By

the precise version of the retrosection theorem, also called theorem on cuts, as
proved by Koebe (see for example [4, page 35]), there exists a uniformization
of d'Vg — !?g by a Schottky group S which uniformizes also the handlebody

Tg. Denote by Sle(S) := B3 - A(5) the regular set of S in the 3-ball B3.
Then the elements of the group G lift to the universal covering Cle(S) c B3

of %, and the group E generated by all such lifts acts by conformai maps

on Çl(S) = £le(S) n S2 c S2. By Gehring's extension theorem, the action of
E extends to a conformai action on the whole 2-sphere S2 (see [5, p. 281]).
Therefore F is a Kleinian group which is a finite extension of the Schottky
group S (the universal covering group of 'Vg ) and uniformizes the 2-orbifold

tf = &g/G = Cl(E)/E. Now by Theorem 1, the signature of tf is of one of the
3 types given in the theorem.

Proof of Theorem 1. Suppose the Kleinian group E contains the Schottky group
S as a subgroup of finite index and uniformizes the hyperbolic 2-orbifold tf =

H2/F, for a Fuchsian group F, i.e. tf — Q.(E)/E. By taking the intersection
of S with its finitely many conjugates in E, we can assume that S is a normal
subgroup of E. Now £le(S) = £le(E) is invariant under the action of E,
therefore we have an induced action of the finite group G := E/S on the

handlebody Vg := £le(S)/S. Let D be a 2-dimensional properly embedded disk
in Vg such that dD = D n dVg is a nontrivial closed curve on ¿^ = d'Vg . By
the equivariant loop theorem/Dehn lemma ([7]), we can assume that g(D) = D
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cyclic dihedral tetrahedral octahedral icosahedral

(0;n,n) (0;2,2,n) (0; 2, 3, 3) (0; 2, 3,4) (0; 2, 3, 5)

Figure 1

Figure 2

or g(D) n D = 0, for all g e G. When cutting Vg along the system of
disjoint disks C7(D), that is, removing the interior of a G-invariant regular
neighbourhood of G(D) (which is a collection of 1-handles, that is products of

a 2-disk with an interval), we get again a collection of handlebodies of lower

genus on which G acts. Applying inductively the above procedure of cutting

along disks, we finally end up with a collection of disjoint 3-balls on which G
acts. Thus the quotient-orbifold %? := Vg/G is built up from orbifolds which

are quotients of 3-balls by finite groups of homeomorphisms (their stabilizers in
G), connected by finite cyclic quotients of 1-handles, which are the projections

of the removed regular neighbourhoods of the disks (first type of orbifold in
Figure 1). The finite orientation-preserving groups which can act on the 3-ball

or the 2-sphere are the finite subgroups of the orthogonal group SO(4). It is

well known that, on the boundary of the 3-ball, the actions are standard, i.e.

conjugate to orthogonal actions. By Thurston's orbifold geometrization theorem

[13] (which is not needed for the proof of the theorem, however) the same is

true for the whole 3-ball. The figures of the possible quotient-orbifolds, together

with the signatures of the boundaries, are listed in Figure 1 ; the underlying

topological space is the 3-ball in each case.
These quotient orbifolds are connected by the 1-handle orbifolds; the result

is called a handlebody orbifold in [8]. An example of a handlebody orbifold is
given in Figure 2; in this example the boundary has signature

(3;2,3,2,2,w, m).

To each handlebody orbifold %* one can associate a graph of groups: the
vertices resp. edges correspond to the quotients of the 3-balls resp. 1-handles,

and to each vertex resp. edge we associate the corresponding finite group, writing
only the orders of the non-trivial cyclic groups associated to the edges. Note
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Figure 3

that, by the orbifold version of Van Kampen's theorem (see [2]), the orbifold

fundamental group of %?, and therefore also the group E which is its universal

covering group, is isomorphic to the fundamental group of the above graph of
groups (see [11] or [14] for definitions about graphs of groups). Deleting the
edges whose associated groups are trivial we get exactly the singular set of the
handlebody orbifold %?. This singular set is a graph Y all of whose vertices
have valence 2 or 3. If some component of Y is not simply connected, i.e.
not a tree, then obviously the genus g of the 2-orbifold tf = d%? is at least 1
so we are in case (i) of the theorem. Otherwise Y consists of trees which are
subdivided segments or contain 3-valent points. If we have only segments we
are in case (ii) of the theorem; if there is at least one vertex of valence 3 we are
in case (iii). This proves one direction of the theorem.

Now suppose that the hyperbolic 2-orbifold tf of signature (g,nx,... ,nr)
satisfies one of the three conditions (i), (ii) or (iii) of the theorem. In each of

the three cases, it is possible, as indicated in Figure 3 (where we give only the
structure of the singular set of the orbifold, except in case (ii)), to construct a
handlebody orbifold X such that d%? = tf.

As above, the orbifold fundamental group nx(%?) is the fundamental group
of a finite graph of finite groups. By [10, Lemma 7.4] (see also [14, Proposition
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2.1.1]), there exists a surjection of nx(ß?) onto a finite group G whose kernel

is a free group. The regular covering of ¿F corresponding to the kernel of this
surjection is a handlebody Vg on which G acts as the group of covering trans-
formations (see also [8, pp. 390/391]). The boundary of Vg is a finite covering
of the hyperbolic 2-orbifold tf, so it becomes a hyperbolic or Riemann surface

&g on which G acts by isometries resp. conformai maps. Now, as in the proof
of the proposition, there exists a finite extension F of a Schottky group S uni-
formizing the hyperbolic 2-orbifold tf = &g/G = il(E)/E. (Alternatively, in
order to construct the Kleinian group E, one may inductively apply combina-

tion theorems as in [9] where a more general situation has been considered.)
This finishes the proof of Theorem 1.

We have seen in the proof of Theorem 1 that a hyperbolic 2-orbifold tf can
be uniformized by a finite extension F of a Schottky group if and only if there

exists a handlebody orbifold %? such that d%? = tf. In the next theorem we
consider the following question: when is %? unique (up to homeomorphisms);
in general, how many handlebody orbifolds %? exist such that dßf = tf1

Theorem 2. (a) Let (g; nx, ... , nr) be the signature of a closed orientable

hyperbolic 2-orbifold tf. There exist infinitely many handlebody orbifolds 3?
such that d%? ~ tf if and only if the signature of tf satisfies one of the following

conditions :

(i)   g>2;
(ii)   g = 1 and among the numbers nx, ... ,nr there are at least two disjoint

occurrences out of the following four situations :   (2), (3, 3), (3, 4) or

(3,5);
(iii)   g = 0 and among the numbers nx, ... , nr there are at least four disjoint

occurrences as above.

(b) There exists exactly one handlebody orbifold %? such that d%? ~ tf if

and only if the signature of tf satisfies one of the following conditions:

(i)   (0; 2, 2, a, b), a>2, b > 6 and a^b;
(ii)   (0; 2, 3, a, a) ; (0; 3, 3, a, a, a), a = 3, 4, 5;

(iii)   (0;3,3, a, a, b, c), a = 3, 4, 5,  b - a or for b > 6,  c > 6 and
b¿c;

(iv)   g = 0 and among the unordered numbers nx,... , nr there are exactly

two disjoint occurrences out of the situations above and one more number

which is > 6 ;
(v)   (l;a)for a±2;

(vi)   (1 ; a, b) for b>6 and a^b;
(vii)   (I; a, b, c) where a, b, c are pairwise different and b > 6, c > 6.

Proof. The proof is similar to the proof of Theorem 1, so we don't give the

details. In cases (i) and (ii) of part (a) the singular sets of the infinitely many
orbifolds %? are constructed by adding a circle of an arbitrary branching order

n > 2 to the singular sets shown in Figure 3, cases (i) and (iii) (see also Figure
2). For the case (iii), we join two singularity graphs as in Figure 3, case (iii), by

an edge of arbitrary order n > 2 as shown in Figure 4. For (b) let us consider
the case g - 0 (the case g = 1 is analogous). If there exist three disjoint
occurrences out of the situations (2), (3,3), (3,4) or (3,5), then we can construct

at least two singular sets as in Figure 3, case (iii), by different permutations of
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Figure 4

the n¡ 's (with the exception of the signature (0 ; 2, 2, 2, b) for b > 6 listed

in (b), case (i)). Suppose then that there are two disjoint occurrences out of the

situations above and two more numbers n, and n¡. If «, = n¡, then we can

construct a singular set as in Figure 3, case (iii), but also a disconnected singular

set with one component as in Figure 3, case (iii) and another component as in

Figure 3, case (ii). If n, ^ n¡, then we can construct two different singular

sets as in Figure 3, case (iii), by different permutations of the «, 's (with the

exception of the signatures listed in (b), case (iii)). We are left with the case

r = 5 which gives the signatures listed in (b), case (ii) and (b), case (iv).
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