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WEIGHTED NORM ESTIMATES
FOR OBLIQUE DERIVATIVE PROBLEMS

G. M. TROIANIELLO

(Communicated by Barbara Lee Keyfitz)

Abstract. Estimates of the Caccioppoli-Schauder type are proven for a class

of regular oblique derivative problems in Holder function spaces with weights.

Previous restrictions on the range of admissible weights are showed to be un-
necessary.

1. Notation

Let wbea bounded open subset of a finite-dimensional Euclidean space. We
adopt traditional notation for (real) function spaces such as Ck(W), Ck'â(œ),

Ck(œ), Lp(œ), which need not be illustrated. We do however specify that

Wk'p(œ) denotes the Sobolev space of order k and exponent p on œ. Next,
as in [1], we set

H0(œ) = C°(œ), I • |o;o> = norm in C°(w),

Ha((o) = Ck<a-k(B),       | • \a.w = norm in Ck'a~k(œ)

for k (a nonnegative integer) < a < k + 1,

and denote by Ha~$, b < a, the family of functions ¡cö-tR with finite
norms

\u\a-bJ = $\ip<r-»\u\ai(0a,

a>a being the set of points of a> whose distance from d(0 is > a. Of course,

Ha-a](co) = Ha(ca),       Ha-b)(œ)cHa-b,)((û)   if b' < b.

Let

B+ = {xeRN: |x| < l,xjv>0},

5° = {x € R*: |x| < 1, xN = 0},       S+ = dB+/S°,

Htb)=H¡rb)(B+),    Hi-6) = i-ö+.
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On the space of functions u e Ha~h) with supports in the half-sphere jit of

radius 1/2 a norm equivalent to \u\a~b) is given by sup(J>0(7fl""6|ii|a;Br+], where

î+Bï, = {x e B+ : \x\ < 1, xN > a) ; from [1] and [6] we know that

(1) \u\a-b) < C\utb)

provided that 0 < a' < a, b <a', and b < a' if b is an integer, whereas

MbMO < C\u\a0)

( I • Ibmo = norm on the space of functions of BMO, that is, Bounded Mean

Oscillation, over B+ ). The above implies u e L2(B+) for any b > 0, whereas,

if -1 <b<0, ueLP(B+) whatever pe[l, -l/b[.

2. Statements of the main results

Let L = -a'Jd2/dXjdXj (summation convention), where [a'->] is a positive
definite symmetric N x N real matrix.

For functions u in Ha~ ' with supports in jB+ it was proven in [1] that

the estimate

(2) \u\{a-b)<C(\u(-,0)\b,so + \Lu\{2:b))

holds true provided that 0 < b < a, a> 2, and neither a nor b is an integer.

In [6] it was later proven that (2) remains valid for b e N as well. More exactly:

let «o be given in Hb.so and /',..., fN in H^Zxb) for some b > 0 and some

noninteger a > b, a > 1. If a function u in Wx 'P(B+), p = p(b), vanishes

outside of \B+ and satisfies

u(-, 0) = ko ,        / aijuXivXjdx = [ fvXtdx   V.J e Cx (B+),
Jb+ Jb+

then u is in Ha~b) with

(3) l"li"6)<C(|Mo|6;so + El//li-.ft))-

(In [6] the case when a is in N is studied as well, but here we will not dwell
upon it.)

Let us pass to the Neumann problem. In [2] it was proven that, whenever

1 < b < a, a > 2, and neither a nor b is an integer, the estimate

(4) \u\{a-b) < C(\uXN(., 0)|*_1;So + \Lufa2:b))

holds true for any function u in Ha~ J with support in \B+ . Notice that for

b not an integer (4) is equivalent to the bound

(5) |M|6<C(|^(.,0)|ft_1;5o + |LM|<2_-2A)).

On one hand, indeed, the implication (4) => (5) is trivially consequent on (1),
which yields

(6) \u\{-b) < C\u\a-b)

since b is not an integer. On the other hand, u(-, 0) e Hb.so is the trace on

5° of a function U e H(a~b) which vanishes near S+ , with

\U\a-b)<C\u(-,0)\b.so<C\u\b.
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This follows from [1, Lemma 2.3]—a result which we shall return to in a short

while. For the moment suffice it to say that, as a consequence, (5) yields (4)

once (2) has been applied with u replaced by u-U, and consequently «(•, 0)
byO.

If b is an integer > 2, counterexamples show that (6) is false in general, and

so is (5); yet in the present paper we prove that (4) still holds. More specifically,
we have the two following results.

Theorem 1. Let [A'J] bean NxN matrix with symmetric part [a'j]. For some

b > 1 and some noninteger a> b let u e WX'2(B+) have support in jB and

satisfy

(7) /  Ai¡uXtvx¡dx= \  f'vx¡dx   VveC[(B+),
JB+ JB+

where the f's, i = \,... , N, are functions in H^~b). Then u e Ha~b), and

the following estimate holds:

(8) \u\{a-b)<C£\ftl:xb).

Theorem 2. Let g e Hb_x.so, / e H{2~b] for some integer b > 2 and some

noninteger a> b. Let u e W2'2(B+) have support in \B   and satisfy

(9) uXN(-,0) = g   onS°,       Lu = f   inB+.

Then u is in Ha~ J with

(io) \u\{a-b)<c(\g\b_x.,s0 + \f\a2:2b)).

Our approach makes crucial use of the extension technique dealt with in the

next section, which enables us to follow, in the proof of Theorem 1, the main

idea lying behind the above proof that (5) => (4).
We sketchily mention that a perturbation argument, based on considerations

similar to those of [1, Proposition 4.3], would allow us to extend our results
to a class of uniformly elliptic operators L with variable coefficients, as well

as to replace the condition upon uXN\so with one upon Bu = (b'uXi + b°u)\so

with b°, bx, ... , bN sufficiently regular, bN > 0. The passage to more general

oblique derivative problems

Lu = f   inQ,        Bu = g   on dQ

when Q is a bounded domain would then proceed along the lines of [ 1, Theorem

5.1] and [2, Theorem 2] (which rely upon [1, Lemma 2.6]), provided that dQ
is "sufficiently" regular—more than just Lipschitz continuous, anyway. The

Lipschitz case is dealt with in [3] and [4], where Hlf]~y\Q) estimates are
proven for y in a suitable range ]0, Vo[, 0 < yo < 1. The estimate of [4], in

particular, is deduced from the main result of that paper, which asserts: If a
function is harmonic in Í1 and has an oblique derivative of BMO over ôQ,

then all its first derivatives are also of BMO over dQ,. Such a result does not

yield the aforesaid estimate for y = 0, as is clear from the proof of [4, Theorem

3.1]. Our Theorem 1, instead, does yield an H{2~X) estimate for a function u

satisfying (7), hence also AiNuXi = g on S° with g e C°(S°), when fN is
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a function from h[°+s which equals g on 5° and is obtained through the

extension procedure of [1, Lemma 2.3]. (As for y = 1 : We know that H^2)

estimates do not hold, no matter how smooth dQ is, whereas H2~f estimates

hold for every ô > 0 as a consequence of our Theorem 2.)

3. AN EXTENSION LEMMA

Let 4>: RN~X —► R be a smooth function with compact support, and let v =

v(x', xn) (with the notation (x', xn) = x = (xx,... , xN~x, x^) ) be at least

continuous for Xn > 0, with support in jB   . For t, xN > 0 set

W(x', t, xN) = j v(x' - ty', xN)(j)(y')dy'.

(Here and in the sequel / stands for /R„_, .) By [1, Lemma 2.3] the function

V(x', t) = W(x' ,t,0)=f v(x' - ty', 0)(j)(y')dy'

verifies
\vtb)<C\v\b

for a > b > 0. But, as already pointed out, when b is an integer a function

v e H^b~s], ó > 0— the case which will concern us in the proof of Theorem 1—

may not belong to Hb , so that we cannot avail ourselves of the above inequality.

Let us therefore modify the approach of [1], as follows.
Let (j) be symmetric with respect to each coordinate hyperplane of R^-1.

For t > 0 we have

WXj(x', t, xN) = r1 Jv(x' - ty',xN)^\y')dy'

with 4>(j) = 4>yj if j < N, whereas

Wt(x', t,xN) = r1 jv(x' - ty', xN)^N\y')dy'

with

tf>W(y') = (1 - AW) - ¿ yj<j>yj(y')
j=i

—again a function which is symmetric with respect to each coordinate hy-
perplane of R""1. All integrals $<¡>{X)(y')dy',..., ]fN)(y')dy' equal 0, of
course. Let us generalize all of this to higher order derivatives. With the stan-
dard multi-index notation we have

DaW(x', t,xN) = t-MJv(x' - ty', xN)4>a(y')dy',

where all functions <t>a E C?°(RN-X) satisfy J<j>a(y')dy' = 0 provided that
|a| > 0 (otherwise 4>a would simply be (j)). In the particular case when a is
of the form (0, ... ,0, h), that is, when Da is the h-th pure derivative with

respect to t, the function (¡>a is symmetric with respect to each coordinate
hyperplane of R^-1 and therefore satisfies

(ii) jyj(Pa(y')dy' = o v/=i,...,/v-i.
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Let xN > 0. Let the multi-index ß be defined by the identity D? = Dad/dt.

Suppose that v is in some space H\~^ , ô > 0 ; then, if a = (0, ... , 0, h),

the function DaVt(x', t,xN) equals r^-1 Jv(x' - ty', xN)(j>ß(y')dy' as well

as -r lQl ¡y' • Vv(x' - ty', xN)<j)a(y')dy' (with V = gradient in the first N- 1
variables). This leads to the identities

(12)

Jv(x' - ty', xN)<t>ß(y')dy' = -t jy' • Vv(x' - ty', xN)<pa(y')dy'

= -t[y'' [v«(x' - ty', xN) - vv(x', xN)]<i>a(y'W »

where (11) has been utilized. If instead a¡ > 0 for some j < N v/e write Dß

as Da d/dxj and obtain

fv(x' - ty', xN)<pß(y')dy' = t ÍvXj(x' - ty', xN)<f>a>(y')dy'

(12)' J J
= t / [vX](x' - ty', xN) - vXj(x', xN)]<t>al(y')dy'

since \a'\ > 0.

Lemma. For b eN, 0 < <5 < 1 let v e H^ and have support in jB+. The

function V(x', xN) = /RA,_, v(x' - x^y', 0)<fi(y')dy' is in any space H¡¡~b) for

a>b + ô, and

\V\{a-b) < C\v\[-+bJ.

Moreover, V(x' ,0) = v(x', 0) if f (p(y')dy' = 1.

Proof. For h + b + ô >a we have Ha~b) 2 ^i+b+s > so tnat ** *s not restrictive

to suppose a = h + b + ô.
Let b = 1. Since «(•, 0) is of class Hx_s , it follows from Lemma 2.3 of

[1] that

\V\[-\+S)<C\v\x_s<C\v\[-lJ.

This yields a bound of the required type on ah+ô \ V\h+X. B+  for h a nonnegative
' toi

integer. (Notice that V(x', xn) is smooth for x^ > 0, so that we need only
worry about its behavior as x^ —> 0.) Let us proceed to bound

ah+s      sup      \DaV(£)-DaV(x)\\l;-x\-s
x,ieBfa¡,x¿i

for \a\ - h + 1. We take \v\\~g - 1 and fix xN > 0.
First of all, we notice that

Xn

\vs(? - xNy', s) - vs(x' - xNy', s)\ds < C|{' - x'\sxxA~*I      \usvs   ~ ^i\y  i •>j ~~ "s\*  ~~ •*ny  > o;|i*j _2 »- is   — -*• l •*-#
JO

On the other hand, since

j v(£, xN)<¡>a(y')dy' = jv(x', xN)<f>a(y')dy' = 0,
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/ [«(£' - xNy', xN) - v(x' - xNy', xN)]<j>a(y')dy

= \j <j>a(y'W J * y' ■ [Vw(i' - sy', xN) - Vv(x' - sy', xN)]d

fXN
< C /    |Vv({' - sy', xN) - Vv(x' - sy', xN)\ds < C\? - x'\sxxN~s

Jo

(where, once again, V is the gradient in the first TV - 1 variables). Summing

up, the difference

DaV(c;',xN)-DaV(x',xN)

= x-M |M<r - xNy', 0) - v(x' - xNy', 0)]<t>a(y'W

= xñ¡a] / \ v(Ç' - xNy', xN) - v(x' - xNy', xN)

/   [vs(£ - xNy', s) - vs(x' - xNy', s)]ds \(t>n(y')dy'

satisfies

(13) \DaV(Ç',xN)-DaV(x',xN)\<C\Ç'-x'\sxlN-]al-s.

Let us now pass to consider (for £# > Xn ) the difference

rÍN

(14)

Da V{? ,HN)-Da V{?, xN) = / " D? V(i', t)dt
JxN

= [ N t-^-xdt fv(c;' - ty',0)<t>ß(y')dy',
JxN J

D? =Dad/dt. Since

Jv{?, xN)<pß(y')dy' = Jv(^',0)(t>ß(y')dy' = 0,

we have

(15)

jv{? - ty',O)0ß{y')dy' = J lv(C' - ty', xN)

- p M«f - ty', s) - vs((', s)]ds\<f>ß(y')dy'.

Either by (12) or by (12)',

(16) < Ctx+Sxüö.

On the other hand,

jv(£-ty',xN)<pß(y')dy'

r \vs{? - ty', s) - vs(i', s)\ds < CtsxxN-â\y'\â ,
Jo



< Ctx+Ôxûs

-s

ESTIMATES FOR OBLIQUE DERIVATIVE PROBLEMS 3661

and therefore

/[■xn cppdy'y   [vs(Z'-ty',s)-vs(Z',s)]ds

for t > xN . Thus, (14)-(17) yield

\DaV(^',iN)-DaV(^',xN)\ < c (£" riai+sdt\ x-,

< rv-ái^1_lQl+<5    v1_lal+ái
- *-Av Kjv xn        I-

But for Xn <Çn < 2xn we have

\tN-M+â - 4"N+W £ C[^ + d(ZN - xn)]-m+s(Çn - xN)xNs

< Cx-]al(ÇN - xn) < CxN-M-S(iN - xN)s

for some 6 €]0, 1[, whereas for £# > 2xn , which implies

^n + xsn<2^n<2x+ô(În-xn)s,

we have

Vld"H+á + 4~H+S\ < CxN\^NxN-^ +xnXnH) < Cxn-M-s(Çn-xn)0.

Thus,

(18) \DaV(c;', ÇN) -DaV(t:, xN)\ < Cx^6^ -xN)s.

The required bound on

x^-l+s\DaV(^', ¿iN) - DaV(x', xN)\ |i - x\~s

follows from (13) and (18). In the case b > 1 it suffices to write

VXi(x' ,xN) = jvXi(x' - xNy', miv'W

for /' < TY and proceed by induction.

The last statement is obvious.   D

4. Proofs of Theorems 1 and 2

If 1 < b < a < 2 the proof of (8) is achieved by repeating, with very minor

changes, Step 1 (for p = 2 ) and Step 2 of the proof of [6, Theorem 1], where the
same norm estimate, for A'J = ô'j, was proven in the homogeneous Dirichlet
case—that is, with the solution u and the test-functions v all vanishing on

5°.
For a noninteger a > 2, however, the above procedure no longer applies.

And it is here that the lemma of the preceeding section comes into play. If b
remains in [1, 2[, indeed, it enables us to utilize the previous step, which yields

a bound

(19) \ut7b) <C Y:\ft-x] ^C^lfí1^

for any noninteger a' e [b, 2[.   Let, according to our lemma (for the case
b = 1 < a' = 1 + Ô < 2 ; the case 1 < b < 2 is [1, Lemma 2.3] for the choice of

a' = b ) U e H(a~b) equal »onS°, with supp U Ç {~B* and

\U\a-b)<C\uÍ7b).
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The function U' - u- U vanishes on 5° and satisfies

/ aVV^Vxjdx = / if - aüUXj)vXídx   Vv e C?(B+),
JB+ JB+

the matrix [aiJ] being the symmetric part of the matrix [Aij]. This means that
[6, Theorem 1] can be applied to U' (cf. (4)). Thus,

\u'\i~b) <c^(\fi^ + \uxix_-^).

The result in the case at hand follows immediately once the inequalities

\u\i-b)<\U\a-b) + \U'\a-b), \Ux,t-bU\U\^

and (19) have been taken into account. (See the proof of the implication (5) =>•
(4) in §2.) The proof of (8) for b = k + V, 1 < V < 2, is easily obtained by
induction on fceN, assuming the result true for k - 1 and applying it to the
derivatives uXs, s = 1, ... , TY - 1, which satisfy the same identity as u except

for the /' 's replaced by the fXs 's. Thus,

the above bound and the equation in B+ for what concerns uXnXn provide a

bound of the required type on all derivatives of u involved in the statement.

Since the unweighted theory provides also a bound on, say, the üo norm of u,

we have proved Theorem 1.

Let us pass to the proof of Theorem 2. For simplicity's sake we assume that

ÜNN = 1 • Let

AtJ = aiJ + (ôiN - ôjN)a,J   (so that am = 1 => AiN = ôiN) :

(i) is equivalent to

/  A'JuXlvXjdx = f {fv + GXNv + GvXN)dx   \/v e CX(B*),
Jb* Jb+

where

G e H(x~b)   (so that grad G e H(2~b)) with G|so = g,  \G\(^b) < C\g\b_x .so

(cf. [1, Lemma 2.3] again).
Let Us = uXs. On one hand, as is done in [3], we utilize the Dirichlet problem

satisfied by UN; on the other hand, instead, we view Ul, U2,... , UN~X as

solutions to oblique derivative problems. Here are the details.
UN satisfies

/ aiWxNivXjdx = ~ [ fvXNdx   yveCx(B+
Jb+ Jb+

as well as  UN(-, 0) = g on 5°, so that the estimate for nonhomogeneous
Dirichlet problems in variational form yields

\uN\al:xb)<c(\f\^ + \g\b_x-s°)

(cf. (3)). For 5 = 1, ... , N - 1, Us satisfies

/  A'JUsXivx¡dx = [ (-fvX! + GXsvXN - GXNvXs)dx   Vv e Cl(B*),
Jb+ Jb+
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so that Theorem 1 yields

\uial:b) < c(\f\(2:b) + igrad G\^:b)) < c(\fia2:b) + \g\b_x ,s0).

Thanks to the bound on |w|0 provided by the unweighted theory, (10) has been
proven.
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