
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 123, Number 12, December 1995

THE (T-CLASS GENERATED BY BALLS
CONTAINS ALL BOREL SETS

VLADIMIR OLEJCEK

(Communicated by Franklin D. Tall)

Abstract. The rj-class, i.e. the system of sets closed under complementation,

countable disjoint unions and containing the empty set, generated by the system

of open balls coincides with the tr-field of Borel sets in R3 .

1. Introduction

Let X be an arbitrary non-empty set. A class Sf of subsets of the set

X, containing the empty set, is said to be a a-class [3, p.672] (a concrete
quantum logic [5, p.2], or a q- a-algebra [4, p. 121] ), if it is closed with respect
to complementation and with respect to the union of any sequence of pairwise

disjoint sets. If a a-field of sets is defined in the usual way as a class of sets
containing the empty set, closed with respect to complementation and with

respect to unions of arbitrary sequences of sets, then, obviously, for an arbitrary
class i? of subsets of X, the a -class ¿Pifé) generated by ^ is contained in
the a-field s/(W) generated by f. It is known [3, Corollary 1] that if f is
closed with respect to intersection, i.e. if A e W, B e & implies A n B e &,
then £?(W) = £f(W). Therefore, for instance, if W is the class of all (open)

intervals on the real line, then ¿¿'(W) =s/(W), where sf(&)=¿§ is the class

of Borel sets. For the same reason an analogous equality holds in the plane. In
fact, if W is the class of all (open) rectangles, then ¿¿?(W) coincides with the

class 3§ of all Borel sets in the plane. However, if ^ is taken to be the set
of all discs (the fact they are open, closed or both is not essential), a question
arises, whether SOfe?) contains all Borel sets, i.e. whether S?&) = 38 . More
generally: Let fê be the set of (n-dimensional) open balls in the Euclidean
space R" . Does SP&) equal ¿% ? The question has been raised in even much
more general form (for Banach algebras) by Preiss. However, it appeared to be
non-trivial even in the above description, which was formulated independently
by Neubrunn in 1977. The problem was positively answered in [4] for the

two-dimensional case. This paper presents its solution in the three-dimensional

space.
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2. Preliminary lemmas and definitions

Lemma 1. Any a-class Sf is closed with respect to intersections of decreasing

sequences of sets.

Proof. See [2, Lemma 2.1].   D

Lemma 2. Let 9? be the class of all open balls in R3 and let &($?) be the
a-class generated by fê. Then

(1) every closed ball is contained in Sf&),

(2) every one-point set is contained in Sfi^).

Proof. The properties of £?(&) follow from Lemma 1.   □

We need to weaken the set inclusion and the set equality as follows.

Definition 1. We say that a set A is a subset of a set B mod N0 (notation
Ac B mod N0 ), if there exists a countable set C such that A c BliC. Two
sets A , B are called equal mod N0 (notation A = B mod No ), if A c B mod

No and B c A mod No .

Lemma 3. Let W be the class of all open balls in R3 and let ¿¿?(W) be the
a-class generated by W. Then any line segment I belongs to ¿¿?(W).

Proof. For any positive integer n we divide the set I into 2" equal parts I„j,

i = 1, 2, ... , 2" , and for each i we denote by Ln _ ¡ the open ball with the di-

ameter In,i ■ The set \J¡=i L„t¡ belongs to J?^), thus, according to Lemma

1, nr=i l£i L-.i belongs to S?(W). Since I = f|~, l£i LnJ mod N0 , ac-
cording to Lemma 2, (2) I also belongs to ¿2?Cê?).   D

Definition 2. Two sets D and E from a system W are said to be compatible

with respect to &, if DnE eff or DnE = 0.

Definition 3. A class of sets is called a net, if any two sets in it are either disjoint

or one is contained in the other ([1, p. 14]).

Orthogonality in concrete quantum logics usually corresponds to disjointness.
However, in this paper it is used exclusively in the geometrical sense.

Definition 4. Two balls (or discs) are called orthogonal, if the square of the
distance of their centres is equal to the sum of the squares of their radii.

Definition 5. Two nets Sf, ^ of balls (or discs) are said to be orthogonal nets,
if any two balls (discs) AeSf, B e^ are compatible or orthogonal.

3. A FRACTAL STRUCTURE IN R2

In this section we define a fractal structure in R2, which enables us to prove
(in Section 5) that any square in R3 belongs to SC&). The system f is

taken to be the system of all open discs. Considering Cartesian coordinates let

us define
.    .       ,     f    2x 2v\
m\(x, y) =    —T-r , —z-T

v      '     \x2+y2   x2+y2J
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a transformation in the plane, which is commonly known as the 'circle inver-

sion'. It is determined by a circle, in this particular example by the circle with

the centre (0, 0) and the radius y/2. It is also known that the transformation
inv

(1) is a conformai transformation, i.e. it preserves the size of angles,

(2) is an involution, i.e. inv(inv(x, y)) = (x, y),

(3) transforms a circle to a circle or to a line depending on whether it

contains the origin or not.

Any open disc D in R2 is represented by a triple (xx, x2, r), where xx, x2

are the coordinates of the centre and r is the radius. As usual, in\(D) denotes
the image of the disc D by the map inv. Let ¿F be any set of discs in R2.

Denote

ext(^) = { E = (vi, V2, r) : 0 < y,= 2p¡ + SjX¡,

D = (xx,x2,r)eT, Pie{0, 1,2,...},

notpi =p2 = 0, s, 6{-l, 1}, i = 1,2};

and

inv(JT) = {E = (yx,y2,r):0<y,<l, i =1,2,

£ = inv(Z>), De%?}.

Further, put 38x = {Bx}, where Bx = (0, 1, 1), &x = {Gx}, where Gx =

(1,0, 1), and for any integer k > 1

J^+1=inv(ext(^)),

where f = "§ or 38, if 3? = 38 or & respectively. Finally, denote 38^ =

\Sk=\ ̂ k and ^oo = \Jk=\ ^k ■ Figure 1 (on the next page) shows the discs from

38k (black circles) and from ^ (grey circles) for k = 1, ... , 6 with radii not
smaller than 0.01.

Using the properties of the transformations inv and ext and applying the

standard routine of induction, the following lemma can be proved

Lemma 4. 38^ and ^ are orthogonal nets.

4. A COVER OF A SQUARE

Now an essential step follows to prove that any closed square in R3 belongs

to S?i&).

Lemma 5. Let Bn = \}38n, Gn = {J&n and

G„,i = \J{D€&n:D£Bi}

for any positive integers i, n and let

Q = {(x,y):0<x<l,0<y<l}.

Then
oo    oo oo    oo    n

ß=nu5"uunnG«.<modNo
k=\n=k k=\n=ki=k

and
OO     CO oo     oo      «

nu*«nunnG-=0-
k=\n=k k=ln=ki=k



3668 VLADIMIR OLEJCEK

Figure 1

Proof. Taking an arbitrary positive integer n we have

(*) ß C Bn U Gn mod N0

and since Gn tk n Gn>K+ x n • • • n Gn,„ contains all discs from 3?„ which are not

completely covered by Bk U Bk+X U • • • U B„ , we have also

QcBkU Bk+X U ••• U J5„ U [Gn¡k n G„,fc+1 fl ••• n G„,„] mod N0

for any integers k < n .

Figure 2 describes the idea of the covering construction for k = 1 and
« = 1,2,3 (first column), and for k — 2 and « = 2,3,4 (second column).

The black (grey) circles represent discs forming B¡ (Gn ¡) with radii exceeding

0.01.
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Figure 2

From the last inclusion it follows

oo n

ßc |j5„uf|C7„,;modNo
n=k i=k

for any k < n . Since the sequence f]"=k ̂ n, > Is decreasing with respect to

we have
oo oo    n

Qc U^uf|f|G„,,modN0
n=k n=k i=k
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for any k . Hence

oo oo    oo     «

Qc{jBnö\J p|P|C7„,;modNo
n=k k=ln=ki=k

for any k and since the sequence IJ^U Bn is decreasing with respect to k, we
have finally

oo    oo oo    oo     n

Q C fl (J Bn U (J fl fl Gn,,-mod N0.
k=\n=k k=\n=ki=k

To prove the opposite inclusion and the disjointness, we use the following

property of the systems 38n , "§„, which is not difficult to verify: If r„ denotes
the maximum of the radii of all discs contained in 38n\J&n, then lim„r„ = 0

(in fact r„ = i).
If a point p does not belong to Q, then at least one of its coordinates is

outside the interval [0,1] and therefore there exists a positive integer n(p)
such that p £ B„uG„ for all « > n(p). Hence

oo     oo oo    oo     «

pi nu5»uunn^<-
k=\n=k k=\n=ki=k

Finally, let p e fïltli U^U Bn . Then, for any positive integer k , an integer
n(k) can be found such that p e Bn(k). Let dk denote the distance of p

from the boundary of Bn^) ■ Since Bn(k) is a disjoint union of open discs,

dk is strictly positive. Then, for any positive integer k, there exists such an

integer m(k) that the radii of all discs from &m(k) are smaller than dk and

simultaneously m(k) > n(k). Considering the orthogonality of overlapping

discs from 38n{k^ and ^„^ , we have

m(k) oo     n

P  Í  Gm{k),n(k)   =*•  P i   H Gm(k),i   =>  P  i   Pi f)Gn>>
i=k n=k i=k

for an arbitrary k , and consequently

oo    co     n

Piunn^<- d
fe=l n=ki=k

Note that for every k , |J^U Bn is a sort of 'osculatory packing' [1, p. 125]

and (X^k C\l=k G". i is the residual set 'mod N0 '.

5. Consequences in R2 and in R3

Lemma 6. If %? is the system of all open discs in R2, and J2?(W) is the a-class
generated by W, then ¿2?(W) contains any closed square in R2.

Proof. We can introduce the coordinate system in R2 such that (0,0), (1,0),

(1,1) and (0,1) are the vertices of the square. According to Lemma 4

co    oo oo    oo    n

nu^-5^)  and   unn0».'6-2^)-
k=\n=k k=\n=ki=k
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Since, according to Lemma 2, one-point sets belong to ^f(W), the unit square
g belongs to ¿?(W) as well.   D

Let us return to R3. Let W be again the set of all open balls in R3 and let
¿2?(W) be the respective generated cr-class. Our next goal is to prove that any

square in R3 belongs to ¿2?(W). Let a coordinate system be introduced in R3
such that a closed square Q has vertices (0,0,0), (1,0,0), (1,1,0) and (0,1,0).
We can construct a fractal structure in R3 copying the procedure in Section 3,

taking open balls instead of open discs such that the third coordinates of their
centres equal 0. There is no change in the definitions of the transformations

inv and ext apart from the third 0-coordinate added. Analogous assertions to
Lemmas 4 and 5 can be proved and they imply the following consequence.

Lemma 7. The a-class ¿¿?(W) generated by the system %? of all open balls in
R3 contains any closed square.

6. A FRACTAL STRUCTURE IN  R3

The key problem of our final target is to prove that a closed cube in R3

belongs to Jz^f). To some extent it is analogous to the procedures in Sections
3 and 4.

We define a transformation inv in R3 as follows:

•    t       i - (       2x 2y 2z       \
mV[X'y)~{x2 + y2 + z2'  x2 + y2 + z2'  x2+y2 + z2)-

It is a 'spherical inversion' determined by a sphere with the radius y/2 and
with the centre in the origin and it has similar properties to those of the circle
inversion, i.e. it preserves angles, it is an involution and it transforms spheres
to spheres with some exceptions.

Any ball S in R3 can be represented by a quadruple (xx, x2, x?,, r), where
xx, x2, xt, are coordinates of the centre and r is the radius. As above, inv(S)

denotes the image of the set S of the set S e R3 in the transformation. Let
3? be any set of balls in R3. We define

ext(JT) = { T = (yx, y2, y3, r) : 0 < y, = 2Pi + i,x,,

S = (xx,x2,Xi,r)eäT, p, e{0, 1,2,...},

notpi = p2=p3 = 0, */6{-l, 1},  1 = 1,2,3},

and

inv(,r) « {T = (yi,y2,y3, r) :0<y¡ < 1, i = 1, 2, 3,

r = inv(5), Se%?}.

Further, put 3BX = {Px}, where Px = (1, 1, 1, 1), Wx = {Wx}, where Wx =

(0, 0, 1, 1), &i = {Bx} , where Bx = (0, 1, 0, 1), &x = {Gx} , where Gx =
(1,0,0,1). For any integer k > 1 we define four systems 3°k , Wk , 38k , &k ,
by induction

where, if 8? = 3s then y = 3° and further it depends on whether k is odd
or even: in case k is even

se = 3B^y = w,   se = &^y = 3S,   ze = w^y = %,
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in case k is odd

se = 38^y= &,   se = % ̂ y = w,   se = w=¡>^=&.
Finally, denote Se^ = lX=i^ for a11 & e {3°,W,^,^}. Using the
properties of the transformations inv and ext the following lemma (analogous

to Lemma 4) can be proved by induction.

Lemma 8. The systems of balls 3^^, Woo, 38^ and ^ are pairwise orthogonal

nets.

9. A COVER OF A CUBE

A 'covering' lemma, partially analogous to Lemma 5, follows.

Lemma 9. Let

Q = {(x,y, z):0<x<2, 0<y<2, 0 < z < 2}

and for any triple (u, v, w) e { 0, l}3 define a transformation

tunv.,.(*, y, z) = (2m + (-1)"JC, 2v + (-l)vy, 2w + (-\)wz).

Denote Xn = \}Sen,for all X e{P ,W,B, G}, See {3* ,W,3S ,&} and

Bn<i = {J{Se¿8n:So:Wi},

Gnjj^UiSe&n'.SÇWi,   S£Bj}

for any positive integers i, j, n . Further denote
CO

ioo =   {_)   "m ;

m=\

oo    n

w00 = f]\Jwi,
p=\ i=p
co    oo    oo    co    n

«--nunuo.'.
p=\ q=P k=q n=k i=p

oo    co    co    oo     n      n

ö«-ununnriö-.u-
p=\ Q=P k=q n=k j=k i=p

Then

Q = \J{tumu,v,w(P00öW00uBooöGoo) : (u, v, w) e {0, l}3} mod N0

and the sets Poo,  W^, B^, and G^ are pairwise disjoint.

Proof. First we denote

Qx={(x,y, z):0<x<\, 0<y<l, 0<z<l},

and prove that
Ôi c Px U Woo U 5oo U G«, mod N0.

For an arbitrary integer p we have

p
ôi C [J Pm U Wp\jBp,p U Gp,PhP mod N0

m=\
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whence, for arbitrary p, n , p <n ,

n n n n

Qx C (J Pm U U W,U f| BniU f| Gn,i,„ mod N0.
m=l i-p i=p i=p

Obviously, n in the unions can be replaced by oo, therefore

co oo « n

Ô, c \JPmu\JWiUÇ)Bntiuf\Gtt,i,„ módico.
m=\ i=p i=p i=p

Using a consideration similar to that one in the proof of Lemma 5, taking

f)"=p Bn.i on the position of B„ and f)"=p Gn,i,n on the position of Gn in (*),

we obtain
co co cocon cocon«

g, c u Pm u u w,■ u n u n i?«,, u u n n n g«.«,> mod n0,
m=\ i=p k=qn=ki=p k=q n=k j=ki=p

for arbitrary p, q, p < q . In the third term we can take its union through all

q and since the fourth term decreases with respect to q, it can be replaced by

the intersection. For arbitrary p we have

oo oo oooooon co    co    oo     n     n

ß, C U ̂ U|J Wiö U f| [J Ç]B„jU f| (J fl f)Ç[GH,i,j mod N0.
m=\ i=p q=P k=q n-k i=p q=P k=q n=k j=k i=p

Finally, since the second and the third term are decreasing and the last term is
increasing with respect to p, we obtain the desired inclusion

co    co    oo    oo    n

e.cu^nu^nunun5«.'
m=\ p=l i=p p=l q=p k=q n=k i=p

co   oo    oo    oo    n     n

uununnnGM.;modi<o.
p= 1 q=P k=q n=k j=k i=p

It is not difficult to verify that

Qc\J{\umu,v,w(Qx):(u,v,w)e{0, l}3}

whence

ß C (J {turn«,„,„,(Poo U Woo U fi«, U G^) : (u, v, w) e {0, l}3}.

To prove the opposite inclusion note that the radii of balls belonging to

&>„\jWn\j38nu&„ tend to 0 as n approaches oo also in the three-dimensional

construction. It follows that the inclusion

ßl    D   Woo  U Boo  U Goo

can be proved in the same way as the related part of Lemma 5. It is also clear

that any ball from 3°oo is contained in ß and since turnw„iU,(ß) = ß for any

(u, v, w) e {0, l}3, we have

Q D\J{lumu,VtW(PooUWooUBocU Goo) : (u, v, w) e {0, I}3}.

The idea of the proof of the pairwise disjointness of the sets Poo , Woo , Boo

and Goo is also the same as in the proof of Lemma 5. The construction of
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^co , ^co , ^co and ^oo directly shows that an arbitrary ball in 3Boc contains

no ball from W^ u38oo U^óo as a subset. It follows that any point x e Poo may

appear only in a finite number of balls from W^ U 38oo U %d • Consequently,

Poo has no common points with any of the sets W^ , Boo and G^ .

Assume that x e W^ = frjli ULp ^ • Then for any integer p there exists

an integer i(p) such that x e W^. Denote by dp the distance of x from

the boundary of W^P). Since the radii of balls in 38„ U J/„ decrease to 0 as «

approaches oo, there exists an index n(p) such that for any « , « > n(p), the

radii of all balls in 38n U&„ are smaller than dp . Since W, 38 and W, & are

orthogonal pairs of nets, x $ Bn¡¡^ and x £ G„j(p)j for any j. Without

any restriction we can assume that n(p) > « , whence

oooooocon cooooooonn

xi nun un*«.*-   *»*   ^^ununnn^.^
p=X q=p k=q n=k i=p p=l q=P k=q n=k j=k i=p

The disjointness of 5oo and Goo can be proved similarly as in the related

part of the proof of Lemma 5.   D

Corollary. The a-class Sf($?) generated by the system W of all open balls

contains every closed cube.

Proof. We prove that the cube ß from Lemma 9 belongs to Se&). For that
purpose it is enough to show that for an arbitrary pair of triples (ux,vx,wx),

(u2, v2, w2) e { 0, 1 }3 the set

turnUl ,„,,„,,(P«, U Woo U Boo U Goo) n turn^^Poo u ff«, U £«, U Goo)

belongs to Sfi$). Moreover, we can restrict consideration to two pairs
(0, 0,0), (0,0,1) and (0,0,0), (0,1,1) due to symmetry. (For the pair
(0,0,0), (1,1,1) the above intersection equals Pi e ¿?(&).) For any X e
{ P, W, B, G} denote by X^ the set constructed the same way as I«, re-

stricting the set of used balls to those with the third coordinate of the center
equal to 1, and X^ the set constructed using only the balls with the second and

third coordinate of the center equal to 1. Then

tumo,0,0(Poo U^ooU^ooU Goo) D tum0,0, I (Poo U W^ U5„ U Goo)

= P^UW^UBXooUGXoo

and

tUrn0,0,0(Poo U W«, U £«, U Goo) n turnn, l, I (Poo U l^oo U Boo U Goo)

= PiöWll)BluG2oo.

Since for ¿=1,2 the sets P¿, , W^ , B^, G^ are pairwise disjoint and each

of them belongs to &(&), the intersection belongs to ^(W) as well.   D

10. The main RESULT

Theorem. The a-class Sffâ) generated by the system fê of all open balls co-

incides with the a-field 38 of Borel sets in R3.

Proof. Obviously ^(W) c 38 . To prove the opposite inclusion it suffices to

show that every closed block (three-dimensional interval) belongs to &&).
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From Lemma 8 it follows that Poo , Woo, Boo, and Goo belong to Sf&).

According to Corollary of Lemma 9, every closed cube belongs to ¿¿"(fê). Since,
according to Lemma 7, Sf{$?) contains every closed square and, according to
Lemma 3, it contains every line segment, any closed block with rational sizes can
be formed as a union of closed cubes within &C&). Therefore, any closed block
with rational sizes belongs to Seifê). Finally, forming decreasing sequences of
closed blocks with rational sizes and applying Lemma 1 we obtain that every
closed block is contained in 2f(f&).   G
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