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EVERY SEPARABLE BANACH SPACE
IS ISOMETRIC TO A SPACE OF CONTINUOUS

NOWHERE DIFFERENTIABLE FUNCTIONS

L. RODRÍGUEZ-PIAZZA

(Communicated by Dale Alspach)

Abstract. We prove the result stated in the title; that is, every separable Ba-

nach space is linearly isometric to a closed subspace E of the space of contin-

uous functions on [0,1], such that every nonzero function in E is nowhere

differentiable.

1. Introduction

A theorem of Banach and Mazur [B2] states that every separable Banach
space X is isometrically embeddable in W([0, 1]). One can ask whether we
can require more properties of the functions in the image of the embedding; or,

when these properties establish restrictions on the Banach space X.
In this direction, it has been proved that a closed subspace E of W([0, 1])

must be finite-dimensional if every function in E has bounded variation [LM],

or if every function in E is differentiable at every point of [0, 1] [Gl]. If E

is infinite-dimensional and every function in E has a derivative at every point

of (0, 1], then E must contain an isomorphic copy of c0 [Gl]; in fact, E
must be isomorphic to a subspace of Co . Moreover, if we want to embed lx in

£P([0, 1]), we will always find a function in the image of the embedding which

is nondifferentiable at every point of a perfect subset of [0, 1] [PT]. Our aim
is to prove that nowhere differentiability imposes no restriction for embedding
any separable Banach space.

Weierstrass was the first one to give an example of a continuous nowhere

differentiable function [W]. Actually, almost all functions in W([0, 1]), in the

sense of Baire's category, are nowhere differentiable, as was proved by Banach

[Bl]. In [G2] an infinite-dimensional subspace of such functions (of course,
but the zero function) is constructed using trigonometric sums. In [FGK] the

authors use Van der Waerden's functions for giving such a closed subspace of

^([0, 1]) isomorphic to lx.
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We are going to improve these two last results: we will prove that every

separable Banach space can be isometrically embedded in ^([0, 1]) using only

the zero function and nowhere differentiable functions. Let A be the Cantor set

( A = {0, 1}N ); it is well known that every separable Banach space is isometric
to a subspace of ^(A), so we only have to consider this space to obtain the
announced result for every separable space. This case will be stated in the

following theorem; we devote the rest of the paper to its proof.

Theorem 1. There exist a closed subset K of[0, I], homeomorphic to the Cantor

set A, and a linear operator S: &ÍK) —> ̂([0, 1]) such that, for every f £

&ÍK) \ {0} , we have:

(i)   Sf(t) = f(t) for every t £ K ; that is, Sf is a continuous extension of

f to the whole interval.

(ii)   \\SfWoo = ll/IU. S is an isometry.
(iii)  Sf is nowhere differentiable in [0, 1].

In order to prove this theorem, after giving the description of K, we will

construct a first operator T: ^(K) —> %?([0, 1]) which satisfies (i) and (ii) in

the theorem, but such that, for every / in ^(K), Tf behaves well, that is, we

can control both the infinity norm in certain subsets, and certain increments.

The operator S will be a perturbation of T.

2. Description of K and T

Let (mn)„>o be an increasing sequence of natural numbers such that «in = 1

and that, for every «=1,2,3,...  , we have

m m 10 • 2"+2
( 1 ) ——  is an integer divisible by 4,      —— > ——-;— .

m„_i w„_i 1/6

This implies that, for every n > 1 , we have

fZ¡   2Km„

For every « = 0,1,2,... we will choose 2" pairwise disjoint closed inter-

vals {Inj}JL\ in [0, 1] such that, if I„j = [anj, b„j], then

(3) m„a„j is an integer divisible by 4, and b„j = a„j-\-.
mn

We will also require that

I„+i,2j-\ U In+i,2j c the interior of InJ ,

« = 0,1,2,...,    7 = 1,2,... ,2".

In this situation, it is clear that, if

íi = A,iU/(,l2u...u/ll,¿.,

then K = Ç\n>x K„ is homeomorphic to the Cantor set A.

Let us define the intervals I„j. There is no other possible selection for the
case « = 0, 70, i must be [0, 1]. Suppose that for certain « we have defined

I„j.  Divide this interval into five intervals of equal length  l/5m„ ; we will
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choose the interval /n+1,27-1  inside the second one, and In+\,ij inside the

fourth one, this will assure us that

1 1
<ln+\,2j-\-anJ > -r— ,       ûn+\,2j - bn+l,2j-\ >5mn'    "n+l^    "n+'^''-5mn'

and b„j -bn+Xi2j > j—.

In order to see that we can make this choice with the extremes of the intervals

still satisfying (3), take into account that in any of the five subintervals into

which we have divided Inj there are at least mn+x/5m„ > 5 consecutive points

of the form x/mn+x with x an integer, and we can take some x divisible by

4 such that x/mn+x and (x + l)/mn+x belong to the same subinterval. This

completes the construction of K.

Now we are going to see that we can extend every continuous function on

K io a continuous function on [0, 1] controlling certain increments and the

infinity norm out of Kn . This extension will be a linear operator; actually we

are going to prove the following

Lemma 2. There exists a linear operator T: W(K) —> W([0, 1]) satisfying, for

every f £ &(K) :

(a) Tf(t) = f(t) for every t £ K (Tf is an extension of f ).

(b) \Tf(t)\ < (1 - 2-»)||/||00  for every t i Kn .
(c) For every k = 0, 1, 2, ... , mn - 1 we have

N£)-^)M$
Properties (a) and (b) imply that T is an isometry.

Proof of Lemma 2. For every « >0 and every j pick a point xnj in InjC\K.

Let / be in W(K). We define Tf(t) = f(t) for every t in K; this satisfies
(a). For every « > 0 and every j, we define

Tf(an,j) = TfibnJ) = (1 -2-")f(xnJ).

Extend Tf affinely to the interior of every interval in which is not defined.

Tf is a continuous function on [0, 1] : every point outside K has a neigh-

bourhood where Tf is piecewise affine and continuous; for the continuity of

Tf in K it is enough to remark that the oscillation of Tf in each I„j is less

than the oscillation of / in Knl„j plus 2~"||/||oo • It is easy to see that T

is a linear operator.

Take n > 1 and t £ Kn_x x K„. Then there will exist a ;" such that t

belongs to one of the three intervals

(5) [On-ij, &n,2j-i], [bn,2j-i,a„t2j],  or [bn,2j-, bn-X j].

Since Tf is affine in each one of these intervals, \Tf(t)\ is bounded by the
maximum of | Tf\ on the extremes, which is, by the construction of Tf, less

than or equal to (1 - 2~")||/||00 , proving (b).
In order to prove (c), remark that if 7 is one of the intervals in (5), and

x, y £ I, we have by (4),

(6) \Tf(x) - Tf(y)\ < °SCilla,ti0n °f J{ inI\x-y\< -^^\x - y\.
w     '  JK '       'wi- length of 7 '        '     l/5w„_, '
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If k/mn is one of the points a„j, then (/c + l)/m„ = bnj and Tfia„j) =

Tf(bnj) by the construction of Tf, so we have (c); if not, the interval

ik/mn , ik+ l)/mn) does not meet K„ and we can use (6) to obtain, for certain

v <n,

l^)-M^)N'«—¿^w-
This inequality, using (1), implies (c).

3. Proof of Theorem 1

To prove the theorem we are going to define S as a perturbation of the

operator T in Lemma 2. We will need the following continuous function g

defined on the real line: g has period 4 and its values on [0, 4] are given by

0, if f € [0', 1],

r-1, iff 6 [1,2],

1, if re [2, 3],

4-t, ifre[3,4].

It is easy to see that g(x) = 0 for every integer x divisible by 4, that

(7) \gix) - g(x + 2)| = 1     for every integer x,

and that

(8) \g(x)-giy)\<\x-y\    for every x, y £ R.

Proof of Theorem 1. Take a dense sequence (s„) in K and, for every t £ [0, 1]

and every / £ ^iK), define

Sf(t) = Tf(t) + f^^-g(mnt).
n=\

It is obvious that S: ^(K) -> W([0, 1]) is a bounded linear operator. We are

going to see that S satisfies the statements of Theorem 1.

In order to check (i) and (ii), note that if t £ Inj - [anj, bnj], then, by

(3), g(mnt) = 0, thanks to the definition of g on [0,1]. So, if t £ K„,
g(mnt) — 0. This and (a) in Lemma 2 prove (i). This also allows us to prove

(ii), since, if t £ Kn-X \Kn , we have

i/=l v=n v=n

and by (b) in Lemma 2, (ii) follows.
To finish the proof, suppose that / e ^(K) \ {0} , and let Df be the infinite

subset of integers

Df = {n eN:\f(sn)\> (1 - l/6)||riloo}-

s(0 =

We will prove the following
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Claim. If n £ Df and k £ {0, 1,2, ... , mn - 2}, we have

k \     c,M + 2\i      1/2\*fts)-"m\i 2«+i

(iii) follows from the claim: were Sf differentiable at xo, there would exist
a constant M such that

\Sf(x) - Sf(x0)\ < M\x - x0\ , for every x £ [0, 1].

So, if a < xo < b, we would also have \Sf(a) - Sf(b)\ < M(b - a). This
would be a contradiction with the claim, since we can choose a = k/mn and

b = (k + 2)/mn for a suitable k, and the sequence m„/2n+2 tends to infinity

thanks to (1).

Proof of the claim. Since «î///«„ is an integer divisible by 4, for every I > n ,
we have

k \        /    k + 2^
—   = g[mi-
mn)       V      mn

By (c) in Lemma 2, we have

(9) j(W/±Ww*±2)=0.
v    m„)       \      m„ /

"») M¿)-^)l^»~
From (8) and (2) we obtain

E 1/(^)11   /      k \       i     A: + 2\i

(id -1    n x

s 2^2"+» mnUllo°- 2"+'
i^=i

From (7), (9), (10), (11) and the definition of Df, we get

k\     „r/k + 2>
\sf(-)-sf(^)\I     \m„/ \ mn I\

^\f(Sn)\\g(k)-g(k + 2)\      1/6 J/6 1/2
- 2"+1 2"+' 2"+1 2"+1

as claimed.
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