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Abstract. Suppose (pn)n≥0 is a non-increasing sequence of non-negative

numbers with p0 = 1, Pn =
∑n

j=0
pj , n = 0, 1 . . . , and A = A(pn) = (ank)

is the lower triangular matrix defined by ank = pn−k/Pn, 0 ≤ k ≤ n, and
ank = 0, n < k. We show that the operator norm of A as a linear operator
on `p is no greater than p/(p− 1), for 1 < p <∞; this generalizes, yet again,
Hardy’s inequality for sequences, and simplifies and improves, in this special
case, more generally applicable results of D. Borwein, Cass, and Kratz.

When the pn tend to a positive limit, the operator norm of A on `p is
exactly p/(p − 1). We also give some cases when the operator norm of A on
`p is less than p/(p− 1).

1. Introduction

Hardy’s inequality for sequences [8, Theorem 326] asserts that for non-negative
numbers a0, a1, . . . and 1 < p <∞,

∞∑
n=0

1

(n+ 1)p

(
n∑
k=0

ak

)p
≤
(

p

p− 1

)p ∞∑
k=0

apk,

and that (
p

p− 1
)p cannot be replaced here by any smaller number. Another way of

saying the same thing is to say that the Cesaro matrix

C = (cnk)n,k≥0

defined by cnk = (n+1)−1, 0 ≤ k ≤ n, and cnk = 0, k > n, determines a continuous
linear map

x = (xk)→ Cx = (
∑
k

cnkxk)n = (
1

n+ 1

n∑
k=0

xk)n

from `p into `p, 1 < p <∞, with operator norm
p

p− 1
.

One area of inquiry inspired by Hardy’s inequality focuses on the Nörlund matri-
ces. To obtain one of these, take a sequence (pn)n≥0 of non-negative numbers, with
p0 > 0, set Pn =

∑n
k=0 pk, n ≥ 0, and define A = A(pn) = (ank) by ank = pn−k/Pn,

0 ≤ k ≤ n, and ank = 0, k > n. Notice that A(pn) = A(cpn) for any c > 0, so
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we may as well assume that p0 = 1. When all the pn are 1, A(pn) is the Cesaro
matrix.

It is known (see [1]) that A(pn) defines a continuous linear map from `p to `p,
1 < p <∞, when (pn) is bounded, and quite a lot is known about the operator norm
of A(pn); see [1], [2], [3], and [4]. (Incidentally, A(pn) always defines a continuous
linear map from `∞ to `∞ with operator norm 1, because the entries of A are
non-negative and its row sums are all 1.) These results, of D. Borwein, F. P. Cass,
A. Jakimovski and W. Kratz, are a bit complicated, so we omit their statements.
They are usually superior to the results we will give, in that they apply in greater
generality, with few restrictions on (pn). The upper estimate in our Theorem 1 is
slightly better than their more general upper estimates, and is a great deal simpler.
We do not know if our lower estimate is always, sometimes, or never better than
that in [4], but it is much simpler. Our Theorem 2 is just a special case of Theorem 2
in [3], and our proof is no different. The purpose of Theorem 2 in this paper is to
provide an alternative result with which to compare Theorem 1.

2. Results

Theorem 1. Suppose that (pn)n≥0 is a non-negative, non-increasing sequence of
numbers, with p0 = 1. Then the operator norm of A(pn) on `p is no greater than
p/(p − 1), and no less than max(1, αp/(p − 1)), where α = lim inf

n→∞
npn/Pn, for

1 < p <∞.

Corollary. If the pn of Theorem 1 tend to a positive limit, then the operator norm
of A(pn) is p/(p− 1), 1 < p <∞.

Theorem 2. Suppose p0 = 1, p1, . . . are non-negative. The operator norm of
A(pn) on `p is no greater than (

∑∞
n=0 pn/Pn)1/p, for 1 ≤ p <∞.

3. Proofs

We shall need a version of a lemma of Davies and Petersen [5], due to Németh
[9].

Lemma 1 ([9, Lemma 4]). For q > 1, zk ≥ 0, and k ≤ N ,(
N∑
n=k

zn

)q
≤ q

N∑
n=k

zn

 N∑
j=n

zj

q−1

.

(Here, N may be ∞.)
Also, we need a well-known result used implicitly in [8] in the proof of Hardy’s

inequality. We omit the proof.

Lemma 2. If
∑
an and

∑
bn are series with positive terms,

∑
an is divergent,

and bn/an → 1 as n→∞, then
∑N

bn/
∑N

an → 1 as N →∞.

Proof of Theorem 1. Suppose 1 < p < ∞. Let A = A(pn) and q = p/(p − 1). We
shall prove that the operator norm of A on `p is no greater than q by showing that
the operator norm of AT on `q is no greater than q. Suppose x = (xn) ∈ `q is a
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non-negative sequence. Using conventional notation,

‖ATx‖qq =
∞∑
k=0

( ∞∑
n=k

pn−k
Pn

xn

)q

≤ q
∞∑
k=0

∞∑
n=k

pn−k
Pn

xn

 ∞∑
j=n

pj−k
Pj

xj

q−1

[by Lemma 1]

≤ q
∞∑
k=0

∞∑
n=k

pn−k
Pn

xn

 ∞∑
j=n

pj−n
Pj

xj

q−1

[since the pj are non-increasing]

= q
∞∑
n=0

(
1

Pn

n∑
k=0

pn−k

)
xn

 ∞∑
j=n

pj−n
Pj

xj

q−1

= q
∞∑
n=0

 ∞∑
j=n

pj−n
Pj

xj

q−1

xn

≤ q

 ∞∑
n=0

 ∞∑
j=n

pj−n
Pj

xj

q
1
p ( ∞∑

n=0

xqn

) 1
q

= q‖ATx‖
q
p
q ‖x‖q.

From this, ‖ATx‖q ≤ q‖x‖q follows as usual.
The proof of the lower estimate of the operator norm of A will be a modification

of the proof in [8] that p/(p− 1) is the best possible constant in Hardy’s inequality.

Fix δ ∈ (0, 1), and suppose N ≥ 1 is sufficiently large so that
pn
Pn
≥ 1− δ

n
α for

all n ≥ N . Then
pn−k
Pn

≥ 1− δ
n

α for n ≥ N and 0 ≤ k ≤ n, because the pj are

non-increasing. Suppose M > N and define x = (xn) by xn = n−1/p, N ≤ n ≤M ,
and xn = 0 for other values of n. We have that

‖Ax‖pp ≥
M∑
n=N

(
1

Pn

n∑
k=N

pn−kxk

)p

≥ αp(1− δ)p
M∑
n=N

(
1

n

n∑
k=N

k−1/p

)p

≥ αp(1− δ)p
M∑
n=N

(
1

n

∫ n

N

x−1/p dx

)p

=

(
p

p− 1

)p
αp(1− δ)p

M∑
n=N

1

np

(
n1−1/p −N1−1/p

)p
=

(
p

p− 1

)p
αp(1− δ)pρM

M∑
n=N

1/n

=

(
p

p− 1

)p
αp(1− δ)pρM‖x‖pp,

where ρM → 1 as M →∞, by Lemma 2.
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It follows that the operator norm of A is no less than (1 − δ)αp/(p − 1), and
since δ was arbitrary, the operator norm of A is no less than αp/(p− 1). Since the
first column of A, the image of the unit coordinate sequence e0 = (1, 0, 0, . . . ), has
`p norm ≥ 1, it follows that the operator norm of A is also no less than 1.

Proof of the corollary. It is easy to see that if (pn) tends to a positive limit, then
npn/Pn → 1 as n→∞.

Proof of Theorem 2. As mentioned above, Theorem 2 here is just a special case of
Theorem 2 of [3] (take the bn there to be all 1); we present the straightforward
proof, adapted from [3], for the reader’s convenience.

Suppose x = (xn) ∈ `p and xn ≥ 0, n = 0, 1, 2, . . . . Let q = p/(p− 1). We have

‖Ax‖pp =
∞∑
n=0

(
n∑
k=0

pn−k
Pn

xk)p

≤
∞∑
n=0

( n∑
k=0

pn−k
Pn

)1/q( n∑
k=0

pn−k
Pn

xpk

)1/p
p

[by an application of Hölder’s inequality]

=
∞∑
n=0

n∑
k=0

pn−k
Pn

xpk [since
n∑
k=0

pn−k
Pn

= 1]

=
∞∑
k=0

( ∞∑
n=k

pn−k
Pn

)
xpk =

∞∑
k=0

( ∞∑
n=0

pn
Pn+k

)
xpk

≤
( ∞∑
n=0

pn/Pn

) ∞∑
k=0

xpk =

( ∞∑
n=0

pn/Pn

)
‖x‖pp.

4. Comments

Regarding Theorem 2, it turns out that
∑
pn/Pn < ∞ only if (and, obviously,

if)
∑
pn <∞; see Theorem 49, p. 38 of [6]. (The referee tells us that this result is

originally due to Dini; we did not succeed in tracking down its origin.)
The original purpose of Theorem 2 in this paper was to show that, under the

hypothesis of Theorem 1, the operator norm of A(pn) may indeed be less than
q = p/(p− 1). For instance, when pn = rn, for some r ∈ (0, 1), we have∑

pn/Pn = (1− r)
∑ rn

1− rn+1
≤
∑

rn =
1

1− r < qp

whenever r < 1− (1
q )p.

However, the referee has directed our attention to a whole continuum of de-
creasing sequences (pn) for which the operator norm of A(pn) is strictly between
the bounds of Theorem 1, for every p ∈ (1,∞). Suppose 0 < r < 1 and set
pn =

(
n+r−1
n

)
. As noted in [1], Hardy in [7] has proven that A(pn) has operator

norm
Γ(r + 1)Γ(1

q )

Γ(r + 1
q )

= G(r, q) on `p, for p > 1. It is a salutary exercise, which we

omit here, to see that max(1, rq) < G(r, q) < q for 0 < r < 1 and q > 1, and that
α = limnpn/Pn = r in this case. This establishes that the operator norm of A(pn)
on `p is strictly within the bounds of Theorem 1.
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Borwein shows in [1], Theorem 1, that G(α, q) is a lower bound of the operator
norm of A(pn) on `p, with α = limnpn/Pn, for p > 1 and any positive sequence
(pn), not necessarily monotone, provided (ncpn) is eventually monotonic for each
c 6= 1 − α. By the remarks above, it follows that when (pn) is non-increasing,
npn/Pn → α, and (ncpn) is eventually monotonic for all c 6= 1 − α (i.e., when
we are in the overlap between Borwein’s hypotheses and ours), Borwein’s lower
bound is better than ours, provided 0 < α < 1. In particular, this applies when
pn = (n + 1)−r, 0 < r < 1. When pn = (n + 1)−r, r ≥ 1, α = 0 and both lower
bounds are 1, for all p > 1. It might be instructive to see if the upper bounds here
and in [1] can be much improved in the cases pn = (n+ 1)−r, r > 0.

As must be clear from previous remarks, we are greatly indebted to the referee for
directing our attention to the right places, as well as for suggestions that improved
the results of the first version of this paper.
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