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REPRESENTATIONS AT FIXED POINTS OF SMOOTH
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Abstract. Let G be a compact connected Lie group acting smoothly on a
connected closed manifold M with nonempty fixed point set F . In this paper,
we study the relation between the cohomology of M or MG and the equivalent
representations of G at fixed points.

1. Introduction

Throughout this paper, we assume that Q is the rational field and G a compact
connected Lie group acting smoothly on a connected closed manifold M with fixed
point set F . Let MG be the Borel construction associated with the G action on
M . Let T (M) denote the tangent bundle of M and Tx(M) the tangent space at
x ∈ M . For each x ∈ F , the induced G linear action on the tangent space Tx(M)
of M at x ∈ F defines a real representation of G, which is denoted by Θx. Let
RO(G) and RU(G) be the real and complex representation rings of G respectively.
There is a complexification map RO(G)→ RU(G), which is injective for a compact
connected Lie group G. Denote the complexification of Θx also by Θx. Recall that
M is totally nonhomologous to zero in MG with coefficient in Q if the fibre inclusion
j : M →MG induces a surjection in cohomology H∗(–;Q) ([5, p. 373]).

In this paper, we prove

Theorem 1.1. Let G be a compact connected Lie group acting smoothly on a con-
nected closed manifold M with nonempty fixed point set F . Then Θx = Θy for any
x, y ∈ F , if one of the following conditions is satisfied :

(i) K̃(M)⊗Q is trivial, or
(ii) M is totally nonhomologous to zero in MG with coefficient in Q, and

H∗(M ;Q) is algebraically generated by some elements {xi} of odd degrees.

Note that the Chern character ch: K(M)⊗Q→
⊕

i≥0H
2i(M ;Q) is an isomor-

phism ([7]). Thus condition (i) in the above theorem is equivalent to the condition
that H2i(M ;Z) is finite for all 0 < 2i ≤ dim(M).

Now let T = (S1)r be a fixed maximal torus of a compact connected Lie group
G. It is known that two representations of G are equivalent iff their restrictions on
T are equivalent ([6, Corollary 1.8.3]). Thus we reduce the problem of equivalent
representations of G to the case when G is a torus. It is well known that

RU((S1)r) = Z{t1, t2, . . . , tr},
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the finite Laurent series ring in ti, where ti is the 1-dimensional complex represen-
tation of the ith copy S1 of (S1)r, given by

ti(z)(w) = zw, z ∈ S1, w ∈ C.
Let I((S1)r) be the ideal of RU((S1)r) generated by 1− t1, 1− t2, . . . , 1− tr. In

[4, Theorem VI], Bredon proved

Theorem. Suppose the compact connected Lie group G acts smoothly on a con-
nected manifold M with nonempty fixed point set F . Assume that

π2i(M) is finite for all

{
1 ≤ i ≤ k − 1 for general G,

2 ≤ i ≤ k − 1 for semi-simple G.

Then Θx −Θy is in the ideal (I(T ))k of RU(T ) for any fixed points x, y.

Note that the manifold M in Bredon’s theorem is not necessarily closed. But
we require M to be closed in our theorems, since we will use the fact that the
K-theory is representable only in the category of finite CW-complexes, that is,

K̃(X) ≈ K̃0(X) if X is a finite CW-complex, where K̃∗(–) is the reduced cohomol-
ogy represented by the well-known spectrum K ([9, pp. 216, 210]). By using the
cohomology H∗(M ;Z), we will prove the following

Theorem 1.2. Let G be a compact connected Lie group acting smoothly on a con-
nected closed manifold M with nonempty fixed point set F . Then Θx−Θy ∈ (I(T ))n,
if

H2i(M ;Z) is finite for all 1 ≤ i ≤ n− 1.

Moreover, if T (M) ⊗ C is stably trivial in K(M (2n)) ⊗ Q, then Θx − Θy is in

(I(T ))n+1, where M (2n), which contains at least one fixed point, is the (2n)-skeleton
of a G-CW-structure of M .

Note that, as a CW-complex, the (2n)-G-CW-skeleton M (2n) might have cells of
dimensions > 2n, since G is connected. Actually by [8], the G-space M (k)/M (k−1)

is a wedge of based G-spheres

G/H × Sk/(G/H × ∗)
which is (k − 1)-connected. Here H is some closed isotropy subgroup of G.

As a specific example of applications of these theorems, we prove

Corollary 1.3. Suppose G acts smoothly on a connected closed manifold M with
nonempty fixed point set F . Suppose M is a rational homology sphere of dimension
n. If n is odd, then Θx = Θy for x, y ∈ F . If n is even, then there are at most two
different representations Θx, x ∈ F , up to equivalency.

2. Proofs of the theorems

Recall, if X is a G-space, then the equivariant complex K-theory KG(X) is
formed from the free abelian group on the equivalence classes of G-complex vector
bundles over X modulo the subgroup generated by [ξ ⊕ η] − [ξ] − [η]. Its ring
structure is induced by the tensor product of G-complex vector bundles. For a
single point ∗, KG(∗) is just the representation ring RU(G).

Let p0 : EG → BG be the universal principal G-bundle. Let B
(r)
G be the r-

skeleton of BG, and E
(r)
G the inverse image p−1

0 (B
(r)
G ). For G = S1, EG can be taken
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to be the infinite sphere S∞ =
⋃
S2m+1, and BG the infinite complex projective

space CP∞. Therefore we have B
(2k)
G = CP (k) = B

(2k+1)
G , and E

(2k)
G = E

(2k+1)
G =

S2k+1, when G = S1. Note that any G vector bundle over EG (resp. E
(r)
G ) induces

a vector bundle over BG (resp. B
(r)
G ). By [1, Proposition 1.6.1], this gives an

isomorphism KG(EG)→ K(BG) (resp. KG(E
(r)
G )→ K(B

(r)
G )). Let

α(r) : RU(G)→ KG(E
(r)
G ) (≈ K(B

(r)
G ))

be the homomorphism induced by the projection E
(r)
G → ∗. By [1, Corollary 2.7.6,

p. 105], if G = S1, then the sequence

0→ RU(G)
ϕ−→ RU(G)

α(2n−1)

−−−−−→ KG(E
(2n−1)
G )→ 0(1)

is exact. Here the injectivity of ϕ follows from the fact that ϕ is the multiplication
by (1− t)n when G = S1 ([5, p. 357]).

Let G act smoothly on M . Define the G action on EG×M or E
(2m+1)
G ×M to be

the diagonal action. Then MG = (EG ×M)/G. Let Rm(G) = (E
(2m+1)
G ×M)/G.

Note that the G action on M induces a G structure on the tangent bundle T (M),
and the projection

EG ×M →M (or E
(2m+1)
G ×M →M)

is G-equivariant. Then the G vector bundle T (M) induces a G vector bundle over

EG ×M (or E
(2m+1)
G ×M), pulling back by the above projection, thus defines a

vector bundle T (M) over MG (or a vector bundle Tm(M) over Rm(G)), which is
called the tangent bundle along the fibres of the related fibre bundle ([2]). Ob-
viously, i∗(T (M)) = Tm(M), where i : Rm(G) → MG is the inclusion. Also for
x ∈ F , there exists a section ρx for the projection p : Rm(M)→ CP (m). The point

is, if we regard α(2n−1)(Θx) as an element of K(B
(2n−1)
G ) (≈ KG(E

(2n−1)
G )), then

α(2n−1)(Θx) = ρ∗x(Tm(M)⊗ C),(2)

where ρ∗x(Tm(M)⊗ C) is the bundle induced by ρx. The bundle Tm(M) ⊗ C will
provide us a global view for the local complex representations Θx. The following
theorem is similar to [4, Theorem V].

Theorem 2.1. Let G = S1 act smoothly on a connected closed manifold M with
nonempty fixed point set F . If H2i(M ;Z) is finite for all 1 ≤ i ≤ n− 1, then

α(2n−1)(Θx −Θy) = 0

in K(CP (n− 1)), and Θx −Θy is divisible by (1− t)n. Moreover, if T (M)⊗ C is

stably trivial over K(M (2n))⊗Q, then Θx−Θy is divisible by (1−t)n+1. Here M (2n),
which contains at least one fixed point, is the (2n)-skeleton of a G-CW-structure of
M .

Let K and H be the ring spectra corresponding to the nonconnective complex
K-theory and the ordinary integral homology respectively. For a spectrum E, let
E(Q) be the localization of E at the rational field Q in the Bousfield sense ([3]).
Then E(Q) is a spectrum with πk(E(Q)) ≈ πk(E) ⊗ Q. In particular, for the ring
spectrum H,

H∗(Q)(Y ) ≈ H∗(Y ;Q) ≈ H∗(Y ;Z)⊗Q,
where Y is a CW-complex. In general, we have
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Lemma 2.2. Let E be a spectrum and Y a finite CW-complex. Then

E∗(Q)(Y ) ≈ E∗(Y )⊗Q.

Proof. Let Y (n) be the n-skeleton of Y . Since the cohomology represented by E
satisfies the wedge axiom ([9, p. 146]) and the functor

⊗
Q commutes with finite

products of abelian groups, the lemma is true if Y is a finite wedge of spheres {Smα }
of the same dimension m. Note that both E∗Q(Y ) and E∗(Y )⊗Q are vector spaces
over Q. This means we can do the induction from lower-dimensional skeletons of
Y to the higher skeletons, by using the exact sequences associated with E∗Q(–) and

E∗(–)⊗Q for the pair (Y (n), Y (n−1)). Then the lemma follows.

Proof of Theorem 2.1. The proof here is similar to that of [11, Theorem 1.1]. Con-

sider the Leray-Serre spectral sequences {Ep,qr (i); d
(i)
r } with local coefficients (which

are actually constant) given by H∗(Q)(M) and H∗(Q)(pt), i = 1, 2, converging to

H∗(Q)(R
k(M)) and H∗(Q)(CP (k)) respectively ([9, p. 350] or [10, p. 630]), with

Ep,q2 (1) = Hp(CP (k);Hq
(Q)(M)),

Ep,q2 (2) = Hp(CP (k);Hq
(Q)(pt)).

Also consider the morphism

p∗ : Ep,qr (2)→ Ep,qr (1)

of related spectral sequences induced by the projection p : Rk(M)→ CP (k). Since

Hi
(Q)(M) = 0 if i is even and 2 ≤ i ≤ 2n− 2,

we see at stage 2 that the morphism p∗ is an isomorphism if p + q is even and
0 ≤ p+ q ≤ 2n− 1. Now the spectral sequence Ep,qr (2) collapses and all nontrivial
elements on stage 2 survive to infinity. Thus the images of p∗ are all permanent
cocycles. Since the projection p has a section ρx, the nontrivial images of p∗ also
survive to infinity when 0 ≤ p+q ≤ 2n−2. Therefore the morphism p∗ : Ep,qr (2)→
Ep,qr (1) is an isomorphism for all r ≥ 2 if p + q is even and 0 ≤ p + q ≤ 2n − 1,
which induces an isomorphism

p∗ : Hi
(Q)(CP (k))→ Hi

(Q)(R
k(M))

for i even and 0 ≤ i ≤ 2n− 1.
Next we consider the Atiyah-Hirzebruch-Whitehead spectral sequences {Ep,qr (i),

d
(i)
r } ([9, p. 340] or [10, p. 630]), i = 3, 4, built up from the CW-skeleton filtrations of
Rk(M) and CP (k), and converging toK∗(Q)(R

k(M)) andK∗(Q)(CP (k)) respectively,

with

Ep,q2 (3) = Hp(Rk(M);Kq
(Q)(pt)) = Hp

(Q)(R
k(M);Kq(pt)),

Ep,q2 (4) = Hp(CP (k);Kq
(Q)(pt)) = Hp

(Q)(CP (k);Kq(pt)).

Let

p∗ : Ep,qr (4)→ Ep,qr (3)

be the morphism of related spectral sequences induced by the projection p. Then,
at stage 2, p∗ is an isomorphism if p is even and 0 ≤ p ≤ 2n− 2. Since the spectral

sequence {Ep,qr (4), d
(4)
r } collapses and the projection p has a section ρx, we see that
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p∗ : Ep,qr (4)→ Ep,qr (3) is an isomorphism for r ≥ 2 if p is even and 0 ≤ p ≤ 2n− 2.
Thus

p∗ : K0
(Q)(CP (k))→ K0

(Q)(R
k(M))

is an isomorphism up to the elements of filtrations > 2n− 1, that is,

p∗ : K0
(Q)(CP (k))/F2n → K0

(Q)(R
k(M))/G2n

is an isomorphism, where F2n, G2n are subgroups of elements of filtrations > 2n−
1 of related groups. Let η : K → K(Q) be the Bousfield localization and η∗ :

K∗(X) → K∗(Q)(X) the induced homomorphism. Note that K0(X) ≈ K(X) if X

is a finite CW-complex. Thus we may regard η∗ to be defined on K(X). Choose
k > 2n+ 1 and assume in K0

(Q)(R
k(M))

η∗(T k(M)⊗ C) = p∗(ξ) + a,

where a ∈ K0
(Q)(R

k(M)) is an element of filtration> (2n−1), and ξ ∈ K0
(Q)(CP (k)).

Let j : B
(2n−1)
G → CP (k) be the inclusion. Consider the homomorphism

α(2n−1) : RU(S1)→ K(B
(2n−1)
G ). Since by (2), α(2n−1)(Θx) = ρ∗x(T k(M)⊗C), we

have

η∗α(2n−1)(Θx) = η∗j∗ρ∗x(T k(M)⊗ C) = j∗ρ∗xη
∗(T k(M)⊗ C)

= j∗ρ∗x(p
∗(ξ) + a) = j∗(ξ),

where the last equality is due to the fact that the element a is of filtration > (2n−1),
thus j∗ρ∗x(a) = 0. Consequently, η∗α(2n−1)(Θx) is independent of the choices of
x ∈ F , and η∗α(2n−1)(Θx −Θy) = 0 for any x, y ∈ F .

Note that B
(2n−1)
G is CP (n−1), since G = S1. By Lemma 2.2 and the structure

of K0(CP (n−1)), we see that η∗ : K0(CP (n−1))→ K0
(Q)(CP (n−1)) is injective.

Thus α(2n−1)(Θx −Θy) = 0 for any x, y ∈ F . Therefore

Θx −Θy ∈ ker(α(2n−1)) = I(S1)n,

which implies that Θx − Θy is divisible by (1 − t)n. This completes the proof for
the first statement.

We now consider the last statement. First, we have the exact sequence

K̃0
(Q)(M

(2n))
f∗←− K̃0

(Q)(R
k(M (2n)))

g∗←− K0
(Q)(R

k(M (2n)),M (2n)),

where f : M (2n) → Rk(M (2n)) and g : Rk(M (2n)) → (Rk(M (2n)),M (2n)) are the

inclusion and the projection respectively. Let λ−m be the class in K̃0
(Q)(R

k(M (2n)))

which corresponds to i∗η∗(T k(M) ⊗ C), where i : Rk(M (2n)) → Rk(M) is the
inclusion and m is the complex dimension of T k(M)⊗ C. Then f∗(λ−m) is zero
by the assumed condition. Thus by the exactness,

λ−m = g∗(ζ)

for some ζ ∈ K0
(Q)(R

k(M (2n)),M (2n)).

Similar to what we did for the first statement, we consider the Leray-Serre spec-

tral sequences {Ep,qr (i); d
(i)
r } with coefficients given by H∗(Q)(M

(2n)) and H∗(Q)(pt),
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converging to H∗(Q)(R
k(M2n),M (2n)) and H̃∗(Q)(CP (k)) for i = 5, 6 respectively,

with

Ep,q2 (5) = H̃p(CP (k);Hq
(Q)(M

(2n))),

Ep,q2 (6) = H̃p(CP (k);Hq
(Q)(pt)).

Let (p′1)
∗ : Ep,qr (6)→ Ep,qr (5) be the morphism of related spectral sequences induced

by p′1, where p′1 : (Rk(M (2n)),M (2n)) → (CP (k), ∗) is the projection induced by
the bundle projection p1 : Rk(M (2n))→ CP (k). Since M (2n) contains at least one
fixed point x, p′1 has a section ρx. By the fact that

Hi
(Q)(M

(2n)) = 0 if i is even and 2 ≤ i ≤ 2n− 2,

at stage 2, we see (p′1)
∗ is an isomorphism if p + q is even and 0 ≤ p + q ≤ 2n.

Now the spectral sequence Ep,qr (6) collapses and all nontrivial elements on stage
2 survive to infinity. Thus the images of (p′1)

∗ are permanent cocycles, and the
nontrivial images of (p′1)

∗ survive to infinity, for p′1 has a section ρx. This implies
that (p′1)

∗ : Ep,qr (6)→ Ep,qr (5) is an isomorphism for p+ q even and 0 ≤ p+ q ≤ 2n,
and r ≥ 2. Thus

(p′1)
∗ : H̃i

(Q)(CP (k))→ Hi
(Q)(R

k(M (2n)),M (2n))

are isomorphisms if i is even and 0 ≤ i ≤ 2n.
Next consider the Atiyah-Hirzebruch-Whitehead spectral sequences

{Ep,qr (i), d(i)
r }, i = 7, 8,

built up by the CW-skeleton filtrations of (Rk(M (2n)),M (2n)) and (CP (k), ∗), and

converging to K∗(Q)(R
k(M (2n)),M (2n)) and K̃∗(Q)(CP (k)) respectively, with

Ep,q2 (7) = Hp(Rk(M (2n)),M (2n);Kq
(Q)(pt))

= Hp
(Q)(R

k(N (2n)),M (2n);Kq(pt)),

Ep,q2 (8) = H̃p(CP (k);Kq
(Q)(pt)) = H̃p

(Q)(CP (k);Kq(pt)).

Note that at stage 2, (p′1)
∗ : Ep,q2 (8) → Ep,q2 (7) is an isomorphism if p is even and

0 ≤ p ≤ 2n. Similar to what we did in the first statement for the spectral sequences

{Ep,qr (i); d
(i)
r } with i = 3, 4, we see

(p′1)
∗ : K̃0

(Q)(CP (k))→ K0
(Q)(R

k(M (2n)),M (2n))

is an isomorphism up to filtrations > 2n. Therefore we may assume ζ = (p′1)
∗(c) +

a in K0
(Q)(R

k(M (2n)),M (2n)), where c ∈ K̃0
(Q)(CP (k)), and the element a is of

filtration > 2n. Thus in K̃0
(Q)(R

k(M (2n)))

i∗η∗(T k(M)⊗ C)−m = g∗(p′1)
∗(c) + g∗(a).

Let hx : B
(2n)
G → Rk(M (2n)) be the CW-approximation of the composition

B
(2n)
G

j−→ CP (k)
ρx−→ Rk(M).
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Then

η∗α(2n)(Θx) = η∗j∗ρ∗x(T k(M)⊗ C) = j∗ρ∗xη
∗(T k(M)⊗ C)

= h∗xi
∗η∗(T k(M)⊗ C) = h∗xg

∗(p′1)
∗(c) + h∗xg

∗(a) +m

= h∗xg
∗(p′1)

∗(c) +m = h∗xp
∗
1j
∗
0 (c) +m = j∗j∗0 (c) +m

from the commutative diagram

(Rk(M(2n)), M(2n)) Rk(M(2n)) Rk(M)

(CP(k), *) CP(k)

B

CP(k)

→ →

→ →

i

→1

g

→j0
p1

→ j

→

p

G

p1′

(2n)

where j0 is the ordinary projection CP (k) → (CP (k), ∗). Here the fifth equality
is due to the fact that the element a is of filtration > 2n. The sixth equality
is from the fact p′1g = j0p1. The last equality follows from the fact that ihx is
homotopic to ρxj, thus pihx (= p1hx) is homotopic to pρxj (= j). This shows
η∗α(2n)(Θx) is independent of the choices of x ∈ F and η∗α(2n)(Θx − Θy) = 0

for any x, y ∈ F . Since B
(2n)
G = CP (n) and η∗ : K∗(CP (n)) → K∗(Q)(CP (n)) is

injective, we have α(2n)(Θx − Θy) = 0. The last statement follows from the fact

that ker(α(2n)) = ker(α(2n+1)).

Proof of Theorem 1.2. The proof is similar to that of [4, Theorem VI]. By consid-
ering a fixed maximal torus T of G, we may reduce G to the case when G = (S1)r.
Consider the map S1 → (S1)r given by z → (zn1 , zn2 , . . . , znr), which induces a
homomorphism RU((S1)r) → RU(S1) given by ti → tni , where n1, n2, . . . , nr are
integers. Suppose

Θx −Θy = P (t1, t2, . . . , tr) ∈ RU((S1)r).

Then, by Theorem 2.1, P (tn1 , tn2 , . . . , tnr ) is divisible by (1 − t)n (or (1 − t)n+1

when T (M)⊗ C is stably trivial in K(M (2n))⊗Q) for any integers n1, n2, . . . , nr.
An argument on elementary algebra, as claimed in [4], shows this is equivalent to
P (t1, t2, . . . , tr) ∈ (I((S1)r))n (resp. (I((S1)r))n+1).

Proof of Theorem 1.1. Note that in condition (ii), M is totally nonhomologous to
zero in MG with coefficient in Q implies that M is totally nonhomologous to zero
in MS1 with coefficient in Q for any circle subgroup of G. Then similar to the proof
of Theorem 1.2, we may assume G = S1 for both cases (i) and (ii). By the exact
sequence (1), it suffices to prove α(2k+1)(Θx −Θy) = 0 for all k > 0 and x, y ∈ F .

For (i), we consider the Leray-Serre spectral sequences {Ep,qr (i), d
(i)
r }, i = 9, 10,

with

Ep,q2 (9) = Hp(CP (k),Kq
(Q)(M)),

Ep,q2 (10) = Hp(CP (k),Kq
(Q)(pt)),
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converging to K0
(Q)(R

k(M)) and K0
(Q)(CP (k)) respectively. Note that

Ep,q2 (9) = Hp(CP (k),Kq
(Q)(M)) = Hp(CP (k),Kq(M)⊗Q),

and the morphism p∗ : Ep,qr (10) → Ep,qr (9) is an isomorphism at r = 2 if p + q is

even. With a similar argument as for the spectral sequences {Ep,qr (i), d
(i)
r }, i = 3, 4,

in the proof of Theorem 2.1, we see that

p∗ : K0
(Q)(CP (k))→ K0

(Q)(R
k(M))

is an isomorphism. Thus we may assume

η∗(T k(M)⊗ C) = p∗(ξ),

where ξ ∈ K0
(Q)(CP (k)). Then, similar to the proof of Theorem 2.1,

η∗α(2k+1)(Θx) = ρ∗xη
∗(T k(M)⊗ C) = ρ∗xp

∗(ξ) = ξ ∈ K0
(Q)(CP (k)),

which is independent of the choices of x ∈ F . Therefore α(2k+1)(Θx −Θy) = 0 for
any x, y ∈ F . Thus Θx = Θy by (1).

Consider statement (ii). Since M is totally nonhomologous to zero in MG with
coefficient in Q implies that M is totally nonhomologous to zero in Rk(M) with co-
efficient in Q for any k ≥ 0, we see that H∗(Rk(M);Q) is generated by some {1, ci}
and some products of two or more ci as a module over H∗(CP (k);Q) for any k > 0,
where ci is of odd degree. Consider the homomorphism ρ∗x : H∗(Rk(M);Q) →
H∗(CP (k);Q). Then we have ρ∗x(ci) = 0, since the degree of ci is odd. Thus ρ∗x is
independent of the choices of x ∈ F .

Now let X be a finite CW-complex and

ch : K0
(Q)(X) = K0(X)⊗Q→ H∗∗(X ;Q)

the Chern character, whereH∗∗(X) =
⊕∞

i=0 H
2i(X ;Q). Then ch is an isomorphism

([7]) and we have the following commutative diagram:

K 
(Q)

0
(Rk(M))

K 
(Q)

0
(CPk))

H**(Rk(M)); Q)→

→ →

ch

H**(CP(k); Q)→ch
ò*x ò*x

(3)

Since ρ∗x : H∗∗(Rk(M);Q)→ H∗∗(CP (k);Q) is independent of the choices of x ∈ F ,
the map ρ∗x : K0

(Q)(R
k(M))→ K0

(Q)(CP (k)) is independent of the choices of x ∈ F
by diagram (3). Thus ρ∗x(T k(M)⊗ C) ∈ K0(CP (k)) is independent of the choices
of x ∈ F by the commutative diagram

K 0(Rk(M)) K 0 (Rk(M))

K 0 (CP(k)) K 0 (CP(k))

→

→ →

η*

η*→

ò*x ò*x

(Q)

(Q)

(4)

where the η∗ in the bottom row is injective, and the proof for (ii) follows.
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Proof of Corollary 1.3. If n is odd, then, by using the Atiyah-Hirzebruch-Whitehead

spectral sequence with Ep,q2 = H̃p(M ;Kq
(Q)(pt)) converging to K̃∗(Q)(M), we have

K̃0
(Q)(M) = 0. This means K̃0(M) ⊗ Q = 0 by Lemma 2.2, and Θx = Θy by

Theorem 1.1(i).
Now let n be even. Similar to the proof of Theorem 1.2, we may assume

G = S1. Consider the Leray-Serre spectral sequence {Ep,qr , dr} with Ep,q2 =
Hp(CP∞;Hq

(Q)(M)), converging to H∗(Q)(MG). Obviously, this spectral sequence

collapses. Thus H∗(Q)(MG) is a free H∗(Q)(CP
∞) module with a basis {1, c}. Since

we are working on the coefficient Q, we may require c2 ∈ p∗H∗(Q)(CP
∞). Actually,

if

c2 = p∗(a)c+ p∗(b2),

then we can replace c by c′ = c − 1
2p
∗(a) and see (c′)2 ∈ p∗H∗(Q)(CP

∞). Let

ρ∗x(c) = bx. Then c2 is in the image of p∗ implies (bx)
2 = (by)

2 for x, y ∈ F . Thus
ρ∗x(c) = ρ∗y(c) or −ρ∗y(c).

Now the Leray-Serre spectral sequence associated with Rk(M) collapses, and
H∗(Q)(R

k(M)) is a free H∗(Q)(CP (k)) module with a basis {1, c′}. By the map of

Leray-Serre spectral sequences induced by the inclusion j : Rk(M) → MG, we
may require c′ = j∗(c). Thus by diagrams (3) and (4) again, if ρ∗x(c) = ρ∗y(c) in

H∗(CP∞;Q), then α(2k+1)(Θx − Θy) = 0 for any k ≥ 0. This means Θx = Θy.
Since we have at most two different morphisms

ρ∗x : H∗(MG;Q)→ H∗(CP∞;Q),

there are at most two representations Θx for x ∈ F up to equivalency.
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