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Abstract. When λn > 0, λn ↑ ∞ and

1

2
|a0|+

∞∑
n=1

|an|+ |bn|
λ2
n

<∞,

if
1

2
a0 +

∞∑
n=1

(an cos λnx+ bn sinλnx) = 0 everywhere (−∞,∞),

then
a0 = a1 = b1 = · · · = an = bn = · · · = 0.

More generalized results are given.

1. Introduction

Let {λn}n be a strictly increasing sequence of positive numbers such that

lim
n→∞

λn =∞.

For example, λn = log(n + 1) for n = 1, 2, . . . . In this paper we shall discuss a
uniqueness problem for non-harmonic trigonometric series:

(1)
1

2
a0 +

∞∑
n=1

(an cosλnx+ bn sinλnx).

Many mathematicians have discussed some uniqueness problems for harmonic
trigonometric series (see [1] and [3]).

Zygmund [2] discussed the same problem for the integral case∫ ∞
0

(cs cos sx+ ds sin sx)ds,

where cs and ds are continuous.

Received by the editors March 30, 1994 and, in revised form, November 29, 1994.
1991 Mathematics Subject Classification. Primary 42A63.
Key words and phrases. Uniqueness, trigonometric series.

c©1996 American Mathematical Society

1795



1796 KAORA YONEDA

It is easy to see that the series (1) is zero at x and −x if and only if

1

2
a0 +

∞∑
n=1

an cosλnx = 0;(1-a)

∞∑
n=1

bn sinλnx = 0.(1-b)

Using the same argument as in the proof of Theorem 2 in Section 68 of Chapter
1 of [1] (see p. 190), we can prove that if (1-a) and (1-b) hold, then

lim
h→∞

1

2
a0 +

∞∑
n=1

an cosλnx(
sin λnh

λnh
)2 = 0;(2-a)

lim
h→∞

∞∑
n=1

bn sinλnx(
sinλnh

λnh
)2 = 0.(2-b)

When(1-a) and (1-b) hold, the convergences of the two series

He
m(x) :=

∞∑
n=1

an cosλnx

λ2m
,

Ho
m(x) :=

∞∑
n=1

bn sinλnx

λ2m
n

(m = 1, 2, . . . )

are certified by the following lemma.

Lemma 1. When {θn}n is a strictly decreasing sequence of positive numbers such
that limn→∞ θn = 0, if a series

∑∞
n=0 αn converges, then the series

∑∞
n=0 αnθn

converges.

Proof. Put Rn :=
∑∞
k=n αk for n = 1, 2, . . . . By the Abel transform, we have

∞∑
k=n

αkθk = Rnθn −
N−1∑
k=n

Rk+1(θk − θk+1)−RN+1θN .

Thus,

|
N∑
k=n

αkθk| ≤ |Rnθn|+ sup
n≤k
|Rk+1|(θn + θN ) + |RN+1|θN

and each term in the right-hand side tends to zero when n and N tend to infinity.
Hence the sequence {

∑n
k=1 αkθk}n is a Cauchy sequence. The lemma is proved.�

In this paper, we shall give the following results:

Theorem 2. If

(3)
1

2
a0 +

∞∑
n=1

(an cosλnx+ bn sinλnx) = 0 everywhere (−∞,∞),
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and if for m = 1, 2, . . .

He
m(x) and Ho

m(x) are continuous;(4-a)

lim
x→∞

He
m(x)

x2
= lim
x→∞

Ho
m(x)

x
= 0,(4-b)

then

(5) a0 = a1 = b1 = · · · = an = bn = · · · = 0.

Corollary 3. When

(6)
∞∑
n=1

|an|+ |bn|
λ2
n

<∞,

if (3) holds, then (5) is valid.

Theorem 4. When E is an enumerable set (without loss of generality, we can
assume that E satisfies −x ∈ E if x ∈ E), if

(7)
1

2
an +

∞∑
n=1

(an cosλnx+ bn sinλnx) = 0 everywhere (−∞,∞) except E,

and if

(8) He
1 (x) and Ho

1 are smooth in E

and (4-a) and (4-b) hold for m = 1, 2, . . . , then (5) is valid.

Corollary 5. When

(9)
∞∑
n=1

|an|+ |bn|
λn

<∞,

if (7) holds, then (5) is valid.

2. Proof of Theorem 2

Put

F1(x) :=
1

4
a0x

2 −He
1(x).

Thus we have

1

4h2
{F1(x + 2h)− 2F1(x) + F1(x− 2h)} =

1

2
a0 +

∞∑
n=1

an cosλnx(
sinλnh

λnh
)2

and

1

4h2
{Ho

1 (x+ 2h)− 2Ho
1 (x) +Ho

1 (x− 2h)} =
∞∑
n=1

bn sinλnx(
sin λnh

λnh
)2.
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From (3), the two second symmetric derivatives satisfy

(10) D2F1(x) = D2Ho
1 (x) = 0 everywhere (−∞,∞).

From (4-a) and by Lemma (3.4) in Section 3 of Chapter IX of [3] (see p. 327), F1(x)
and Ho

1 are linear, that is,

F1(x) = A1x+
1

2
B1;(11-a)

Ho
1 (x) = C1x+D1 everywhere (−∞,∞).(11-b)

From (11-a),

A1x =
1

4
a0x

2 − 1

2
B1 −He

1(x),

where the left-hand side is an odd function and the right-hand side is an even
function. Thus, A1 = 0. And from (4-b), a0 = 0. Thus

(12-a)
1

2
B1 +He

1 (x) = 0 everywhere (−∞,∞).

Arguing analogously, for Ho
1 (x), we can prove that C1 = D1 = 0 and

(12-b) Ho
1 = 0 everywhere (−∞,∞).

Let us discuss similarly to the above for non-harmonic trigonometric series, (12-a)
and (12-b). And we can prove that B1 = 0 and for some B2

1

2
B2 +He

2(x) = 0;

Ho
2 (x) = 0 everywhere (−∞,∞).

Continuing this process, we have Bm−1 = 0 and for some Bm

1

2
Bm +He

m(x) = 0;(13-a)

Ho
m(x) = 0 everywhere (−∞,∞).(13-b)

Obviously Bm = 0 for all m; then

(13-a′) He
m(x) = 0 everywhere (−∞,∞).

The conclusion follows if the following lemma is proved.

Lemma 6. Let {θn}n be a sequence satisfying the condition of Lemma 1 and θ1 <
1. If

∑∞
n=1 αn converges and

α0 +
∞∑
n+1

αnθ
m
n = 0 for all m = 1, 2, . . . ,

then α0 = 0.



UNIQUENESS FOR NON-HARMONIC TRIGONOMETRIC SERIES 1799

Proof of Lemma 6. Put Rn =
∑∞
k=n αk for n = 1, 2, . . . . For each ε > 0, there

exists N such that |Rn| < ε for n > N . Since

α0 +
∞∑
n=1

αnθ
m
n = α0 + α1θ

m
1 + · · ·+ αNθ

m
N

−RN+1θ
m
N+1 −

∞∑
N+1

Rk+1(θmk − θmk+1),

|RN+1θ
m
N+1| < ε,

|
∞∑

k=N+1

Rk+1(θmk − θmk+1)| ≤
∞∑

k=N+1

|Rk+1||θmk − θmk+1|

≤ ε
∞∑

k=N+1

θmk − θmk+1 = εθmN+1 < ε

and

lim
m→∞

N∑
k=1

αkθ
m
k = 0,

we have

|α0| = |
∞∑
k=1

αkθ
m
k | ≤ |

N∑
k=1

αkθ
m
k |+ |

∞∑
k=N+1

αkθ
m
k | ≤ |

N∑
k=1

αkθ
m
k |+ 2ε.

Thus

|α0| ≤ lim
m→∞

|
N∑
k=1

αkθ
m
k |+ 2ε = 2ε.

Consequently α0 = 0. Lemma 6 is proved. �

Now put θn = λn+1

λ1
for n = 1, 2, . . . . Thus {θn}n satisfies the condition of

Lemma 6. And put αn = an+1 cosλn+1x. Then from (13-a′)

a1 cosλ1x = 0 everywhere (−∞,∞).

And analogously from (13-b),

b1 sinλnx = 0 everywhere (−∞,∞).

Continuing this process we can easily prove

an cosλnx = bn sinλnx = 0 everywhere for all n.

Consequently
an = bn = 0 for n = 1, 2, . . . .

We have proved Theorem 2.
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3. Proofs of Theorem 4 and corollaries

By Lemma (3.20) in Section 3 of Chapter IX of [3] (see p.328) and from (7), (8)
and (4-a), F1(x) and Ho

1 (x) are linear. Then using the same argument as in the
proof of Theorem 2, we can easily prove Theorem 4.

Obviously condition (6) in Corollary 3 is stronger than (4-a) and (4-b) in The-
orem 2, and (9) in Corollary 5 is stronger than (4-a), (4-b) and (8) in Theorem
4.

Remark 1. Under the conditions (4-a) and (4-b), He
m(x) and Ho

m(x) are continuous
if and only if

lim
h→0

∞∑
n=1

an sinλnx

λ2m
n

sinλnh = lim
h→0

∞∑
n=1

bn cosλnx

λ2m
n

sinλnh = 0

everywhere (−∞,∞).

Remark 2. He
1(x) and Ho

1 (x) are smooth at x if and only if

lim
h→0

h(
1

2
a0 +

∞∑
n=1

an cosλnx(
sin λnh

λnh
)2) = lim

h→0
h(
∞∑
n=1

bn sinλnx(
sinλnh

λnh
)2) = 0.

(See p. 43 (3.1) in Chapter II and p. 328 (3.21) in Chapter IX of [3].)
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