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ABSTRACT. When A, > 0, Ay, T 0o and

1 . Jan] + [bal
plool 2, = <
n=1 n

1 o0
5(10 + Z(an Cos An@ + bp sin \pz) =0 everywhere (—o0, 00),
n=1

then
a=a1=by=---=apn=bp,=---=0.

More generalized results are given.

1. INTRODUCTION

Let {\,}n be a strictly increasing sequence of positive numbers such that

lim A\, = oco.
n—oo

For example, A, = log(n 4+ 1) for n = 1,2,.... In this paper we shall discuss a
uniqueness problem for non-harmonic trigonometric series:

1 o0
(1) 5&@ + Z(an cos A\ + by, sin A, ).

n=1

Many mathematicians have discussed some uniqueness problems for harmonic
trigonometric series (see [1] and [3]).
Zygmund [2] discussed the same problem for the integral case

o
/ (cs cos sz + d sin sx)ds,
0

where ¢, and ds are continuous.
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It is easy to see that the series (1) is zero at « and —z if and only if

1 oo
(1-a) 540 + ; ar, cOS Apx = 0;
(1-b) > businApz = 0.
n=1

Using the same argument as in the proof of Theorem 2 in Section 68 of Chapter
1 of [1] (see p. 190), we can prove that if (1-a) and (1-b) hold, then

sin A\, h

1 o0
(2-a) hllngo §a0+nE:1ancos)\nx( b )2 =0;
- sin Aph
2-b li b, sin Ay, nftya
(2-b) hl_)H;O; sin A, 2( b )

When(1-a) and (1-b) hold, the convergences of the two series

. >y, COS Ap
Hm(.%') = Z \2m ’
n=1
o . by, sin Apz
n=1 n

are certified by the following lemma.

Lemma 1. When {0,}, is a strictly decreasing sequence of positive numbers such
that limy, o0 6, = 0, if a series 220:0 an converges, then the series 220:0 a6,
converges.

Proof. Put R, := > po oy forn=1,2,.... By the Abel transform, we have

fe’e) N-—1
Z o0, = Ry0, — Z Riy1(0k — Op+1) — Ry416n.
k=n k=n
Thus,
N
1Y i < |Rubn| + sup |Ri+1|(0n + On) + |Rn+1]0n
k=n n=

and each term in the right-hand side tends to zero when n and N tend to infinity.
Hence the sequence {>"}_, axfx}, is a Cauchy sequence. The lemma is proved. O

In this paper, we shall give the following results:

Theorem 2. If

1 oo
3 —ag + Qp COS A + by sin \yz) =0 everywhere (—oo, 00),
2

n=1
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and if form=1,2,...

(4-a) He (x) and H?,(x) are continuous;
(0) Jim g = i TR o,
then

(5) ap=a=by=--=a,=b,=---=0.

Corollary 3. When

o0

an| + by,
. Slead bl _

n=1 n

if (3) holds, then (5) is valid.

Theorem 4. When E is an enumerable set (without loss of generality, we can
assume that E satisfies —x € E if v € E), if

1 o0
7 —a, + Qpn COS A X + by sin A\pz) =0 everywhere (—oo, >0) except E,
2
n=1
and if
(8) H{(z) and HY are smooth in E

and (4-a) and (4-b) hold for m =1,2,..., then (5) is valid.
Corollary 5. When

- |an| + |bn|
o Soldt il
n=1 n

if (7) holds, then (5) is valid.

2. PROOF OF THEOREM 2

Put 1
Fi(z) := Zaon — H{(z).

Thus we have

41?{1?1 (z + 2h) — 2F, (z) + Fy(z — 2h)} = %ao + n; ap cos /\nx(SH;:;:h)Q
and
L po 0 0 S sin Aph
Tz UH (@ +2h) — 2H7 (x) + HY (z — 2h)} = > by sin A ok )2

n=1



1798 KAORA YONEDA
From (3), the two second symmetric derivatives satisfy
(10) D?Fy(x) = D*H{(z) =0 everywhere (—00,00).

From (4-a) and by Lemma (3.4) in Section 3 of Chapter IX of [3] (see p. 327), Fi(x)
and HY are linear, that is,

1
(11—&) Fl(x) :A1$+ 531;
(11-b) H{(x) = Chixz + Dy everywhere (—o0, 00).
From (11-a),

1 1 .
Az = Za0x2 - §Bl — H{(z),

where the left-hand side is an odd function and the right-hand side is an even
function. Thus, A; = 0. And from (4-b), ag = 0. Thus

1
(12-a) 531 + H{(x) =0 everywhere (—00, 00).

Arguing analogously, for H{(x), we can prove that C1 = D1 = 0 and
(12-b) HY =0 everywhere (—00,00).
Let us discuss similarly to the above for non-harmonic trigonometric series, (12-a)
and (12-b). And we can prove that B; = 0 and for some Bs
1 e

HS(x) =0 everywhere (—o0,00).
Continuing this process, we have B,,_1 = 0 and for some B,,

1
(13-a) §Bm + H: (z) =0;

(13-b) H? (x) =0 everywhere (—o0, 00).
Obviously B,, = 0 for all m; then

(13-a’) H: (x) =0 everywhere (—o0, 00).

The conclusion follows if the following lemma is proved.

Lemma 6. Let {0,}, be a sequence satisfying the condition of Lemma 1 and 01 <
L. If > | oy, converges and

ao—l—ZanH,T:O forallm=1,2,...,
n+1

then ag = 0.
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Proof of Lemma 6. Put R, = > ;- ay for n = 1,2,.... For each £ > 0, there
exists NV such that |R,| < e for n > N. Since

o0
ao—|—2an9,’l” =ap+ "+ +aniy
n=1

—RN+19%+1 — Z Rk+1(92n - 9?—‘,—1)7

N+1
|RN103 1] <e,
(o] (o]
| Z Ri1(0;" — 0;41)] < Z | Riet1 108" — 07"
k=N+1 k=N+1
oo
<e Y o -op, =0y, <e
k=N+1
and
N
. mo
D bt =0
k=1
we have
oo N 00 N
ool = 1) "o | < Il +1 D> arb| <D abi| + 2.
k=1 k=1 k=N+1 k=1
Thus
N
. m B
lag] < n}gnoo | Zakﬁk | 4+ 2e = 2e.
k=1
Consequently g = 0. Lemma 6 is proved. ([
Now put 6, = /\7/\1—1“ for n = 1,2,.... Thus {0,}, satisfies the condition of

Lemma 6. And put a;, = ap41 cos App1x. Then from (13-a’)
aycos\z =0 everywhere (—00, 00).
And analogously from (13-b),
bysin A,z =0 everywhere (—oo, 00).
Continuing this process we can easily prove
Gp COS Apx = by sin \yx = 0 everywhere for all n.

Consequently
anp=>b,=0 forn=1,2,....

We have proved Theorem 2.
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3. PROOFS OF THEOREM 4 AND COROLLARIES

By Lemma (3.20) in Section 3 of Chapter IX of [3] (see p.328) and from (7), (8)
and (4-a), Fi(z) and H?(x) are linear. Then using the same argument as in the
proof of Theorem 2, we can easily prove Theorem 4.

Obviously condition (6) in Corollary 3 is stronger than (4-a) and (4-b) in The-
orem 2, and (9) in Corollary 5 is stronger than (4-a), (4-b) and (8) in Theorem
4.

Remark 1. Under the conditions (4-a) and (4-b), HE, (z) and HY,(z) are continuous
if and only if

>\ a, sin Az b, cos A\, x
. n n n n .
lim 27811)\ h = lim 278111)\”}1:0
h—0 A2m h—0 AZm

n=1 n n=1 n

everywhere (—00, 00).
Remark 2. H{(x) and H{(x) are smooth at x if and only if

1 - sin)\nh n A, h
}llli%h(iao—i-Zancos)\nx( W _fllli%h b sin A2 ( )\ . )?) = 0.

n=1
(See p. 43 (3.1) in Chapter II and p. 328 (3.21) in Chapter IX of [3].)
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