UNIQUENESS FOR NON-HARMONIC
 TRIGONOMETRIC SERIES

KAORA YONEDA

(Communicated by J. Marshall Ash)

$$
\begin{aligned}
& \text { Abstract. When } \lambda_{n}>0, \lambda_{n} \uparrow \infty \text { and } \\
& \qquad \frac{1}{2}\left|a_{0}\right|+\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|+\left|b_{n}\right|}{\lambda_{n}^{2}}<\infty \\
& \text { if } \\
& \qquad \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \lambda_{n} x+b_{n} \sin \lambda_{n} x\right)=0 \quad \text { everywhere }(-\infty, \infty), \\
& \text { then } \\
& \qquad a_{0}=a_{1}=b_{1}=\cdots=a_{n}=b_{n}=\cdots=0
\end{aligned}
$$

More generalized results are given.

1. Introduction

Let $\left\{\lambda_{n}\right\}_{n}$ be a strictly increasing sequence of positive numbers such that

$$
\lim _{n \rightarrow \infty} \lambda_{n}=\infty
$$

For example, $\lambda_{n}=\log (n+1)$ for $n=1,2, \ldots$. In this paper we shall discuss a uniqueness problem for non-harmonic trigonometric series:

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \lambda_{n} x+b_{n} \sin \lambda_{n} x\right) \tag{1}
\end{equation*}
$$

Many mathematicians have discussed some uniqueness problems for harmonic trigonometric series (see [1] and [3]).

Zygmund [2] discussed the same problem for the integral case

$$
\int_{0}^{\infty}\left(c_{s} \cos s x+d_{s} \sin s x\right) d s
$$

where c_{s} and d_{s} are continuous.
Received by the editors March 30, 1994 and, in revised form, November 29, 1994.
1991 Mathematics Subject Classification. Primary 42A63.
Key words and phrases. Uniqueness, trigonometric series.

It is easy to see that the series (1) is zero at x and $-x$ if and only if

$$
\begin{gather*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \lambda_{n} x=0 \tag{1-a}\\
\sum_{n=1}^{\infty} b_{n} \sin \lambda_{n} x=0 \tag{1-b}
\end{gather*}
$$

Using the same argument as in the proof of Theorem 2 in Section 68 of Chapter 1 of [1] (see p. 190), we can prove that if (1-a) and (1-b) hold, then

$$
\begin{gather*}
\lim _{h \rightarrow \infty} \frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \lambda_{n} x\left(\frac{\sin \lambda_{n} h}{\lambda_{n} h}\right)^{2}=0 \tag{2-a}\\
\lim _{h \rightarrow \infty} \sum_{n=1}^{\infty} b_{n} \sin \lambda_{n} x\left(\frac{\sin \lambda_{n} h}{\lambda_{n} h}\right)^{2}=0 \tag{2-b}
\end{gather*}
$$

When(1-a) and (1-b) hold, the convergences of the two series

$$
\begin{gathered}
H_{m}^{e}(x):=\sum_{n=1}^{\infty} \frac{a_{n} \cos \lambda_{n} x}{\lambda^{2 m}} \\
H_{m}^{o}(x):=\sum_{n=1}^{\infty} \frac{b_{n} \sin \lambda_{n} x}{\lambda_{n}^{2 m}} \quad(m=1,2, \ldots)
\end{gathered}
$$

are certified by the following lemma.
Lemma 1. When $\left\{\theta_{n}\right\}_{n}$ is a strictly decreasing sequence of positive numbers such that $\lim _{n \rightarrow \infty} \theta_{n}=0$, if a series $\sum_{n=0}^{\infty} \alpha_{n}$ converges, then the series $\sum_{n=0}^{\infty} \alpha_{n} \theta_{n}$ converges.
Proof. Put $R_{n}:=\sum_{k=n}^{\infty} \alpha_{k}$ for $n=1,2, \ldots$ By the Abel transform, we have

$$
\sum_{k=n}^{\infty} \alpha_{k} \theta_{k}=R_{n} \theta_{n}-\sum_{k=n}^{N-1} R_{k+1}\left(\theta_{k}-\theta_{k+1}\right)-R_{N+1} \theta_{N}
$$

Thus,

$$
\left|\sum_{k=n}^{N} \alpha_{k} \theta_{k}\right| \leq\left|R_{n} \theta_{n}\right|+\sup _{n \leq k}\left|R_{k+1}\right|\left(\theta_{n}+\theta_{N}\right)+\left|R_{N+1}\right| \theta_{N}
$$

and each term in the right-hand side tends to zero when n and N tend to infinity. Hence the sequence $\left\{\sum_{k=1}^{n} \alpha_{k} \theta_{k}\right\}_{n}$ is a Cauchy sequence. The lemma is proved.

In this paper, we shall give the following results:
Theorem 2. If

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \lambda_{n} x+b_{n} \sin \lambda_{n} x\right)=0 \quad \text { everywhere }(-\infty, \infty) \tag{3}
\end{equation*}
$$

and if for $m=1,2, \ldots$

$$
\begin{gather*}
H_{m}^{e}(x) \text { and } H_{m}^{o}(x) \text { are continuous; } \tag{4-a}\\
\lim _{x \rightarrow \infty} \frac{H_{m}^{e}(x)}{x^{2}}=\lim _{x \rightarrow \infty} \frac{H_{m}^{o}(x)}{x}=0 \tag{4-b}
\end{gather*}
$$

then

$$
\begin{equation*}
a_{0}=a_{1}=b_{1}=\cdots=a_{n}=b_{n}=\cdots=0 \tag{5}
\end{equation*}
$$

Corollary 3. When

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|+\left|b_{n}\right|}{\lambda_{n}^{2}}<\infty \tag{6}
\end{equation*}
$$

if (3) holds, then (5) is valid.
Theorem 4. When E is an enumerable set (without loss of generality, we can assume that E satisfies $-x \in E$ if $x \in E$), if
(7) $\quad \frac{1}{2} a_{n}+\sum_{n=1}^{\infty}\left(a_{n} \cos \lambda_{n} x+b_{n} \sin \lambda_{n} x\right)=0 \quad$ everywhere $(-\infty, \infty)$ except E,
and if

$$
\begin{equation*}
H_{1}^{e}(x) \text { and } H_{1}^{o} \text { are smooth in } E \tag{8}
\end{equation*}
$$

and (4-a) and (4-b) hold for $m=1,2, \ldots$, then (5) is valid.
Corollary 5. When

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|+\left|b_{n}\right|}{\lambda_{n}}<\infty \tag{9}
\end{equation*}
$$

if (7) holds, then (5) is valid.

2. Proof of Theorem 2

Put

$$
F_{1}(x):=\frac{1}{4} a_{0} x^{2}-H_{1}^{e}(x)
$$

Thus we have

$$
\frac{1}{4 h^{2}}\left\{F_{1}(x+2 h)-2 F_{1}(x)+F_{1}(x-2 h)\right\}=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \lambda_{n} x\left(\frac{\sin \lambda_{n} h}{\lambda_{n} h}\right)^{2}
$$

and

$$
\frac{1}{4 h^{2}}\left\{H_{1}^{o}(x+2 h)-2 H_{1}^{o}(x)+H_{1}^{o}(x-2 h)\right\}=\sum_{n=1}^{\infty} b_{n} \sin \lambda_{n} x\left(\frac{\sin \lambda_{n} h}{\lambda_{n} h}\right)^{2}
$$

From (3), the two second symmetric derivatives satisfy

$$
\begin{equation*}
D^{2} F_{1}(x)=D^{2} H_{1}^{o}(x)=0 \quad \text { everywhere }(-\infty, \infty) \tag{10}
\end{equation*}
$$

From (4-a) and by Lemma (3.4) in Section 3 of Chapter IX of [3] (see p. 327), $F_{1}(x)$ and H_{1}^{o} are linear, that is,

$$
\begin{gather*}
F_{1}(x)=A_{1} x+\frac{1}{2} B_{1} \tag{11-a}\\
H_{1}^{o}(x)=C_{1} x+D_{1} \quad \text { everywhere }(-\infty, \infty) \tag{11-b}
\end{gather*}
$$

From (11-a),

$$
A_{1} x=\frac{1}{4} a_{0} x^{2}-\frac{1}{2} B_{1}-H_{1}^{e}(x)
$$

where the left-hand side is an odd function and the right-hand side is an even function. Thus, $A_{1}=0$. And from (4-b), $a_{0}=0$. Thus

$$
\begin{equation*}
\frac{1}{2} B_{1}+H_{1}^{e}(x)=0 \quad \text { everywhere }(-\infty, \infty) \tag{12-a}
\end{equation*}
$$

Arguing analogously, for $H_{1}^{o}(x)$, we can prove that $C_{1}=D_{1}=0$ and

$$
\begin{equation*}
H_{1}^{o}=0 \quad \text { everywhere }(-\infty, \infty) \tag{12-b}
\end{equation*}
$$

Let us discuss similarly to the above for non-harmonic trigonometric series, (12-a) and $(12-\mathrm{b})$. And we can prove that $B_{1}=0$ and for some B_{2}

$$
\begin{gathered}
\frac{1}{2} B_{2}+H_{2}^{e}(x)=0 \\
H_{2}^{o}(x)=0 \quad \text { everywhere }(-\infty, \infty)
\end{gathered}
$$

Continuing this process, we have $B_{m-1}=0$ and for some B_{m}

$$
\begin{gather*}
\frac{1}{2} B_{m}+H_{m}^{e}(x)=0 \tag{13-a}\\
H_{m}^{o}(x)=0 \quad \text { everywhere }(-\infty, \infty) \tag{13-b}
\end{gather*}
$$

Obviously $B_{m}=0$ for all m; then

$$
H_{m}^{e}(x)=0 \quad \text { everywhere }(-\infty, \infty)
$$

The conclusion follows if the following lemma is proved.
Lemma 6. Let $\left\{\theta_{n}\right\}_{n}$ be a sequence satisfying the condition of Lemma 1 and $\theta_{1}<$ 1. If $\sum_{n=1}^{\infty} \alpha_{n}$ converges and

$$
\alpha_{0}+\sum_{n+1}^{\infty} \alpha_{n} \theta_{n}^{m}=0 \quad \text { for all } m=1,2, \ldots
$$

then $\alpha_{0}=0$.

Proof of Lemma 6. Put $R_{n}=\sum_{k=n}^{\infty} \alpha_{k}$ for $n=1,2, \ldots$. For each $\varepsilon>0$, there exists N such that $\left|R_{n}\right|<\varepsilon$ for $n>N$. Since

$$
\begin{gathered}
\alpha_{0}+\sum_{n=1}^{\infty} \alpha_{n} \theta_{n}^{m}=\alpha_{0}+\alpha_{1} \theta_{1}^{m}+\cdots+\alpha_{N} \theta_{N}^{m} \\
-R_{N+1} \theta_{N+1}^{m}-\sum_{N+1}^{\infty} R_{k+1}\left(\theta_{k}^{m}-\theta_{k+1}^{m}\right) \\
\left|R_{N+1} \theta_{N+1}^{m}\right|<\varepsilon \\
\left|\sum_{k=N+1}^{\infty} R_{k+1}\left(\theta_{k}^{m}-\theta_{k+1}^{m}\right)\right| \leq \sum_{k=N+1}^{\infty}\left|R_{k+1}\right|\left|\theta_{k}^{m}-\theta_{k+1}^{m}\right| \\
\leq \varepsilon \sum_{k=N+1}^{\infty} \theta_{k}^{m}-\theta_{k+1}^{m}=\varepsilon \theta_{N+1}^{m}<\varepsilon
\end{gathered}
$$

and

$$
\lim _{m \rightarrow \infty} \sum_{k=1}^{N} \alpha_{k} \theta_{k}^{m}=0
$$

we have

$$
\left|\alpha_{0}\right|=\left|\sum_{k=1}^{\infty} \alpha_{k} \theta_{k}^{m}\right| \leq\left|\sum_{k=1}^{N} \alpha_{k} \theta_{k}^{m}\right|+\left|\sum_{k=N+1}^{\infty} \alpha_{k} \theta_{k}^{m}\right| \leq\left|\sum_{k=1}^{N} \alpha_{k} \theta_{k}^{m}\right|+2 \varepsilon
$$

Thus

$$
\left|\alpha_{0}\right| \leq \lim _{m \rightarrow \infty}\left|\sum_{k=1}^{N} \alpha_{k} \theta_{k}^{m}\right|+2 \varepsilon=2 \varepsilon
$$

Consequently $\alpha_{0}=0$. Lemma 6 is proved.
Now put $\theta_{n}=\frac{\lambda_{n+1}}{\lambda_{1}}$ for $n=1,2, \ldots$. Thus $\left\{\theta_{n}\right\}_{n}$ satisfies the condition of Lemma 6. And put $\alpha_{n}=a_{n+1} \cos \lambda_{n+1} x$. Then from (13-a')

$$
a_{1} \cos \lambda_{1} x=0 \quad \text { everywhere }(-\infty, \infty)
$$

And analogously from (13-b),

$$
b_{1} \sin \lambda_{n} x=0 \quad \text { everywhere }(-\infty, \infty)
$$

Continuing this process we can easily prove

$$
a_{n} \cos \lambda_{n} x=b_{n} \sin \lambda_{n} x=0 \quad \text { everywhere for all } n
$$

Consequently

$$
a_{n}=b_{n}=0 \quad \text { for } n=1,2, \ldots
$$

We have proved Theorem 2.

3. Proofs of Theorem 4 and corollaries

By Lemma (3.20) in Section 3 of Chapter IX of [3] (see p.328) and from (7), (8) and (4-a), $F_{1}(x)$ and $H_{1}^{o}(x)$ are linear. Then using the same argument as in the proof of Theorem 2, we can easily prove Theorem 4.

Obviously condition (6) in Corollary 3 is stronger than (4-a) and (4-b) in Theorem 2, and (9) in Corollary 5 is stronger than (4-a), (4-b) and (8) in Theorem 4.

Remark 1. Under the conditions (4-a) and (4-b), $H_{m}^{e}(x)$ and $H_{m}^{o}(x)$ are continuous if and only if

$$
\begin{array}{r}
\lim _{h \rightarrow 0} \sum_{n=1}^{\infty} \frac{a_{n} \sin \lambda_{n} x}{\lambda_{n}^{2 m}} \sin \lambda_{n} h=\lim _{h \rightarrow 0} \sum_{n=1}^{\infty} \frac{b_{n} \cos \lambda_{n} x}{\lambda_{n}^{2 m}} \sin \lambda_{n} h=0 \\
\quad \text { everywhere }(-\infty, \infty) .
\end{array}
$$

Remark 2. $H_{1}^{e}(x)$ and $H_{1}^{o}(x)$ are smooth at x if and only if

$$
\lim _{h \rightarrow 0} h\left(\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \lambda_{n} x\left(\frac{\sin \lambda_{n} h}{\lambda_{n} h}\right)^{2}\right)=\lim _{h \rightarrow 0} h\left(\sum_{n=1}^{\infty} b_{n} \sin \lambda_{n} x\left(\frac{\sin \lambda_{n} h}{\lambda_{n} h}\right)^{2}\right)=0
$$

(See p. 43 (3.1) in Chapter II and p. 328 (3.21) in Chapter IX of [3].)

References

1. N. K. Bary, Treatise on trigonometric series, Pergamon Press, New York, 1964. MR 30:1347
2. A. Zygmund, Uber die Beziehungen der trigonometrisch en Reihen und Integrale, Mat. Anal. 99 (1928), 562-589.
3._, Trigonometric series, vol. 1, Cambridge University Press, New York, 1959. MR 21:6498

Department of Mathematics and Information Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 593, Japan

E-mail address: yoneda@mathsun.cias.osakafu-u.ac.jp

