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A NON-HOMOGENEOUS ZERO-DIMENSIONAL X

SUCH THAT X ×X IS A GROUP

FONS VAN ENGELEN

(Communicated by Franklin D. Tall)

Abstract. We provide an example of a zero-dimensional (separable metric)
absolute Borel set X which is not homogeneous, but whose square X ×X ad-
mits the structure of a topological group. We also construct a zero-dimensional
absolute Borel set Y such that Y is a homogeneous non-group but Y × Y is a
group. This answers questions of Arhangel’skĭı and Zhou.

1. Introduction

In [3], Arhangel’skĭı asked if there exists a non-homogeneous (compact) space X
such thatX×X is homogeneous, and in [18], Zhou asked whether there exists a zero-
dimensional first-countable non-group X such that X ×X is a group. Examples of
infinite dimension and finite positive dimension answering Arhangel’skĭı’s question
affirmatively have been constructed by van Mill [16], Ancel and Singh [1], and Ancel,
Duvall and Singh [2]. In this note we will answer Arhangel’skĭı’s question in the
zero-dimensional case, at the same time answering Zhou’s question, by constructing
a non-homogeneous zero-dimensional (separable metric) absolute Borel set X such
that X × X admits the structure of a topological group. We will also show that
there is a homogeneous non-group Y such that Y × Y is a group. Finally, we will
prove that our examples are best possible in the sense that they are of minimal
complexity in the Borel Wadge hierarchy.

All spaces in this note will be assumed to be separable, metrizable and zero-
dimensional; in fact, it will be convenient to just assume that all our spaces are
subspaces of the Cantor set 2ω. For those familiar with the inductive definition
of the Borel Wadge classes in 2ω due to Louveau [14] and the results of [5], let us
mention that our space X will be (ω× Y )∪ ({ω}× (2ω −Y )) in (ω+ 1)× 2ω ≈ 2ω,
where Y is the unique homogeneous element of Bisep(Σ0

2,Σ
0
3). Since these papers

are long and technical, and much too general for the results of this note, we will
give an exposition which is much more self-contained, especially where it concerns
the construction of X and Y . However, in section 5 of this note, where Wadge-
minimality of X and Y is proved, we do in fact presuppose knowledge of [14] and [5].

I am indebted to the referee for some helpful comments.
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2. Preliminaries

The notation (h : )A ≈ B means that A and B are homeomorphic (witnessed by
h). Recall that a space A is homogeneous if for all x, y ∈ A there exists h : A ≈ A
with h(x) = y, and strongly homogeneous if all non-empty clopen subsets of A are
homeomorphic; a strongly homogeneous space is homogeneous. The symbols Σ0

ξ,

Π0
ξ , and ∆0

ξ will be used to denote the additive, multiplicative, and ambiguous,

resp., Borel classes in 2ω (where Σ0
1 consists of all open subsets).

If A,B ⊆ 2ω, then A is Wadge-reducible to B (notation A ≤w B) if there exists
a continuous f : 2ω → 2ω such that A = f−1[B]; if both A ≤w B and B ≤w A,
then A and B are Wadge-equivalent, notation A ≡w B. A Wadge class is a class of
subsets of 2ω of the form [A] = {B : B ≤w A}; if Γ = [A], then A is said to generate
the Wadge class Γ. If Γ is any class of subsets of 2ω, then the dual class of Γ is
{A : 2ω−A ∈ Γ}, denoted by Γ̌ or Γ∨; Γ is non-self-dual if Γ 6= Γ̌. Γ is continuously
closed if whenever A ∈ Γ and B ≤w A, then B ∈ Γ. It follows from the so-called
Wadge Lemma that if Γ is a non-self-dual and continuously closed class of Borel
sets, then Γ is a Wadge-class which is generated by any A ∈ Γ− Γ̌; in other words,
if A ∈ Γ− Γ̌, then (B ∈ Γ− Γ̌ if and only if B ≡w A).

For i ∈ {0, 1}, define

Qi = {x ∈ 2ω : ∃m : ∀n ≥ m : xn = i},

and let P = 2ω− (Q0 ∪Q1). Note that P is Π0
2. If x ∈ P , then x consists of blocks

of zeros separated by blocks of ones; define φ : P → 2ω by φ(x)n = 0 iff the nth

block of zeros in x has even length. Note that φ is continuous and open.

Definition 2.1. Let Γ be a class of spaces.

(a) Γ is reasonably closed if Γ is continuously closed, and for each A ∈ Γ, φ−1[A]∪
Q0 ∈ Γ.

(b) A space A is everywhere properly Γ if for each non-empty clopen subset U of
2ω, U ∩A ∈ Γ− Γ̌.

We will make frequent use of the fact that Γ is reasonably closed if and only if Γ is
closed under homeomorphisms, under unions with Σ0

2-sets, and under intersections
with Π0

2-sets (see [15]).

Theorem 2.2 (Steel [17]). If Γ is a reasonably closed class of Borel sets, and A
and B are both everywhere properly Γ, and either both first category or both Baire,
then A ≈ B.

It is easy to see that Σ0
3 and Π0

3 are reasonably closed, and from [12] it follows
that the countable infinite product of rationals Qω is everywhere properly Π0

3 and
2ω − Qω is everywhere properly Σ0

3 (if Qω is densely embedded in 2ω). Thus, it
follows from Theorem 2.2 that Qω (resp. 2ω − Qω) is characterized by being first
category (resp. Baire) and everywhere properly Π0

3 (resp. Σ0
3).

3. The main lemma

In [7] it was shown that all homogeneous spaces in ∆0
3 contain a countable (or,

in just a few cases, a σ-compact) dense subset such that any relative Π0
2-set in the

space which contains it is actually homeomorphic to the space. In this section we
will extend this result to arbitrary homogeneous Borel sets. It will be the main
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result needed in the next section to show that our homogeneous example Y is not
a group.

For s = (s0, . . . , sn−1) ∈ 2<ω we let |s| = n = dom(s) be the length of s, and
f(s) = sn−1 the final element of s. The length of the empty sequence 〈 〉 is 0. We
write s < y for s ∈ 2<ω and y ∈ 2<ω or y ∈ 2ω if y properly extends s. Finally,
0 ∈ 2ω has each coordinate 0.

Let σ : 2<ω → 2<ω be such that if s < t, then σ(s) < σ(t). Then for each x ∈ 2ω

there exists a unique fσ(x) ∈ 2ω such that for each n, σ(x|n) < fσ(x), and moreover
this function fσ : 2ω → 2ω is continuous.

Lemma 3.1. Let [A] ⊆ P(2ω) be reasonably closed. Then A ≡w φ−1[A] ∪Q0.

Proof. By definition of reasonably closed, φ−1[A] ∪ Q0 ≤w A. Inductively, define

σ : 2<ω → 2<ω by σ(〈 〉) = 〈 〉, σ(sa0) = σ(s)a001, and σ(sa1) = σ(s)a01. Then
for each x ∈ 2ω, φfσ(x) = x, so f−1

σ [φ−1[A] ∪ Q0] = f−1
σ φ−1[A] = A. Thus, also

A ≤w φ−1[A] ∪Q0.

Lemma 3.2. Let [A] ⊆ P(2ω) be reasonably closed, and let G be a Π0
2-set in 2ω.

If G ⊇ Q0, then G ∩ (φ−1[A] ∪Q0) ≡w A.

Proof. By the previous lemma, φ−1[A] ∪ Q0 ≤w A, so since Γ is closed under
intersections with Π0

2-sets, also G ∩ (φ−1[A] ∪Q0) ≤w A.
Let ρ be a complete metric on G. For each s ∈ 2<ω and ε > 0 we define

s(ε) ∈ 2<ω as follows. Since Q0 ⊆ G, sa0 ∈ G, so there exists t ∈ 2<ω of odd

length such that for each i < |t|, t(i) = 0, and {x ∈ G : sat < x} ⊆ Bρ(s
a0, 1

2ε).

Put s(ε) = sat, and note that for all x, y ∈ G, if s(ε) < x, y, then ρ(x, y) < ε.
Inductively, define σ : 2<ω → 2<ω satisfying

(i) σ(〈 〉) = 〈 〉;
(ii) σ(sai) = σ(s)ai if f(s) = i or i = 1;

(iii) σ(sa0) = (σ(s))( 1
|s|+1 ) if f(s) = 1 or s = 〈 〉.

Intuitively, the induced mapping fσ replaces the first element of each block of zeros
of an element of 2ω by a string of zeros of odd length, leaving the parity of the
block unchanged. Thus, fσ[Q0] ⊆ Q0, fσ[Q1] ⊆ Q1, fσ[P ] ⊆ P and φfσ(x) = φ(x)
for each x ∈ P .

Claim: If x ∈ P , then fσ(x) ∈ G.
Indeed, for each n let sn ∈ 2<ω be such that f(sn) = 1, |sn| ≥ n, sn < sn+1,

and sn
a0 < x (so sn is an initial segment immediately preceding a block of zeros

in x). Put yn = σ(sn
a0)a0; then each yn ∈ Q0 ⊆ G. Also, if m ≥ n, then

σ(sn
a0) = (σ(sn))( 1

|sn|+1 ) < yn, ym, so ρ(yn, ym) < 1
|sn|+1 ≤

1
n+1 . Thus, (yn)n is

a ρ-Cauchy sequence, so it converges to some y ∈ G by completeness of ρ. Clearly
σ(sn) < y for each n, so y = fσ(x) ∈ G.

It now easily follows that f−1
σ [G ∩ (φ−1[A] ∪ Q0)] = φ−1[A] ∪ Q0. Indeed, for

“⊇”, if x ∈ Q0, then fσ(x) ∈ Q0 ⊆ G; and if x ∈ φ−1[A], then x ∈ P , so fσ(x) ∈ G
by the claim, and φfσ(x) = φ(x) ∈ A, so fσ(x) ∈ φ−1[A]. For “⊆”, if fσ(x) ∈
G ∩ (φ−1[A] ∪Q0), then either fσ(x) ∈ Q0 whence x ∈ Q0, or fσ(x) ∈ φ−1[A] ⊆ P
whence φfσ(x) = φ(x) ∈ A, so x ∈ φ−1[A]. Thus, A ≤w φ−1[A] ∪ Q0 ≤w G ∩
(φ−1[A] ∪Q0).

We now state our main lemma in the following form.
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Lemma 3.3. Let Γ ⊆ P(2ω) be a reasonably closed class of Borel sets, and suppose
A is everywhere properly Γ and either first category or Baire. Then A contains a
countable dense subset D such that for every relative Π0

2-set B of A, if B ⊇ D,
then B ≈ A.

Proof. Let G be a Π0
2-set in 2ω such that G ⊇ Q0, and let U be a non-empty

clopen subset of 2ω. Since Γ is reasonably closed, U ∩ G ∩ (φ−1[A] ∪ Q0) ≤w A.
By the previous lemma, let g : 2ω → 2ω witness A ≤w G ∩ (φ−1[A] ∪ Q0). Then
g−1[U ∩G ∩ (φ−1[A] ∪Q0)] = g−1[U ] ∩A ≡w A since A is everywhere properly Γ,
so A ≤w U ∩G ∩ (φ−1[A] ∪Q0). Thus, G ∩ (φ−1[A] ∪Q0) is everywhere properly
Γ. Suppose A is first category. Since φ is open, φ−1[A] is first category as well,
and this easily implies that G∩ (φ−1[A]∪Q0) is first category. Suppose A is Baire.
Since A has the Baire property in 2ω, A contains a dense subset H which is Π0

2 in
2ω. Again using the fact that φ is open, with domain P a Π0

2-set, it follows that
φ−1[H]∩G is a dense absolute Π0

2-set in G∩ (φ−1[A]∪Q0), so G∩ (φ−1[A]∪Q0) is
Baire. We conclude that A and G∩ (φ−1[A] ∪Q0) are everywhere properly Γ, and
either both first category or both Baire, so by Theorem 2.2, G∩(φ−1[A]∪Q0) ≈ A.
Applying this to G = 2ω we obtain h : φ−1[A]∪Q0 ≈ A and clearly now D = h[Q0]
is as required.

4. The examples

Define subsets Y0, Y1 of 2ω × (2ω)ω ≈ 2ω by

Y0 = Q0 ×Qω0 , Y1 = Q1 × ((2ω)ω −Qω0 ).

Put

Y = Y0 ∪ Y1

and

X = (ω × Y ) ∪ ({ω} × (2ω − Y ))

in (ω + 1)× 2ω ≈ 2ω. Towards an application of Theorem 2.2, define

Γ = {A : ∃C0, C1 ∈ Σ0
2 : ∃A0 ∈Π0

3 : ∃A1 ∈ Σ0
3 :

A = (A0 ∩ C0) ∪ (A1 ∩C1), C0 ∩ C1 = ∅}.

Lemma 4.1. Both Γ and Γ̌ are reasonably closed.

Proof. It is easily seen that if Γ is reasonably closed, then so is Γ̌. Since Σ0
2, Σ0

3,
and Π0

3 are continuously closed, so is Γ. Let A ∈ Γ, say A = (A0 ∩C0)∪ (A1 ∩C1)
with C0, C1 disjoint Σ0

2-sets, A0 ∈ Π0
3, and A1 ∈ Σ0

3. Let C′0, C
′
1 be disjoint Σ0

2-sets
reducing φ−1[C0] ∪Q0 ∪Q1, φ

−1[C1] ∪Q0 ∪Q1, and put A′0 = φ−1[A0] ∪Q0 ∈Π0
3

and A′1 = φ−1[A1] ∪Q0 ∈ Σ0
3. Then φ−1[A]∪Q0 = (A′0 ∩C′0)∪ (A′1 ∩C′1) ∈ Γ.

Lemma 4.2. (a) Y is everywhere properly Γ and first category.
(b) 2ω − Y is everywhere properly Γ̌ and Baire.

Proof. (a) It is obvious that Y is first category. Let U be a non-empty clopen
subset of 2ω × (2ω)ω. Put A0 = U ∩ Y0 ∈ Π0

3, A1 = U ∩ Y1 ∈ Σ0
3, and C0 =

U ∩ (Q0 × (2ω)ω) ∈ Σ0
2, C1 = U ∩ (Q1 × (2ω)ω) ∈ Σ0

2; then C0 ∩ C1 = ∅ and
U ∩ Y = (A0 ∩ C0) ∪ (A1 ∩ C1) ∈ Γ. Suppose U ∩ Y ∈ Γ̌; then U − Y ∈ Γ
whence also (V ×W )−Y ∈ Γ for some non-empty clopen V ⊆ 2ω, W ⊆ (2ω)ω , say
(V ×W )− Y = (B0 ∩D0)∪ (B1 ∩D1) where B0, B1 are disjoint Σ0

2-sets, D0 ∈Π0
3
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and D1 ∈ Σ0
3. Write B0 =

⋃
j B

0
j , B1 =

⋃
j B

1
j with each Bij compact. We claim

that each Bij ∩ (V ×W )−Y is nowhere dense. Take i = 0 (the proof for i = 1 is the

same). Suppose V ′ ×W ′ is clopen in V ×W such that ∅ 6= (V ′ ×W ′)− Y ⊆ B0
j .

Let x ∈ V ′ ∩Q0; then ({x} ×W ′)− Y = ({x} ×W ′)− ({x} ×Qω0 ) = {x} × (W ′ ∩
(2ω)ω −Qω0 ) ≈ 2ω −Qω. However, ({x} ×W ′)− Y is closed in B0 ∩D0 ∈ Π0

3 but
2ω − Qω /∈ Π0

3, a contradiction. We conclude that both (V ×W ) − Y and Y are
first category, a contradiction. Part (b) follows easily from (a).

Theorem 4.3. (a) Y is a strongly homogeneous zero-dimensional absolute Borel
set which does not admit the structure of a topological group.

(b) X is a non-homogeneous zero-dimensional absolute Borel set.

Proof. (a) Strong homogeneity of Y follows from the previous lemmas and Theo-
rem 2.2. Suppose Y has a topological group structure. By Lemma 3.3, let D be
a countable subset of Y such that for every relative Π0

2-set B in Y , if B ⊇ D,
then B ≈ Y . Put F =

⋃
d∈D Y1d

−1. Then F ∈ Σ0
3, so since Y /∈ Σ0

3, there exists

x ∈ Y −F . Then xD∩Y1 = ∅, so D ⊆ x−1Y0. Now Y0 and hence x−1Y0 is a relative
Π0

2-set of Y , so by assumption Y0 ≈ x−1Y0 ≈ Y , a contradiction since Y0 ∈Π0
3 but

Y /∈ Π0
3.

(b) Suppose h : X → X maps x = (ω, z) to (n, y) with n ∈ ω. Then for
some clopen neighborhood U of x, V = h[({ω} × (2ω − Y )) ∩ U ] ⊆ {n} × Y .
By Lemma 4.2(b), V /∈ Γ. On the other hand, V is closed in X and hence in
{n} × Y ∈ Γ, a contradiction.

The next theorem completes the proof of the properties of our examples.

Theorem 4.4. Both Y × Y and X ×X admit a topological group structure.

Proof. Define D2(Σ0
3) = {A : ∃A0, A1 ∈ Σ0

3 : A = A1 − A0}. The class D2(Σ0
3)

is one of the so-called small Borel classes or difference classes that stratify the
ambiguous Borel class ∆0

4, and it is well known that these classes are non-self-dual
(see [13] or [14]). It is easy to show that D2(Σ0

3) is reasonably closed. Suppose A
is a space that is everywhere properly D2(Σ0

3) and first category. If A = A0 − A1

with A0, A1 ∈ Σ0
3, then A× A = (A0 × A0) − ((A1 × A0) ∪ (A0 × A1)) ∈ D2(Σ0

3),
which implies that A×A is everywhere properly D2(Σ0

3) and first category as well.
Thus, A ≈ A×A by Theorem 2.2, so A admits the structure of a topological group
(in fact, of an ideal on ω) by [10]. We conclude that, in order to prove the theorem,
it suffices to show that both Y × Y and X ×X are everywhere properly D2(Σ0

3),
as they are clearly first category.

Since Y ∈ Γ, we can write Y = (A0∩C0)∪(A1∩C1) with A0 ∈Π0
3, A1 ∈ Σ0

3, and
C0, C1 disjoint Σ0

2-sets. Put B0 = (A1∩C1)∪C0, B1 = C0−A0; then B0, B1 ∈ Σ0
3,

so Y = B0 − B1 ∈ D2(Σ0
3). As above we obtain Y × Y ∈ D2(Σ0

3). Let U be
a non-empty clopen subset of 2ω. Clearly, U ∩ (Y × Y ) ∈ D2(Σ0

3), so suppose
U ∩ (Y × Y ) ∈ Ď2(Σ0

3). Since U contains a non-empty basic clopen V ×W , and
V ∩ Y ≈ W ∩ Y ≈ Y by strong homogeneity, this implies Y × Y ∈ Ď2(Σ0

3).
Since D2(Σ0

3) is non-self-dual, there exists A ∈ D2(Σ0
3) − Ď2(Σ0

3), so for this
A we cannot have A ≤w Y × Y . However, let A ∈ D2(Σ0

3) be arbitary, say
A = A0 − A1 with A0, A1 ∈ Σ0

3. By [12] (or using the Wadge Lemma and the
remarks following Theorem 2.2), A0 ≤w 2ω − Qω and 2ω − A1 ≤w Qω. Since
2ω −Qω ≡w Y1 ≤w Y and Qω ≡w Y0 ≤w Y (Y0, Y1 ≤w Y since Y0, Y1 ∈ Γ = [Y ]),
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there exist f, g : 2ω → 2ω witnessing A0, 2
ω −A1 ≤w Y . Then (f, g) : 2ω → 2ω × 2ω

satisfies (f, g)−1[Y × Y ] = f−1[Y ] ∩ g−1[Y ] = A0 ∩ (2ω − A1) = A. Thus, each
element of D2(Σ0

3) is Wadge-reducible to Y × Y , we have a contradiction, and we
conclude that Y × Y is everywhere properly D2(Σ0

3).
If we write Y = (A0∩C0)∪(A1∩C1) as above, then 2ω−Y = (2ω− (A0∩C0))−

(A1 ∩ C1) ∈ D2(Σ0
3). We then easily obtain that X ∈ D2(Σ0

3) whence as before
X×X ∈ D2(Σ0

3). Since every non-empty clopen subset of X×X contains a clopen
subset homeomorphic to Y × Y , it immediately follows that X ×X is everywhere
properly D2(Σ0

3).

Remark. In the above examples, we can replace Σ0
3,Π0

3 by any Σ0
ξ,Π

0
ξ with ξ ≥ 3,

thus obtaining spaces of arbitrarily high Borel complexity with the same properties.

5. Wadge-minimality

The papers [16], [1] and [2], which answer the question of Arhangel’skĭı for pos-
itive dimensions, all construct compact metrizable examples that are not just non-
homogeneous but in fact rigid. So it is a natural question to ask whether such an
example also exists in dimension zero. The answer is no: in fact, in van Engelen,
Miller and Steel [9] it was shown that rigid absolute Borel sets do not exist at all.
Thus, we must give up either rigidity or descriptive structure. If we give up the
latter, we arrive at van Mill’s question from [16] (still open) whether there exists
any rigid zero-dimensional space with a homogeneous square. If we give up rigidity,
then it becomes natural to ask for an example of minimal descriptive complexity.
In this section we will show that Y is minimal among homogeneous spaces with a
non-group square, and that X is minimal among non-homogeneous spaces with a
homogeneous square (whence, in particular, X is minimal among non-homogeneous
spaces whose squares admit a topological group structure).

As mentioned in section 1, we will presuppose knowledge of and adopt the no-
tation from [14] and [5]. Let us also mention that a non-complete Borel group is
necessarily first category; see, e.g., [6].

Lemma 5.1. If Σ0
3 ∪Π0

3 ⊆ Γu and u(0) ≥ 2, then Bisep(Σ0
2,Σ

0
3) ⊆ Γu.

Proof. Case 1: Γu = Dη(Σ0
ξ). Then Γu ⊇ D2(Σ0

3). But D2(Σ0
3) ⊇ Bisep(Σ0

2,Σ
0
3)

by the proof of Theorem 4.4.
Case 2: Γu = Sep(Dη(Σ0

ξ),Γu∗). Then Γu ⊇ Sep(Σ0
2,Σ

0
3) since u∗(0) > u(0) =

ξ ≥ 2. But Sep(Σ0
2,Σ

0
3) ⊇ Bisep(Σ0

2,Σ
0
3): indeed, if X = (A0 ∩C0) ∪ (A1 ∩C1) as

in Case 1, then X = (A0 ∩ C0) ∪ ((A1 ∩ C1)− C0) ∈ Sep(Σ0
2,Σ

0
3).

Case 3: Γu = Bisep(Dη(Σ0
ξ),Γu0 ,Γu1). Then Γu ⊇ Bisep(Σ0

2,Σ
0
3) since u0(0) >

u(0) = ξ ≥ 2.
Case 4: Γu = SU (Σ0

ξ,
⋃
n Γun). Since supun(0) > u(0) = ξ ≥ 2, we have Σ0

3 ⊆
Γun . But Γun ⊆ Γ̌un+1 , so SU (Σ0

ξ,
⋃
n Γun) ⊇ SU (Σ0

2,Σ
0
3 ∪Π0

3) ⊇ Bisep(Σ0
2,Σ

0
3).

Case 5: Γu = SDη(〈Σ0
ξ,Γu0〉,Γu1). Then Γu ⊇ Γu0 = SU (Σ0

ξ,
⋃
n Γvn), which

contains Bisep(Σ0
2,Σ

0
3) by Case 4.

Since the class Γ of section 4 is Bisep(Σ0
2,Σ

0
3), the following theorem establishes

minimality of our space Y .

Theorem 5.2. Let Z be a homogeneous absolute Borel set which does not admit
the structure of a topological group while Z ×Z does admit such a structure. Then
Bisep(Σ0

2,Σ
0
3) ⊆ [Z].
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Proof. Suppose Z ∈ D2(Σ0
2). Then Z is discrete or one of 2ω, ω×2ω, ωω,Q,Q×2ω,

or Q×ωω, so Z is in fact a group. If Z ∈∆0
3−D2(Σ0

2), then Z×Z is first category
and by [7], [Z×Z] = Dα(Σ0

2) for some indecomposable α < ω1. Let U be non-empty
and clopen in Z. Since Z is in fact strongly homogeneous, U ∈ Dα(Σ0

2)−D2(Σ0
2)

is homogeneous and first category, so by [5] [U ] = Dβ(Σ0
2) for some β ≤ α. If

β < α, then by Lemmas 4.2 and 4.3 of [10], U × U ∈ Dγ(Σ0
2) for some γ < α,

contradicting the fact that U × U ≈ Z × Z by strong homogeneity of Z ×Z. Thus
[U ] = Dα(Σ0

2), so Z is first category and everywhere properly Dα(Σ0
2), and by

Theorem 2.2 we again obtain the contradiction Z ≈ Z × Z, as Dα(Σ0
2) is easily

seen to be reasonably closed. A similar argument shows that [Z] cannot be Σ0
3 or

Π0
3. Since Z is homogeneous, by [5] [Z] ∈ {Γu, Γ̌u} for some description u with

u(0) ≥ 2. Now apply Lemma 5.1, noting that [Z] 6= Bisep(Σ0
2,Σ

0
3)∨ since Z is first

category.

We now turn to the minimality of our example X . Recall that Arhangel’skĭı’s
question was for an example of a non-homogeneous space with a homogeneous
square. Thus, we would like to establish that X is Wadge-minimal in that class,
and not just in the restricted class where the square is assumed to be a group.
We will show that this is indeed the case, albeit that we will have to admit the
dual of [X ] as well. Indeed, as in section 4 we can show that 2ω − X is non-
homogeneous and that (2ω −Y )× (2ω−Y ) is everywhere properly D2(Σ0

3) whence
easily (2ω−X)×(2ω−X) is everywhere properly D2(Σ0

3). Since (2ω−X)×(2ω−X)
is Baire, it is homogeneous, but being non-complete it cannot be a group. In fact,
as we will see, no generator of [2ω−X ] is first category, so only X is Wadge-minimal
if the square is assumed to be a group. First, we determine the Wadge class of X .

Lemma 5.3. [X ] = Sep(Σ0
1,Bisep(Σ0

2,Σ
0
3))∨.

Proof. Note that ((ω+ 1)× 2ω)−X = ((ω× (2ω − Y )) ∩ (ω× 2ω)) ∪ (({ω} × Y )−
(ω × 2ω)) ∈ Sep(Σ0

1,Bisep(Σ0
2,Σ

0
3)). Now suppose X ∈ Sep(Σ0

1,Bisep(Σ0
2,Σ

0
3)),

say X = (A0 ∩ C) ∪ (A1 − C) with C ∈ Σ0
1, A0 ∈ Bisep(Σ0

2,Σ
0
3)∨, and A1 ∈

Bisep(Σ0
2,Σ

0
3). Since X /∈ Bisep(Σ0

2,Σ
0
3), we have A0∩C 6= ∅. Then A0∩C, being

open in X , intersects some {n} × Y , contradicting Y being everywhere properly
Bisep(Σ0

2,Σ
0
3).

The proof that X is Wadge-minimal among non-homogeneous spaces with a
homogeneous square is rather complicated. The main problem is to show that
there are no examples in ∆0

3 (Lemma 5.6).

Lemma 5.4. Let Z ⊆ 2ω be Borel. If U ≡w Z for each non-empty clopen U in Z
and Z × Z is homogeneous, then Z is homogeneous.

Proof. If Z ∈ D2(Σ0
2), then Z has only one point, or Z × Z is one of 2ω, ω ×

2ω, ωω,Q,Q × 2ω, or Q × ωω. It then follows from the characterizations of these
spaces that Z ≈ Z × Z is homogeneous. If Z /∈ D2(Σ0

2), let u be a description
(see [14]) such that Z ∈ {Γu, Γ̌u,∆(Γu)}. If u(0) = 1, then by the definition of
Γu, always U <w Z for some non-empty clopen U in Z, so we must have u(0) ≥ 2.
If ∆(Dω(Σ0

2)) ⊆ Γu, then [Z] is reasonably closed by [5], Lemma 4.2.17, so Z is
homogeneous by Theorem 2.2. If Γu ⊆ ∆(Dω(Σ0

2)), then in fact Γu = Dn(Σ0
2) for

some 2 ≤ n < ω, and [Z] ∈ {Γu, Γ̌u}. In dealing with this situation, we extensively
use the terminology and results from [5], sections 3.4 and 4.6 (see also [4]).
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Case 1: n = 2(k + 1) for some k < ω, [Z] = Dn(Σ0
2). Then Z is P4k+1, nowhere

P2
4k+2, so Z ∈ X4k+1 whence Z is homogeneous.

Case 2: n = 2(k + 1) + 1 for some k < ω, [Z] = Ďn(Σ0
2). Then Z is P4(k+1),

nowhere P2
4k+3, so Z ∈ X4(k+1) whence Z is homogeneous.

Case 3: n = 2(k + 1) for some k < ω, [Z] = Ďn(Σ0
2). Then Z is P2

4k+2, nowhere

P4k+1. If Z is P1
4k+2, then Z ∈ X1

4k+2, so Z is homogeneous; while if Z is nowhere

P1
4k+2, then Z ∈ X2

4k+2, so Z is homogeneous as well. The only remaining possibility

is that some non-empty clopen U in Z is P1
4k+2 (whence U ∈ X1

4k+2) but Z itself is

not P1
4k+2. By [5], Theorem 3.4.15(b), Z contains a closed subset A ∈ X2

4(k−1)+3,

A ≈ Q×B, B ∈ X2
4(k−1)+2.

Claim: If T ∈ X1
2, S ∈ X2

2, then Tm+1 ∈ X1
4m+2, S

m+1 ∈ X2
4m+2 for each m < ω.

We first show how we can use the claim to prove the lemma.
From their characterizations, it easily follows that T × 2ω ≈ S. For convenience,

put S0 = 2ω. Applying the claim we find that U ×A ≈ T k+1 ×Q× Sk ≈ T k+1 ×
Q × 2ω × Sk ≈ Q × S2k+1 ∈ X2

4.2k+3. Since U × A is closed in Z × Z, again by

[5], Theorem 3.4.15, we have that Z × Z is not P1
4(2k+1)+2. On the other hand,

applying the claim once again and using the fact that Z×Z is homogeneous whence
strongly homogeneous, Z × Z ≈ U × U ≈ T k+1 × T k+1 = T 2k+2 ∈ X1

4(2k+1)+2, a

clear contradiction.
Case 4: n = 2(k + 1) + 1 for some k < ω, [Z] = Dn(Σ0

2). Then Z is P2
4k+3,

nowhere P4k+1. If Z is P1
4k+3, then Z ∈ X1

4k+3, so Z is homogeneous; while

if Z is nowhere P1
4k+3, then Z ∈ X2

4k+3 is homogeneous. Assume U is a non-

empty clopen subset of Z which is P1
4k+3 (whence U ∈ X1

4k+3), while Z is not

P1
4k+3. By [5], Theorem 3.4.15(d), Z contains a closed subset A ∈ X2

4k+2. By

the claim above, U × A ≈ Q × T k+1 × Sk+1 ≈ Q × S2k+2 ∈ X2
4(2k+1)+3 and

U × U ≈ Z × Z ≈ Q× T k+1 ×Q× T k+1 ≈ Q× T 2k+2 ∈ X1
4(2k+1)+3. Since U ×A

is closed in Z × Z, U × A is P1
4(2k+1)+3, another contradiction.

It remains to establish the claim. We first prove by induction that if A0 is
Pi4(m−1)+2 and A1 is Pi2, then A0 × A1 is Pi4m+2. Here, “A is P1

−2” means “A

has cardinality 1”, and “A is P2
−2” means “A is compact”. Clearly then, the

statement holds for m = 0, so assume it holds for m, and A0 is Pi4m+2. Then
A0 is Pi4(m−1)+3 ∪ complete, so we can write A0 =

⋃
i<ω Bi ∪ G where each Bi is

Pi4(m−1)+2 and closed in
⋃
i<ω Bi, and G is complete. Note that B̄i = Bi if m = 0,

and B̄i = Bi∪ (B̄i∩G) is Pi4(m−1)+2∪complete is Pi4(m−1)+2 if m > 0, so in fact we

can assume that Bi is closed in A0. Write A1 =
⋃
i<ω Ci ∪H where each Ci is Pi−2

and H is complete. Now A0 × A1 =
⋃
i<ω(Bi × A1) ∪

⋃
i<ω(A0 × Ci) ∪ (G ×H),

where G ×H is complete and all Bi × A1, A0 × Ci are closed in A0 × A1. By the
inductive hypothesis each Bi ×A1 is Pi4m+2, and clearly so is each A0 ×Ci. Thus,
A0 is Pi4m+3 ∪ complete is Pi4(m+1)+2.

We now prove the claim by induction. The case m = 0 is trivial, so assume
the claim holds for m − 1. By the above, Tm+1 is P1

4m+2 and Sm+1 is P2
4m+2.

Since T is not complete, it contains a closed copy of Q, so Tm+1 contains a closed
copy of Q × Tm ∈ X1

4(m−1)+3, thus Tm+1 is not P4m by [5], Theorem 3.4.15(a),

hence nowhere P4m by (strong) homogeneity. Since Tm+1 is Baire, it easily follows
that it is nowhere P4m+1, so Tm+1 ∈ X1

4m+2. Similarly, Sm+1 contains a closed
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Q × Sm ∈ X2
4(m−1)+3, hence Sm+1 is nowhere P1

4m+2. Since Sm+1 is Baire, it is

also nowhere P1
4m+3, so Sm+1 ∈ X2

4m+2, and we are done.

If Γ0 = [A0],Γ1 = [A1] are Wadge classes, we denote by Γ0×Γ1 the Wadge class
[A0 ×A1]. The following result is proved in [11].

Lemma 5.5. Let 1 ≤ α, ξ < ω1. Then Dα(Σ0
ξ)×Dα(Σ0

ξ) ⊆ (Ďα(Σ0
ξ)× Ďα(Σ0

ξ))
∨

⊆ Dα(Σ0
ξ)× Ďα(Σ0

ξ).

The previous two lemmas allow us to exclude elements of ∆0
3 from the possible

examples.

Lemma 5.6. Let Z be a non-homogeneous space such that Z ×Z is homogeneous.
Then Z /∈∆0

3.

Proof. Clearly, we may assume that Z is a Wadge-minimal such space. Suppose
that Z ∈∆0

3. First note that Z /∈ D2(Σ0
2), otherwise as in the proof of Lemma 5.4,

Z ≈ Z × Z is homogeneous. In particular, Z × Z is in fact strongly homogeneous.
By Lemma 5.4, Z contains a non-empty clopen U with U <w Z; then U × U is
homogeneous, so U is homogeneous by minimality of Z. Thus, U ∈∆0

3−D2(Σ0
2), so

by [5], [U ] ∈ {Dα(Σ0
2), Ďα(Σ0

2)} for some 2 ≤ α < ω1. Now Z is either first category
or Baire. If Z is first category, then [U ] = Dα(Σ0

2); then also Ďα(Σ0
2) ⊆ [Z], so

Ďα(Σ0
2)×Ďα(Σ0

2) ⊆ [Z×Z] = [U×U ] = Dα(Σ0
2)×Dα(Σ0

2) ⊆ (Ďα(Σ0
2)×Ďα(Σ0

2))∨,
the final inclusion by Lemma 5.5. However, Ďα(Σ0

2)× Ďα(Σ0
2) is non-self-dual (for

it is generated by a homogeneous space), and we have a contradiction. If Z is
Baire, then similarly we obtain [U ] = Ďα(Σ0

2), and Dα(Σ0
2)× Ďα(Σ0

2) ⊆ [Z×Z] =
[U ×U ] = Ďα(Σ0

2)× Ďα(Σ0
2) ⊆ (Dα(Σ0

2)× Ďα(Σ0
2))∨ using Lemma 5.5 once more,

and we have another contradiction.

We can now prove minimality of X .

Theorem 5.7. Let Z be a non-homogeneous absolute Borel set.

(a) If Z × Z is homogeneous, then Sep(Σ0
1,Bisep(Σ0

2,Σ
0
3)) ⊆ [Z] ∪ [Ž].

(b) If Z × Z is a topological group, then Sep(Σ0
1,Bisep(Σ0

2,Σ
0
3))∨ ⊆ [Z].

Proof. (a) By Lemma 5.6, Z /∈ ∆0
3; and by Lemma 5.4, U <w Z for some non-

empty clopen U in Z. Since U × U ≈ Z × Z, it follows that U /∈ ∆0
3, and in

fact it is easily seen that U /∈ Σ0
3 ∪ Π0

3. As above, we may assume that Z is
minimal whence U is homogeneous. It then follows from [5] that [U ] ∈ {Γu, Γ̌u}
for some description u with u(0) ≥ 2, so Bisep(Σ0

2,Σ
0
3) ⊆ Γu by Lemma 5.1. First

assume that Z is first category. We will show that Z /∈ Sep(Σ0
1,Bisep(Σ0

2,Σ
0
3)),

which implies that Sep(Σ0
1,Bisep(Σ0

2,Σ
0
3)) ⊆ [Ž] by the Wadge Lemma. Suppose

Z ∈ Sep(Σ0
1,Bisep(Σ0

2,Σ
0
3)), say Z = (A0 ∩ C) ∪ (A1 − C), with C ∈ Σ0

1, A0 ∈
Bisep(Σ0

2,Σ
0
3)∨ and A1 ∈ Bisep(Σ0

2,Σ
0
3). If A0 ∩ C ∈ Bisep(Σ0

2,Σ
0
3), then Z ∈

Bisep(Σ0
2,Σ

0
3), contradicting U <w Z, so in fact [A0∩C] = Bisep(Σ0

2,Σ
0
3)∨. Being

open in Z and non-empty, (A0∩C)×(A0∩C) is homogeneous, so since A0∩C <w Z,
A0∩C is homogeneous by minimality of Z. This is easily seen to imply that A0∩C
is Baire, contradicting first categoricity of Z. If Z is Baire, a similar argument
shows that Z /∈ Sep(Σ0

1,Bisep(Σ0
2,Σ

0
3))∨ whence Sep(Σ0

1,Bisep(Σ0
2,Σ

0
3)) ⊆ [Z].

(b) By (a), Z is not complete whence first category. Now use the proof of (a).
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6. Concluding remarks

The results of this note suggest two questions. First, does there exist a homo-
geneous space whose square is (necessarily homogeneous but) not a group? The
answer is yes, rather trivially: since a non-complete group is first category, any
homogeneous non-complete Baire space will do. A Wadge-minimal example is the
space T = X1

2 from [8], [5]; its Wadge class is Ď2(Σ0
2). A minimal first category

example (not quite as trivially; see [6] or [7]) is Q×T = X1
3 , of Wadge class D3(Σ0

2).
Second, does there exist a non-homogeneous space whose square is homogeneous
but not a group? It follows from Theorem 5.7 that 2ω − X provides a Wadge-
minimal positive answer to this question, since again (2ω − X) × (2ω −X) is not
a group due to its not being first category. We state the first category counterpart
as an open question.

Question. Does there exist a zero-dimensional, separable, metrizable (Borel) non-
homogeneous first category space whose square is homogeneous but does not admit
the structure of a topological group?
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