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Abstract. In this paper Gowers’ dichotomy is extended to the context of
weaker forms of unconditionality, most notably asymptotic unconditionality.
A general dichotomic principle is demonstrated; a Banach space has either
a subspace with some unconditionality property, or a subspace with a corre-
sponding ‘proximity of subspaces’ property.

0. Notation

In this paper, unless stated otherwise, all spaces will be infinite dimensional.
Once we have a basis {xi}∞i=1 in a space X , we define a finite support vector to be
a vector of the form

∑m
i=n aixi. The range of a finite support vector x will be the

smallest interval [n,m] such that x may be written as
∑m
i=n aixi. We write x < y

for two finite support vectors x and y if the range of x ends before the range of y
begins (i.e. supp(x) = [n1,m1], supp(y) = [n2,m2] and m1 < n2). We say that the
vectors {yi}ki=1 are consecutive if y1 < y2 < · · · < yk.

A block subspace of X (with respect to a basis) is a subspace generated by a
basic sequence of consecutive finite support vectors.

Finally, define an H.I. (Hereditarily Indecomposable) space to be a Banach space,
in which two infinite dimensional subspaces have zero angle between them (i.e. for
every ε > 0 and for all Y, Z ⊂ X , subspaces, there are vectors y ∈ Y , z ∈ Z,
‖y‖ = ‖z‖ = 1, ‖y − z‖ < ε). This also means that the span of any two disjoint
infinite dimensional closed subspaces is not a closed subspace of X . The existence
of such a space was recently proved in [GM].

1. Introduction

This paper is an application of the ideas of [G] to the language of asymptotic
structure introduced in [MMiT].

The theorem at hand is the following:

Theorem 1.1 (Gowers). Every Banach space X contains a subspace with an un-
conditional basis, or an H.I. subspace.

This theorem is based on a combinatorial result which concerns the following
game. In a space X with a basis define Σ(X) = {{xi}ni=1; xi are consecutive
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finite support vectors, n ∈ N, ‖xi‖X = 1}. Choose B ⊆ Σ(X). The game begins
as player S chooses a block subspace X1 in X . Then player V chooses x1 ∈ X1

normalized with finite support. Player S chooses another block subspace of X,X2.
Player V chooses x2 ∈ X2 with norm 1 and finite support such that x1 < x2. Then
player S chooses another block subspace in which V chooses another vector with
the same properties and so on and so forth. If, for some n, {xi}ni=1 ∈ B, then
player V wins. If this never happens, player S wins. We say that there is a winning
strategy for B in X if player V has a winning strategy for this game; that is, if
∀X1 ∃x1 ∀X2 ∃x2 > x1 ∀X3 ∃x3 > x2 · · · ∃n such that {xi}ni=1 ∈ B, where all Xi are
block subspaces of X and all xi are finite support normalized vectors.

Regarding this game, the following theorem holds.

Theorem 1.2 (Gowers). Given a space X with a basis, B ⊆ Σ(X) and ∆ =
(δ1, δ2, . . . ), δi > 0, there exists Y ⊆ X, a block subspace, for which either Σ(Y ) ⊆
Bc or there is a winning strategy in Y for (B)∆ (where Bc = Σ(X)\B, (B)∆ =
{{xi}ni=1 ∈ Σ(X); n ∈ N, ∃{yi}ni=1 ∈ B, ‖xi − yi‖ ≤ δi}).

The above language is used to define the notion of asymptotic structure of an
infinite dimensional Banach space. This notion was introduced in [MMiT].

Definition 1.3. Let X be a space with a basis {ei}∞i=1. A finite dimensional space
F with a normalized basis {fi}ni=1 is asymptotic in X , if for every ε > 0 player V has

a winning strategy in X for Bε = {{xi}ni=1 ⊆ Σn(X); {xi}ni=1
1+ε∼ {fi}ni=1}, as long

as player S is confined to choosing tail subspaces (spaces of the form: Span{ei}∞i=n).
Particularly, X is asymptotically unconditional if the normalized bases {fi} of all

its asymptotic spaces are C-unconditional for some C. This notion was introduced
and used earlier, in [MiSh].

It can be shown that there always exists a subspace, all further subspaces of
which share the same asymptotic structure. Moreover, it follows from remarks in
[C] and [MMiT], combined with Theorem 1.2, that in X , one may always find a
block subspace Y , where playing the asymptotic game (S chooses tail subspaces),
playing Gowers’ game (S chooses any subspaces) or playing the game where S must
choose the same tail subspace in every step will all yield the exact same set of
asymptotic spaces for Y .

We say then that Y has stabilized asymptotic structure.
In this paper the proof method of Theorem 1.1 is applied to as. (asymptotic)

unconditionality instead of unconditionality. Since as. unconditionality is much
weaker than unconditionality, we prove a stronger alternative to it. Instead of
just obtaining that every two subspaces have arbitrarily close vectors on their unit
spheres, we show that we may choose vectors which are both “uniformly simple”
in some sense, and arbitrarily close. Thus we get a stronger “proximity” prop-
erty between subspaces, as an alternative to as. unconditionality. We continue by
considering some weaker variations of unconditionality and get results in the same
spirit.

Of course, one should ask if spaces which do not contain as. unconditional
subspaces exist at all. The space constructed in [GM], and in stronger ways the
spaces in [H] and [OS], are not asymptotically unconditional. In fact, the space
constructed in [OS] does not have any of the unconditionality properties which will
be discussed in this paper.
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I would like to express my thanks to Professor E. Odell for pointing out to
me the differences and relations between different variants of unconditionality (see
section 3), as well as for other helpful comments; and to my advisor, Professor V.
D. Milman, for advice and orientation.

2. Main result

Theorem 2.1. Every Banach space X with a basis has one of the following prop-
erties :

1. X contains a subspace with an asymptotically unconditional basis.
2. X contains a block subspace X ′ with the following property : for every ε > 0

there exists an n, such that every Y, Z ⊂ X ′, block subspaces, contain

y1 < z1 < y2 < z2 < · · · < yn < zn, such that: yi ∈ Y, zi ∈ Z,
and ∥∥∥∥ ∑n

i=1 yi
‖
∑n
i=1 yi‖

−
∑n
i=1 zi

‖
∑n
i=1 zi‖

∥∥∥∥ < ε.(∗)

Remarks. 1. Theorem 1.1 may be written in the following manner: Every Banach
space X with a basis has one of the following properties:

1. X contains an unconditional basic sequence.
2. X contains a block subspace X ′ where the following holds: for every ε > 0,

every Y, Z ⊂ X ′, block subspaces, contain y1 < z1 < y2 < z2 < · · · < yn < zn,

such that yi ∈ Y , zi ∈ Z, and ‖
∑
yi

‖
∑
yi‖ −

∑
zi

‖
∑
zi‖‖ < ε.

The difference between this result and our Theorem 2.1 lies in the number of yi’s
and zi’s. If the alternative is unconditionality, n depends on ε, Y and Z. If it is as.
unconditionality, n depends only on ε. This means that subspaces of such a space
are “closer”, in some sense, than subspaces of H.I. as. unconditional Banach spaces.

2. Note that in every Banach space with a basis, for any blocks: y1 < z1 < · · · <
yn < zn, one has: ‖

∑n yi
‖
∑n yi‖ −

∑n zi
‖
∑n zi‖‖ ≥

1
2Kn (where K is the basic constant).

Therefore, the restriction on the number of vectors cannot be improved to a bound
independent of ε.

3. If X is an H.I. space with a basis, X ′ may be taken equal to X .
4. In fact there is a winning strategy in X ′ for vectors y1 < z1 < · · · < yn < zn,

with the property ‖
∑n yi
‖
∑n yi‖−

∑n zi
‖
∑n zi‖‖ < ε. Therefore, by passing to a subspace with

stabilized asymptotic structure, the sequences {yi, zi}ni=1 may always be chosen to
span spaces arbitrarily close to asymptotic spaces of X .

Proof of Theorem 2.1. Renorm X to have a bimonotone basis. Properties 1 and 2
in the theorem are stable under renorming, therefore it suffices to prove the theorem
for the renormed space.

If for some block subspace Z, there exists K such that the normalized bases,
[fi]

2n
i=1, of all asymptotic spaces have∥∥∥∥∥

2n∑
i=1

(−1)iαifi

∥∥∥∥∥ ≤ K
∥∥∥∥∥

2n∑
i=1

αifi

∥∥∥∥∥ ∀{αi}2ni=1 ⊆ R,(1)

then Z is asymptotically unconditional. Indeed, remember that every normalized
block sequence of the basis {fi} of any asymptotic space spans in turn an asymptotic
space. Therefore (1) is true for the basis {fi}2ni=1 and for all its normalized blocks,
making the space K-unconditional.
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If such K does not exist, in a block subspace X ′ with stabilized as. structure,

for every K there exists n′′(K), and an asymptotic space [gi]
2n′′(K)
i=1 satisfying∥∥∥∥∥∥

2n′′(K)∑
i=1

(−1)iβigi

∥∥∥∥∥∥ > K

∥∥∥∥∥∥
2n′′(K)∑
i=1

βigi

∥∥∥∥∥∥ for some {βi}2ni=1 ⊆ R.(2)

Since the asymptotic structure is stabilized, in every block subspace and for all

K there are vectors 2-equivalent to the [gi]
n′′(2K)
i=1 from (2) with 2K and n′′(2K).

In particular those vectors will satisfy (2) for K and n′(K) = n′′(2K).
Now, in every block subspace and for all K we have vectors satisfying (2) for 2K

and n′(2K). By Theorem 1.2, in a further subspace there is a winning strategy for
vectors which are δ-close to such vectors, for arbitrarily small δ. Choosing δ small
enough, we can insure that the vectors produced by this strategy satisfy (2) with
K and n(K) = n′(2K).

When this strategy is played along with the subspace strategy Y, Z, Y, Z, . . .
where Y, Z ⊂ X ′ are block subspaces, the game yields a sequence of vectors y1 <
z1 < · · · < yn(K) < zn(K) such that yi ∈ Y , zi ∈ Z and for some {βi}ni=1, {β′i}ni=1 ⊆
R one has: ∥∥∥∥∥∥

n(K)∑
i=1

βiyi +

n(K)∑
i=1

β′izi

∥∥∥∥∥∥ ≥ K
∥∥∥∥∥∥
n(K)∑
i=1

βiyi −
n(K)∑
i=1

β′izi

∥∥∥∥∥∥ .
We will show in Lemma 4.1 that this means:∥∥∥∥∥

∑n(K)
i=1 βiyi

‖
∑n(K)
i=1 βiyi‖

−
∑n(K)
i=1 β′izi

‖
∑n(K)
i=1 β′izi‖

∥∥∥∥∥ < εK (εK → 0 as K →∞).

Note that if X is H.I., by [G], Remark 6, we may take X ′ equal to X . This
proves Remark 3.

3. Variations on the main result

We outline in this section some slight variations of the result in Section 2, con-
nected with different notions of unconditionality. These variations may appear
insignificant at first sight; however, an example at the end of this section, noted to
the author by E. Odell, suggests the remarkable conclusion that they are, indeed,
meaningful.

3.1. In the proof of the main result, replace (1) by alternate quasi-unconditionality,
by which we mean: ∥∥∥∥∥

2n∑
i=1

(−1)ifi

∥∥∥∥∥ ≤ K
∥∥∥∥∥

2n∑
i=1

fi

∥∥∥∥∥ .(1)′

Then (2) is replaced by ∥∥∥∥∥
2n∑
i=1

(−1)igi

∥∥∥∥∥ > K

∥∥∥∥∥
2n∑
i=1

gi

∥∥∥∥∥ .(2)′

Using the same argument one has the following result:

Theorem 3.1. Every Banach space X contains a subspace with a basis X ′, with
one of the following properties :
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1. X ′ is an asymptotic alternately quasi-unconditional space (meaning that the
normalized basis of any asymptotic space has property (1)′).

2. X ′ has property (∗) (as in Theorem 2.1), and additionally ‖yi‖ = ‖zi‖ = 1.

3.2. If we replace (1)′ by∥∥∥∥∥
2n∑
i=1

(−1)iαifi

∥∥∥∥∥ ≤ K
∥∥∥∥∥

2n∑
i=1

αifi

∥∥∥∥∥ for all 1 ≤ αi ≤ 3,(1)′′

then (2)′ becomes∥∥∥∥∥
2n∑
i=1

(−1)iβigi

∥∥∥∥∥ > K

∥∥∥∥∥
2n∑
i=1

βigi

∥∥∥∥∥ for some 1 ≤ βi ≤ 3.(2)′′

Using Lemma 4.2 from Section 4 we see that the resulting dichotomy is:

Theorem 3.2. Every Banach space X contains a subspace with a basis X ′, with
one of the following properties :

1. X ′ is an asymptotic quasi-unconditional space (meaning that the normal-
ized basis [fi]

n
i=1, of any asymptotic space satisfies quasi-unconditionality:

‖
∑n
i=1 εifi‖ ≤ ‖

∑n
i=1 fi‖, ∀εi = ±1).

2. X ′ has property (∗) (as in Theorem 2.1), and additionally 1 ≤ ‖yi‖, ‖zi‖ ≤ 3.

3.3. The same technique may be applied to the original Gowers’ dichotomy, The-
orem 1.1 (formulated as in Remark 1). This results in the following variations on
Gowers’ Theorem:

Theorem 3.3. Every Banach space X contains a subspace with a basis X ′, with
one of the following properties :

1. All its normalized block sequences are (alternately) quasi-unconditional.
2. For every ε, and for all Y, Z ⊂ X ′, block subspaces, there are vectors y1 <
z1 < · · · < yn < zn such that yi ∈ Y , zi ∈ Z,∥∥∥∥∑n
i=1 yi
‖
∑
yi‖
−
∑n
i=1 zi
‖
∑
zi‖

∥∥∥∥ < ε and 1 ≤ ‖yi‖, ‖zi‖ ≤ 3 (1 = ‖yi‖ = ‖zi‖).

The main point here is to realize that there is an essential dichotomy between
variations of global and asymptotic unconditionality on the one hand, and types of
proximity between subspaces on the other.

Odell [O] has observed that asymptotic-`1 spaces without unconditional sub-
spaces, such as the space constructed in [AD], contain quasi-unconditional non-
unconditional spaces. Therefore, by the dichotomic nature of Theorem 3.3 in the
alternately unconditional case (both alternatives of the dichotomy cannot be at-
tained simultaneously by one space) the equal distribution of the yi’s and zi’s may
not be achieved in such spaces. This gives meaning to the results of this section.

It is not yet clear whether quasi-unconditionality and alternate quasi-uncondi-
tionality coincide, and whether their asymptotic counterparts are different from
each other and from asymptotic unconditionality. Some results regarding these
questions have been achieved by Odell [O].
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4. Auxiliary lemmas

Lemma 4.1. Let C > 1. If∥∥∥∥∥
n∑
i=1

αiyi +
n∑
i=1

βizi

∥∥∥∥∥ ≥ C
∥∥∥∥∥
n∑
i=1

αiyi −
n∑
i=1

βizi

∥∥∥∥∥ ,
then ∥∥∥∥ ∑

αiyi
‖
∑
αiyi‖

−
∑
βizi

‖
∑
βizi‖

∥∥∥∥ ≤ 4

C
.

Proof. Let u =
∑n
i=1 αiyi, v =

∑n
i=1 βizi. The proof is simply a triangle-inequality

calculation. Without loss of generality, assume ‖u‖ ≤ ‖v‖. We have∥∥∥∥ u

‖u‖ −
v

‖v‖

∥∥∥∥ ≤ ∥∥∥∥ u

‖u‖ −
u

‖v‖

∥∥∥∥+

∥∥∥∥ u

‖v‖ −
v

‖v‖

∥∥∥∥
= ‖u‖

∣∣∣∣ 1

‖u‖ −
1

‖v‖

∣∣∣∣+
1

‖v‖‖u− v‖

=
‖v‖ − ‖u‖
‖v‖ +

‖u− v‖
‖v‖ ≤ 2‖u− v‖

‖v‖

≤ 2

C

‖u+ v‖
‖v‖ ≤ 2

C

(
‖u‖+ ‖v‖
‖v‖

)
≤ 4‖v‖
C‖v‖ =

4

C
.

Lemma 4.2. Let X have a bimonotone basis. If for every n, every {xi}2ni=1 ⊆ X
such that n < x1 < · · · < x2n and 1 ≤ ‖xi‖ ≤ 3 have∥∥∥∥∥

2n∑
i=1

(−1)ixi

∥∥∥∥∥ ≤ C
∥∥∥∥∥

2n∑
i=1

xi

∥∥∥∥∥ ,(∗∗)

then every {yi}2ni=1 such that n < y1 < · · · < y2n, ‖yi‖ = 1 have:∥∥∥∥∥
2n∑
i=1

εiyi

∥∥∥∥∥ ≤ (4C + 5)

∥∥∥∥∥
2n∑
i=1

yi

∥∥∥∥∥ ∀εi = ±1.

Hence X is as. quasi-unconditional.

Proof. Given εi, yi define K = {1 ≤ i ≤ 2n; εi = −1}. Partition K alternately into
K1 and K2:

2n∑
i=1

εiyi =

(
2n∑
i=1

yi − 2
∑
i∈K1

yi

)
+

(
2n∑
i=1

yi − 2
∑
i∈K2

yi

)
−

2n∑
i=1

yi.

The first and second terms are
∑2n
i=1 ε

(j)
i yi (j = 1, 2), where ε

(j)
i = ±1, and no two

consecutive ε
(j)
i ’s are equal to −1.

Let J (j) = {1 ≤ i ≤ 2n, ε
(j)
i = 1}, j = 1, 2. Partition J (j) into alternating

J
(j)
1 , J

(j)
2 :

2n∑
i=1

ε
(j)
i yi =

− 2n∑
i=1

yi + 2
∑
i∈J(j)

1

yi

+

− 2n∑
i=1

yi + 2
∑
i∈J(j)

2

yi

+
2n∑
i=1

yi.
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The first and second terms are
∑2n
i=1 ε

(j,k)
i yi (1 ≤ j, k ≤ 2), where ε

(j,k)
i = ±1, and

no two consecutive ε
(j,k)
i ’s equal 1, no four consecutive ε

(j,k)
i ’s equal −1.

Therefore
∑2n
i=1 ε

(j,k)
i yi = ±

∑l(j,k)

i=1 (−1)iz
(j,k)
i where z

(j,k)
i is the sum of at most

three consecutive yi’s (hence 1 ≤ ‖z(j,k)
i ‖ ≤ 3) and l(j,k) is the number of zi’s (hence

l(j,k) < 2n). So:∥∥∥∥∥
2n∑
i=1

εiyi

∥∥∥∥∥ ≤
2∑

j,k=1

∥∥∥∥∥
2n∑
i=1

ε
(j,k)
i yi

∥∥∥∥∥+

∥∥∥∥∥
2n∑
i=1

yi

∥∥∥∥∥
=

2∑
j,k=1

∥∥∥∥∥∥
l(j,k)∑
i=1

(−1)iz
(j,k)
i

∥∥∥∥∥∥+

∥∥∥∥∥
2n∑
i=1

yi

∥∥∥∥∥
≤

2∑
j,k=1

(C + 1)

∥∥∥∥∥∥
l(j,k)∑
i=1

z
(j,k)
i

∥∥∥∥∥∥+

∥∥∥∥∥
2n∑
i=1

yi

∥∥∥∥∥
= (4(C + 1) + 1)

∥∥∥∥∥
2n∑
i=1

yi

∥∥∥∥∥ = (4C + 5)

∥∥∥∥∥
2n∑
i=1

yi

∥∥∥∥∥ .
(Last inequality by (∗∗), modified for the possibility of an odd number of terms.)
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