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Abstract. We develop a theory for self-similar sets in Rs that fulfil the weak
separation property of Lau and Ngai, which is weaker than the open set con-
dition of Hutchinson.

1. Introduction and notation

A simple method of constructing subsets K of Rs with fractal features is the
following: Take contracting similitudes f1, . . . , fN : Rs −→ Rs with contraction
ratios ri ∈]0, 1[, i.e. |fi(x)− fi(y)| = ri|x − y| for all x, y ∈ Rs. Then the unique
non-empty compact set K with

K =
N⋃
i=1

fi(K)

is in general a fractal [4]. K is called a self-similar set since it is made up of smaller
similar copies of itself. Interesting properties of K like its topology, Hausdorff
measure or dimension seem to depend on the extent to which these small copies
overlap each other. The most celebrated condition that ensures that there is not too
much overlapping is the open set condition (OSC) of Hutchinson. It is fulfilled iff
there is a non-empty open set V such that the sets fi(V ) are disjoint and contained
in V .

However appealing this condition may be, it is not easy to check since except
for some simple examples the open set V , if it exists, may be almost as exotic as
K itself. For this reason a variety of equivalent conditions has been developed.
Schief [8] proved that the OSC is equivalent to Hα(K) > 0, where Hα is Hausdorff
measure of dimension α, and α is the so called similarity dimension of {fi}Ni=1,

i.e. the unique solution of the equation
∑N
i=1 r

α
i = 1. This result shows that an

algebraic condition developed previously by Bandt and Graf [2] is equivalent to the
OSC, too. To formulate this condition we need some more notation. Let

I := {i = (i1, . . . , in) : n ≥ 0, i1, . . . , in ∈ {1, . . . , N}}

be the set of all finite words over the alphabet {1, . . . , N}. For i ∈ I define fi :=
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fi1 . . . fin . Bandt and Graf [2] considered essentially the subset

E :=
{
f−1
i fj : i, j ∈ I, i 6= j

}
of the group of all similitudes on Rs endowed with the topology of pointwise con-
vergence. Actually they investigated a certain subset of E that contains all f ∈ E
with rf ∈]rmax, r

−1
max[ as an open subset, where rf denotes the contraction ratio of

f and rmax := max{r1, . . . , rN}. They proved that Hα(K) > 0 iff the identity id is
not contained in the closure cl(E) of E . Thus by Schief’s work [8] this means that
the OSC is equivalent to id 6∈ cl(E). This condition has made the OSC more handy.

However, things are still not as simple as one might hope. For example consider
similitudes f1, . . . , fN of the form fi(x) = x/n+ yi, where n, yi ∈ Z with |n| ≥ 2.
Clearly the OSC does not hold for N > n. Since even for N ≤ n the OSC may
fail, the theory of OSC does not help us to calculate the Hausdorff measure and
dimension of K in many cases. Moreover, to the best of our knowledge, there does
not exist a general classification of those parameters (n; y1, . . . , yN) for which the
OSC is satisfied.

That was the reason why we looked for a separation condition that is weaker
than the OSC but still strong enough to obtain good results. A natural way to
create a condition that is less restrictive than the OSC is the following: We say
that the weak separation property (WSP) is fulfilled iff id 6∈ cl(E\{id}). I.e. the
WSP holds iff the identity is not an accumulation point of E . We adopt the term
WSP from Lau and Ngai [6] who gave a definition that is different but turns out
to be equivalent to ours. Note that the OSC is valid iff the WSP holds and fi 6= fj

for all i 6= j.
At first glance this might seem to be merely a minor generalization of OSC but

in fact it increases the class of tractable self-similar sets considerably. Indeed, in
the example mentioned above the WSP is fulfilled for any choices of n, yi ∈ Z with
|n| ≥ 2.

For the investigation of the WSP we may simplify the notation a little bit, i.e.
we may forget about the indices of the similitudes. Thus we define F := {fi : i ∈ I}
to be the semigroup with identity generated by {fi}Ni=1. The set F−1F := {f−1g :
f, g ∈ F} will replace E . To formulate some conditions that are equivalent to the
WSP we set

Fb := {f ∈ F : rf ∈ ]brmin, b] } for b ≥ 0 and F :=
⋃
b>0

{f−1g : f, g ∈ Fb},

where rmin := min{r1, . . . , rN}. Note that K =
⋃
f∈Fb f(K) for all b ∈]0, 1[.

Finally, we adapt some of the definitions given in [2], [8] to our requirements and
set

Fa,U,M := {g ∈ Fa diamU : g(M) ∩ U 6= ∅} and γa,M := sup
U⊆Rs

]Fa,U,M

for a > 0 and U,M ⊆ Rs.
The dimension β of self-similar sets that fulfil the WSP but not the OSC is

strictly less than α. Indeed, β is the exponential growth rate of ]Fb for b↘ 0, i.e.
β = − limb↘0 log ]Fb/ log b. Alternatively β may be characterized as the limit of
the similarity dimensions αb of Fb for b↘ 0. We shall show how to compute β for
a generalization of the one-dimensional example given above to higher dimensions.
As in the case of OSC, K has positive Hausdorff measure at its dimensional value β
when the WSP holds. Schief [8] proved that if α = s and K has positive Lebesgue
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measure λ(K) then K has a non-empty interior. We will show that if the WSP is
satisfied and K has dimension s then K contains interior points too. This might be
a further step towards answering the question (e.g. [8]) whether every self-similar
set with positive Lebesgue measure has interior points.

2. Results

We start with a list of conditions that are all equivalent to the weak separation
property, if K is in general position, i.e. not contained in a hyperplane.

Theorem 1. If K is not contained in a hyperplane then the following conditions
are equivalent.

(1a) There are x ∈ K and ε > 0 such that for all h ∈ F either h(x) = x or
|h(x) − x| ≥ ε.

(1b) There are x ∈ Rs and ε > 0 such that for all h ∈ F either h(x) = x or
|h(x) − x| ≥ ε.

(2a) There are x0, . . . , xs in general position and ε > 0 such that for any h ∈ F
and any j ∈ {0, . . . , s} either h(xj) = xj or |h(xj)− xj | ≥ ε.

(2b) There are x0, . . . , xs in general position and ε > 0 such that for any h ∈
F\{id} there is j ∈ {0, . . . , s} with |h(xj)− xj | ≥ ε.

(3a) The identity is an isolated point of F−1F .
(3b) The identity is an isolated point of F .
(4a) γa,M <∞ for all a > 0 and all bounded M ⊆ Rs.
(4b) γa,M <∞ for some a > 0 and some non-empty M ⊆ Rs.
(5a) For all x ∈ Rs there is some ` ∈ N such that for any f ∈ F and any b > 0,

every ball with radius b contains at most l elements of Fb (f(x)).
(5b) There are x ∈ Rs and ` ∈ N such that for any f ∈ F and any b > 0, every

ball with radius b contains at most l elements of Fb (f(x)).

Here Fb(y) := {g(y) : g ∈ Fb}.

(1a) – (3b) are analogues of the conditions developed by Bandt and Graf [2].
(4a) and (4b) follow Schief’s approach [8] implicitly contained in [2]. (5b) is the
original version of the weak separation property of Lau and Ngai [6] with only minor
modification. In fact Lau and Ngai considered F ∗b := {fi : i ∈ Ib} instead of Fb,
where

Ib :=
{
i = (i1, . . . , in) : ri1 · . . . · rin ≤ b < ri1 · . . . · rin−1

}
.

But since

F ∗b ⊆ Fb ⊆ F ∗b ∪ F ∗brmax
∪ . . . ∪ F ∗brmmax

(6)

for m with rm+1
max ≤ rmin the two definitions are equivalent. We prefer Fb since Fb

does not depend on the way the elements of F are generated by f1, . . . , fN .

Proof of Theorem 1. The implications (ia)⇒ (ib) for i = 1, . . . , 5 are trivial.
(1b)⇒ (2a) : With respect to the Hausdorff metric, Fb(x) converges towards K

as b↘ 0. Thus since K is not contained in a hyperplane, there are g0, . . . , gs ∈ F
such that the points xj := gj(x), j = 0, . . . , s, are in general position. So for all
j ∈ {0, . . . , s} any h ∈ F either keeps xj fixed or fulfills

|h(xj)− xj | = rgj |g−1
j hgj(x)− x| ≥ min

j
rgj ε

since g−1
j hgj ∈ F .
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(2b)⇔ (3b) : This follows from the observation in [2] that for any x0, . . . , xs
that are in general position the sets Wε, ε > 0, of all similtudes h on Rs with
|h(xj)− xj | < ε for all j = 0, . . . , s, form a neighborhood base of the identity.

(3b)⇒ (3a) : Note that F is the intersection of F−1F and the open set of all

similitudes h on Rs with rh ∈]rmin, r
−1
min[.

(2b)⇒ (4a) : Without loss of generality we may assume x0, . . . , xs ∈ M . Let

U ⊆ Rs with diamU > 0. We again follow Bandt and Graf [2] and observe that for
any f, g ∈ Fa,U,M that are not identical we have |f(xj)− g(xj)| ≥ a diamU rminε
for some j = j(f, g) ∈ {0, . . . , s}. Now suppose, F ′ is a subfamily of Fa,U,M such
that j(f, g) is the same for all f, g ∈ F ′. Then for ρ := a rminε/2 the open balls
B (f(xj), ρ diamU) , f ∈ F ′, with centers f(xj) and radius ρ diamU are pairwise
disjoint and their centers are contained in a ball of radius diamU(1 + 2a diamM).
Using Lebesgue measure we see that ]F ′ ≤ (1 + 2a diamM + 2ρ)s/ρs =: Na,M .
Since Na,M is independent of U , Ramsey’s theorem yields that there is a finite
constant Ca,M with ]Fa,U,M ≤ Ca,M for all U ⊆ Rs.

(4a)⇒ (5a) : Denote by B(y, b) the closed ball with center y and radius b. Then
for any x ∈ Rs

sup
b>0

sup
y∈Rs

sup
f∈F

]Fb (f(x)) ∩B(y, b) ≤ sup
b,y,f

]
{
g ∈ Fb : g (f(x)) ∈ B(y, b)

}
≤ sup

b,y
]
{
g ∈ Fb : g (F (x)) ∩B(y, b) 6= ∅

}
≤ γ1/2,F (x)

which is finite since F (x) is bounded.
(5b)⇒ (4b) : Denote by c the maximal number of unit balls needed to cover a

set of diameter two. Then

γ1/2,{x} ≤ sup
U⊆Rs

c sup
z∈Rs

]
{
f ∈ FdiamU/2 : f(x) ∈ B(z, diamU/2)

}
= c sup

b>0
sup
z∈Rs

∑
y∈Fb(x)∩B(z,b)

] {f ∈ Fb : f(x) = y}

≤ c C sup
b,z

]Fb(x) ∩B(z, b) ≤ c C `,

where C <∞ exists by the following observation.

Lemma 1. If K is not contained in a hyperplane, then (5b) implies

sup
y∈Rs

sup
b>0

] {f ∈ Fb : f(x) = y} <∞,(7)

where x ∈ Rs is as in (5b).

Proof. Let g0, . . . , gs ∈ F be such that the points xi := gi(x), i = 0, . . . , s, are in
general position and set ρ := maxi |xi−x|. Since any similarity h is determined by
its values h(xi), i = 0, . . . , s, we get

sup
y,b

] {f ∈ Fb : f(x) = y} ≤ sup
y,b

[] {f(xi) : f ∈ Fb, i ∈ {0, . . . , s}, f(x) = y}]s ,

where [m]s := m · (m− 1) · . . . · (m− s). This is less than or equal to[
s∑
i=0

sup
y,b

] {f(xi) : f ∈ Fb, f(x) = y}
]
s

≤
[

s∑
i=0

sup
y,b

]
[
Fb(xi) ∩B (y, bρ)

]]
s
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because |f(xi)− y| = rf |xi − x| ≤ bρ. Thus if we denote by cρ the number of
unit balls, needed to cover a ball of radius ρ, we get supy,b ] {f ∈ Fb : f(x) = y} ≤
[(s+ 1)cρ`]s <∞.

(4b)⇒ (1b) : Without loss of generality, assume M = {y} for some y ∈ Rs and

set U := B(y, 1/2a). Modifying an idea of Schief [8] we define

IU (f) :=
{
g ∈ Frf : g(M) ∩ f(U) 6= ∅

}
for f ∈ F.(8)

Observe that IU (f) is just Fa,f(U),M and thus there exists some f ∈ F with

]IU (f) = max {]IU (g) : g ∈ F} .(9)

We show that for arbitrary v ∈ F

IU (vf) = v IU (f).(10)

By (9) we only have to show ⊇. But this is clear, since vg ∈ Frvf for g ∈ Frf and
g(M) ∩ f(U) 6= ∅ implies vg(M) ∩ vf(U) 6= ∅.

Now set x := f(y). We construct ε > 0 such that (1b) is fulfilled. Let h =
v−1w ∈ F , where v, w ∈ Fb for some b > 0. We may assume rw ≤ rv because
if not we have |h(x)− x| ≥

∣∣x− h−1(x)
∣∣ and the following works for h−1 instead

of h. First, we consider the case wf ∈ IU (vf). Then by (10) wf = vg′ for some
g′ ∈ IU (f). Hence |h(x)− x| =

∣∣v−1wf(y)− f(y)
∣∣ = |g′(y)− f(y)|. If g′(y) 6= f(y)

this is not smaller than ε1 := min {|g(y)− f(y)| : g ∈ IU (f), g(y) 6= f(y)} .
Now we consider the case wf 6∈ IU (vf). This means v−1wf(y) 6∈ f(U) since by

w ∈ Frv we have wf ∈ Frvf . Due to f(U) = B(x, rf /2a) this implies |h(x) − x| ≥
rf/2a =: ε2. Finally set ε := min{ε1, ε2}.

(4a)⇒ (1a) : In the same manner as in the proof of (4b) ⇒ (1b) we construct

for some arbitrary y ∈ K some f and ε such that x = f(y) and ε satisfy (1b). But
now we have x ∈ K since f(K) ⊆ K.

If K is not in general position, the conditions of Theorem 1 need not be equivalent
any more. For instance if g1 and g2 are rotations in the plane that keep the origin
fixed then the self-similar set K which is generated by fi(x) = rgi(x) consists of
the origin only. Thus (1a) if fulfilled trivially. But if the angles of rotation of g1

and g2 are incommensurable one easily sees that (3b) is no longer valid.
So if K is contained in a hyperplane, one has to consider the set of similitudes

restricted to the subspace spanned by K.

Definition. A family {fi}Ni=1 of contracting similitudes is said to have the weak
separation property (WSP) if one of the conditions of Theorem 1 holds.

As already mentioned in the introduction, OSC and WSP are related in the
following manner.

Proposition 1. Assume that K is not contained in a hyperplane. Then the OSC
holds if and only if the WSP holds and fi 6= fj for all i 6= j.

What about the dimension of K? From [3] we know that for self-similar sets
all usual definitions of dimensions such as Hausdorff, box-counting and packing
dimensions give the same value. Thus we write simply dimK for the dimension
of K. In this context it is convenient to use box-counting dimensions. Recall [4]
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that the lower and the upper box-counting dimensions of a subset S of Rs may be
defined by

dimBS := lim inf
b↘0

logNb(S)

− log b
and dimBS := lim sup

b↘0

logNb(S)

− log b
,

where Nb(S) is the smallest number of open balls with radius b that cover S.
The following theorem shows that if the WSP holds, dimK may also be charac-

terized by the exponential growth rate of ]Fb for b↘ 0.

Theorem 2. For any arbitrary set {fi}Ni=1 of contracting similitudes

dimK ≤ β := lim
b↘0

log ]Fb
− log b

= lim
b↘0

αb,

where αb, b ∈]0, 1[, is the similarity dimension of Fb, i.e. the solution of
∑
f∈Fb r

αb
f =

1. If {fi}Ni=1 has the WSP and K is not contained in a hyperplane

dimK = β = lim
b↘0

log ]Fb(x)

− log b
for all x ∈ Rs.

The proof makes use of the following lemmas.

Lemma 2. If the WSP holds and K is not contained in a hyperplane, then for any
x ∈ Rs there exists some finite C such that ]Fb(x) ≤ ]Fb ≤ C]Fb(x) for all b > 0.

Proof. The first inequality is obvious. Since (5a) and (5b) are equivalent, (7) holds
for all x ∈ Rs by Lemma 1. This implies the second inequality.

Lemma 3. If {B1, . . . , Bn} is a family of open balls in Rs, there is a disjoint

subfamily {Bi1 , . . . , Bir} such that λ
(⋃n

j=1Bj

)
≤ 3s

∑r
p=1 λ(Bip ).

This may be found in [1, Lemma 2.3.6], formulated for cubes instead of balls.

Proof of Theorem 2. First, we prove the existence of β. Note that ]Fb increases
monotonically when b decreases and furthermore Fb1b2 ⊆ Fb1(Fb2 ∪Fb2r−1

min
) for any

b1, b2 ∈]0, 1[. Hence ]Fb1b2 ≤ 2]Fb1]Fb2 . Now we follow an idea of Milnor [7, page 2].
For each fixed a ∈]0, 1[, setting k = [log b/ log a] + 1, the inequalities ]Fb ≤ ]Fak ≤
(2]Fa)k ≤ (2]Fa)log b/ log a+1 imply that lim supb↘0(]Fb)

−1/ log b ≤ (2]Fa)−1/ log a.

Therefore lim supb↘0(]Fb)
−1/ log b ≤ infa(2]Fa)−1/ log a ≤ lim infa↘0(]Fa)−1/ log a

and the existence of β follows.
Since ]Fb(brmin)αb <

∑
f∈Fb r

αb
f = 1 ≤ ]Fbbαb , we have

log ]Fb
− log brmin

< αb ≤
log ]Fb
− log b

for b ∈]0, 1[

and conclude β = limb↘0 αb.
For arbitrary x ∈ Rs the family of sets Fb(x), b ∈]0, 1[, approximates K, in the

sense that for some finite cx

dH (K,Fb(x)) < cxb for all b ∈]0, 1[,(11)

where dH is the Hausdorff metric [4]. This implies that K may be covered by the
balls B(y, cxb), y ∈ Fb(x). Thus Ncxb(K) ≤ ]Fb(x) ≤ ]Fb, giving dimK ≤ β.
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Now suppose that the WSP holds and K is in general position. In view of Lemma
2 it suffices to prove

lim inf
b↘0

log ]Fb(x)

− log b
≤ dimK(12)

for some x. Choose x and ε according to (1b). Fix b ∈]0, 1[ and consider the family
B(y, 2cxb), y ∈ Fb(x), of open balls. By Lemma 3 there exists a subset Y of Fb(x),
such that the balls of the corresponding subfamily are pairwise disjoint and fulfil

3s]Y λ (B(0, 2cxb)) ≥ λ
( ⋃
y∈Fb(x)

B(y, 2cxb)

)
≥ λ

( ⋃
y∈Fb(x)

B (y, brx)

)
,

where rx := min{2cx, rminε/2}. Due to the choice of x and ε the union above is
disjoint. Hence we get

]Y ≥ λ (B (0, rx))

3sλ (B(0, 2cx))
]Fb(x) = c′x]Fb(x),(13)

where c′x > 0 does not depend on b. (11) implies that for each y ∈ Fb(x) there
is some zy ∈ K such that |zy − y| < cxb. This and the disjointness of the balls
B(y, 2cxb), y ∈ Y, yield that zy1 and zy2 have distance at least 2cxb for different
y1, y2 ∈ Y . Hence Ncxb(K) ≥ Ncxb ({zy ∈ K : y ∈ Y }) = ]Y ≥ c′x]Fb(x) by (13),
and (12) follows.

The problem of determining growth rates of finitely generated groups has been
treated first by Milnor [7]. Since then the growth functions of a wide variety of
groups have been studied (e.g. [9], [10]). However, to the best of our knowledge,
there does not exist a general algorithm yet that applies to the problem of deter-
mining the exponential growth rate β. For special cases we will describe in section
3 how to find a linear recurrence relation for ]Fb that enables us to compute β.

We call β the growth dimension of K or more correctly of {fi}Ni=1, in contrast to
the similarity dimension α. We do not know whether there exists some self-similar
set K in general position with dimK < min{β, s}.

The following proposition clarifies the relation between α and β.

Proposition 2. In general β ≤ α. Equality holds if and only if fi 6= fj for all
i 6= j.

Proof. Due to (6) and ]F ∗brmax
≤ N]F ∗b there is some finite c such that ]F ∗b ≤ ]Fb ≤

c]F ∗b for all b ∈]0, 1[. Hence the exponential growth rates of ]Fb and ]F ∗b agree.
Thus by the same argument as in the proof of Theorem 2 we have β = limb↘0 α

∗
b ,

where α∗b is the similarity dimension of F ∗b .
Note that

∑
i∈Ib r

α
fi

= 1 and hence α∗b ≤ α for all b ∈]0, 1[. Thus β ≤ α. Moreover

it follows that β = α if fi 6= fj for all i 6= j since in this case α∗b = α for all b ∈]0, 1[.
For the converse, suppose there are different i, j ∈ Ib for some b with fi = fj. If
we replace {f1, . . . , fN} by F ∗b , the growth dimension β does not change but the
similarity dimension decreases to α∗b . Consequently β ≤ α∗b < α.

We now turn to the Hausdorff measure of dimension β.

Corollary. If K is not contained in a hyperplane then

0 ≤ sup
a>0

1

aβγa,K
≤ Hβ(K) <∞.

In particular the WSP implies Hβ(K) > 0 when K is in general position.
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Proof. Since dimK ≤ β by Theorem 2, Hβ(K) turns out to be finite by a result of
Falconer [3, Theorem 4]. If the WSP is not satisfied, the lower bound degenerates
into 0 according to (4b), so nothing more has to be shown. Otherwise the claim
follows from Falconer [3, Theorem 2].

We conjecture that also the converse is true and Hβ(K) > 0 implies the WSP,
but cannot prove it. This would generalize Schief’s theorem [8]. However, Schief’s
observation that K contains interior points if dimK = s and the OSC is fulfilled is
still true if we replace the OSC by the WSP as the following theorem shows.

Theorem 3. If the WSP holds and K has dimension s then K contains interior
points.

Proof. 1. By the corollary we know λ(K) > 0. Choose x ∈ K and ε > 0 according
to (1a), set U = B(x, ε/2) and define IU (f) as done in (8) with K instead of
M . By (4a) we can choose f ∈ F such that (9) is valid. f(U) intersects g(K)
for all g ∈ IU (f). Therefore ρ := (rfε/2 − max{d(f(x), g(K)) : g ∈ IU (f)})/3
is positive. Note that by self-similarity and f(x) ∈ K the intersection of K and
the ball B = B (f(x), ρ) has positive Lebesgue measure. For abbreviation we set
r̂ := rfε/2− ρ. We claim, that there is some y ∈ B with B(y, r̂) ⊆ K. This would
prove the theorem.

2. First observe that Uy := f−1 (B(y, r̂)) is contained in U for all y ∈ B and
therefore IUy (g) ⊆ IU (g) for all g ∈ F . On the other hand, by the definition
of ρ, we have IU (f) ⊆ IUy (f) and consequently ]IUy (f) ≤ maxg∈F ]IUy (g) ≤
maxg∈F ]IU (g) = ]IU (f) ≤ ]IUy (f). It follows that f is maximal not only with
respect to U , but also with respect to each Uy and hence we have as in (10)

IUy (gf) = g IUy(f) for all y ∈ B, g ∈ F.(14)

3. Now assume, that our claim made in part 1 is false and hence b(y, r̂) < 1 for
all y ∈ B where

b(z, r) :=
λ (B(z, r) ∩K)

λ (B(z, r))
for z ∈ Rs, r > 0.

Then there is some positive δ such that λ(Bδ) > 0 for Bδ := {y ∈ B ∩K : b(y, r̂) ≤
1− δ}. (14) yields for all y ∈ Bδ and g ∈ F

b (g(y), rg r̂) =
λ (B (g(y), rgr̂) ∩K)

λ (B (0, rgr̂))
=

λ
(
gf [Uy] ∩

⋃{
v(K) : v ∈ IUy (gf)

})
rsgλ (B (0, r̂))

=
λ
(
f [Uy] ∩

⋃{
v(K) : v ∈ IUy (f)

})
λ (B (0, r̂))

=
λ (B (y, r̂) ∩K)

λ (B (0, r̂))

= b(y, r̂) ≤ 1− δ.(15)

In part 4 we will construct some positive c such that

λ

( ⋃
g∈Fb

g(Bδ)

)
≥ c for all 0 < b < 1.(16)

This yields the desired contradiction. Indeed, by Lebesgue’s density theorem [4]
and Egoroff’s theorem there is a measurable subset A of K such that λ(K \A) < c
and b(a, r) converges uniformly to 1 on A as r tends to 0. In particular there is
some 0 < r0 < 1 such that b(a, r) > 1− δ for all a ∈ A and 0 < r ≤ r0. But due to
(16) and (15) there are y ∈ Bδ and g ∈ Fr0 with g(y) ∈ A and b (g(y), rg r̂) ≤ 1− δ.
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4. It remains to show (16). (1a) implies that for any b ∈]0, 1[ and any g1, g2 ∈ Fb
the balls g1(B) and g2(B) are either concentric or disjoint, depending on whether
g1 (f(x)) and g2 (f(x)) coincide or not. Let F ′b be a subset of Fb with different
g (f(x)) for different g ∈ F ′b and the same cardinality as Fb (f(x)). Then we have

λ

( ⋃
g∈Fb

g(Bδ)

)
≥
∑
g∈F ′b

λ (g(Bδ)) = λ(Bδ)
∑
g∈F ′b

rsg

≥ λ(Bδ)(brmin)s]Fb/C ≥ λ(Bδ)r
s
min/C =: c > 0.

The third to last inequality follows from Lemma 2 and the second to last inequality
is a consequence of

0 < λ(K) = λ

( ⋃
g∈Fb

g(K)

)
≤
∑
g∈Fb

λ (g(K)) ≤ λ(K)bs]Fb.

3. Example

We give a generalization of the class of examples mentioned in the introduction.
Another type of examples, involving P.V. numbers, is treated in [6].

Proposition 3. Let h be a contracting similitude on Rs and Γ a discrete group
of isometries with Γh ⊆ hΓ. Furthermore let e1, . . . , eN be positive integers and

s1, . . . , sN ∈ Γ. Then {heisi}Ni=1 has the WSP.

Proof. Since all heisi are in G =
{
hk : k ∈ N0

}
Γ and G is a semigroup we have

F ⊆ G. Therefore Fb ⊆
{
hk : rkh ≤ b < rk−e1h

}
Γ, if we assume e1 ≥ ei for all i.

Consequently

F ⊆
⋃
b>0

Γ
{
h−k : rkh ≤ b < rk−e1h

}{
h` : r`h ≤ b < r`−e1h

}
Γ

⊆ Γ
{
hk : −e1 ≤ k ≤ e1

}
Γ ⊆

{
hk : 0 ≤ k ≤ e1

}
Γ ∪ Γ

{
hk : −e1 ≤ k < 0

}
.

Since Γ is discrete it follows that F is discrete also and (3b) holds.

In the following we shall indicate how one may determine the dimension of self-
similar sets of this kind. For the sake of simplicity we assume e1, . . . , eN = 1. Set
Gn := Frnh for n ≥ 0. Then we have

β = lim
n→∞

log ]Gn
−n log rh

and Gn =
N⋃
i=1

hsiGn−1 for n ≥ 1.(17)

We shall derive a linear recurrence relation for ]Gn which is given by the character-
istic polynomial of an integer matrix A. The entries of A are indexed by elements
of the index set Q := {Q ⊆ S : id ∈ Q}, where S = {s ∈ Γ : sGn ∩ Gn 6= ∅ for
some n ≥ 0}. Q is finite since S is finite. Indeed, if f, g ∈ Gn with sf = g for some
s ∈ S then |s(0)| = |gf−1(0)| ≤ |gf−1(0)− gf−1(y)| + |gf−1(y)| = |y| + |gf−1(y)|
for all y ∈ Rs. Thus if we choose y ∈ f(K) then gf−1(y) ∈ g(K) ⊆ K. Hence
s(0) ∈ B(0, 2 max{|y| : y ∈ K}) for all s ∈ S. Since Γ is discrete there are only
finitely many s ∈ Γ that fulfil this relation [5, Folgerung 3.11] and consequently S
is finite.
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For Q ⊆ Γ we define

z(Q,n) := ]
⋂
s∈Q

sGn.

We are interested in determining z({id}, n) = ]Gn. To this end we use a general-
ization of the ordinary sieve formula:

Lemma 4. Let X,Y,Ax,y (x ∈ X, y ∈ Y ) be finite sets with X,Y 6= ∅. Then

]
⋂
x∈X

⋃
y∈Y

Ax,y =
∑

P⊆X×Y, π1(P )=X

(−1)]P+]X ]
⋂

(x,y)∈P
Ax,y,

where π1 is the projection to the first coordinate.

This lemma may be proved by induction over ]X . Thus we obtain by (17)

z(Q,n) =
∑

P⊆Q×{1,... ,N}, π1(P )=Q

(−1)]P+]Q z(Q′P , n− 1),(18)

where Q′P := {h−1shsi : (s, i) ∈ P} ⊆ Γ. The identity need not be in Q′P
yet, so we replace Q′P by QP = s−1

P Q′P , where sP ∈ Q′P is arbitrary. We may
omit those summands with QP 6∈ Q since they vanish by definition of S. Note
that there may be different P with the same QP . Thus by summing up we get
z(Q,n) =

∑
R∈Q′ aQ,R z(R,n− 1) for particular integers aQ,R and some Q′ ⊆ Q.

Starting with Q = {id} we may construct a set Q′ ⊆ Q with {id} ∈ Q′ and an
integer matrix A = (aQ,R)Q,R∈Q′ such that

(z(Q,n))Q∈Q′ = A (z(Q,n− 1))Q∈Q′ for all n ≥ 1.

Induction over n yields ]Gn = (An){id},{id}. Hence ]Gn fulfills the difference equa-
tion that belongs to the characteristic polynomial of A, and β may be computed
by determining the eigenvalues of A.

In order to illustrate this algorithm, we consider the simplest non-trivial example.
Let fi(x) = x/3+yi where y1 = 0, y2 = 1 and y3 = 3. Since f1f3 = f2f1, the OSC is
not fulfilled. However the WSP holds. Indeed, let Γ be the group of all translations
tz by z ∈ Z, choose s1 = id, s2 = t3, s3 = t9 and h(x) = x/3. Then fi = hsi and
the assumptions of Proposition 3 are fulfilled. Since K is contained in the intervall
E = [0, 9/2] we have s(E) ∩ E 6= ∅ for all s ∈ S. Hence S ⊆ {t−4, . . . , t4}. Thus
starting with Q = {id} we get by (18)

z({id}, n) = z({id}, n− 1) + z({t3}, n− 1) + z({t9}, n− 1)− z({id, t3}, n− 1)

−z({id, t9}, n− 1)− z({t3, t9}, n− 1) + z({id, t3, t9}, n− 1)

= 3 z({id}, n− 1)− z({id, t3}, n− 1).

With some more effort we get z({id, t3}, n) = z({id}, n−1). Consequently we obtain
for n ≥ 2 the recurrence relation ]Gn − 3 ]Gn−1 + ]Gn−2 = 0 which belongs to

the characteristic polynomial of the matrix A =

(
3 −1
1 0

)
. Since ]G0 = 1 and

]G1 = 3 we get

]Gn =
5 + 3

√
5

10

(
3 +
√

5

2

)n
+

5− 3
√

5

10

(
3−
√

5

2

)n
.

Consequently by (17) dimK = β =
(
log(3 +

√
5)− log 2

)
/ log 3 ≈ 0.876036.
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