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ABSTRACT. We characterize those Banach spaces X, in which every X-valued
measure with relatively compact range admits product with any vector mea-
sure and with respect to any bilinear map, as those X such that IT; (X, ¢1) =
L(X,¢1). We also show that this condition is equivalent to the condition that
every sequence in X that lies inside the range of a measure with relatively
compact range, actually lies inside the range of a measure of bounded varia-
tion.

INTRODUCTION

In [PR] the authors, answering some questions in [AD], studied those Banach
spaces having the property that their compact sets lie inside the range of a vector
measure (or, equivalently, every norm null sequence lies inside the range of a vec-
tor measure). They characterize these Banach spaces as those whose topological
dual is isomorphic to a subspace of an Li-space or, equivalently, as those Banach
spaces X satisfying IT; (X, ¢1) = M (X, ¢;). They also studied the same problem
when the measures have bounded variation; the answer this time is that only finite
dimensional Banach spaces have this property.

On the other hand it is known that, in contrast with the scalar case, the product
of two vector measures with respect to a bilinear map does not always exist. This
problem has been studied in several papers (see [S] for references), where some
conditions on the vector measures and on the bilinear map are given in order to
assure the existence of the product of the vector measures.

In this paper we show the link between these two kinds of problems. We study
those Banach spaces X having the property that every X-valued vector measure
with relatively compact range admits product with any vector measure and with
respect to any bilinear map. We characterize these Banach spaces as those X in
which every sequence lying inside the range of a vector measure with relatively com-
pact range, actually lies inside the range of a vector measure of bounded variation,
or equivalently, in terms of operators, as those X satisfying IT; (X, ¢1) = L(X, ¢1) ,
which could be considered as the condition complementary to the one obtained in
[PR].
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NOTATION

We will consider Banach spaces over the real numbers. If X is a Banach space,
X* denotes its dual space. We will denote by £(X,Y") the space of bounded linear
operators, by IL,(X,Y"), with 1 < p < oo, the space of p-summing operators, and by
N(X,Y) the space of nuclear operators from X into Y, endowed with their natural
norms || - ||, mp(+), n(+), respectively.

If u : ¥ — X is a countably additive vector measure defined on a o-algebra of sub-
sets of a set €, the variation of 4 is the set function |u|(A) = sup {3 ,cp lu(A)]} .
where the supremum is taken over all the measurable and finite partitions P of
A, and the semivariation of p is ||p]|(A) = sup{|z*p|(4) : ||z*|| < 1}. We denote
by ||| (respectively |u|) the total semivariation (respectively, variation) of y, that
is, ||zl = Nlell(Q) (Ju| = |u](2)). We shall say that p is of bounded variation if
|u| < oo.

The range of p will be denoted by rg(u), that is, rg(n) = {u(A4) : A € I}
We shall say that p has finite range or that p is a finite range measure if the set
rg(p) is finite, and we shall say that p has finite-dimensional range if there exists
a finite-dimensional subspace E of X such that rg(u) C E. By ca(X, X) we denote
the Banach space of all countably additive X-valued measures defined on ¥ with
the semivariation norm; we denote it ca(X) when X = R. The closed subspace
of ca(X, X) consisting of those measures whose range is relatively compact will be
denoted by cca(X, X), and the subspace consisting of those measures with finite-
dimensional range by fdca(Z, X).

Let ¥ and X’/ be o-algebras of subsets of the sets  and € respectively. Let
X,Y,Z be Banach spaces and ¢ : X X Y — Z a continuous bilinear map. If
u:X — X, v: Y — Y are countably additive vector measures, then the product of
1 and v with respect to ¢ is the finite additive measure defined on the algebra X x ¥/
generated by the measurable rectangles, given by p X4 V(A x B) = ¢(u(A),v(B)),
AeX,BeY.

We denote by ¥ ® ¥/ the o-algebra generated by ¥ x ¥’ and by u ®¢ v the
countably additive extension of p x4 v to ¥ ® X', if such an extension exists (in
that case we will say that p and v admit product with respect to ¢). In contrast
to the situation for scalar measures, it is known that the product p x4 v may fail
to have a countably additive extension to ¥ ® X’ [DP].

PRODUCT OF VECTOR MEASURES

It is known that when we consider ¢y : X xY — X®Y, given by ¢\ (z,y) = 2@y,
the natural bilinear map with values in the injective tensor product of X and Y,
then every pair of measures p and v with respective values in X and Y admit
product with respect to ¢v; that is, u ®4, v exists ([S]). This is not true when we
consider ¢p : X xY — X®Y, the natural bilinear map with values in the projective
tensor product of X and Y ([K]). In this case we denote p X4, v by 1 XA v and by
1A v the countably additive extension, if such an extension exists, and we will say
that p admits projective tensor product with v, or that p and v admit projective
tensor product.

Remark. Observe that if X,Y,Z are Banach spaces and if we denote by ug :
X®Y — Z the bounded operator induced by a continuous bilinear map ¢ :
XxY — Z,then ¢ = ugopn. Therefore, if p® v exists, then p®4v exists and coin-
cides with the measure ug (@ v) given by ug (i @a v)(A X B) = ug(u(A) @ v(B)).
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This tells us that if g and v admit projective tensor product, then they admit
product with respect to any continuous bilinear map defined on X x Y.

Proposition 1. If every co-valued vector measure with relatively compact range
admits projective tensor product with any X -valued measure with relatively compact
range then every operator from X into ¢1 is 1-summing.

Proof. Let u be an operator from X into ¢;. Then u induces a continuous bilinear
form ¢, : X x co — R given by ¢,,(z,y) = u(z)(y), with || ¢, ]| = [[u]. Given . and
¥, two o-algebras, we consider the bilinear map P55y : cca(3, X) x cca(X', co) —
ca(¥ ®X'), given by Ps sy (1t,v) = pp ®¢, v. This map is well defined because of
the hypothesis and by the Remark at the beginning of this Section. Indeed 1 ®g4, v
is the measure ¢, (1 ® v). P(s sy is bilinear, and using the closed graph theorem
it is easy to see that it is separately continuous, so it is continuous.

We claim that there exists an absolute constant Cy such that ||Px )| < Cy
for every pair of o-algebras ¥ and Y. Suppose that this is not the case; then we
can find two sequences of o-algebras (£,,),>1 and (X,),>1 such that the operator
Ps, sy cca(En, X) x cca(¥],, co) — ca(X, ® X)) has norm bigger than n4™. We
can choose two sequences of measures i, € cca(Z,,X) and v, € cca(X],,co) such
that ||pn| = [[vall = 27" and || Px,, 57 ) (ttn, vn)|| > n. Consider now the direct sum
of the sequences (n)n>1 and (vn)n>1 which we denote by p and v respectively
[KK, p. 35]. Using the fact that rg(n) = {d> 00| @pn : Tn € rg(un)}, it is easy to
check that p has relatively compact range, and the same holds for v. It follows
from the definitions of x4 and v that

X6, vl = N1 X, vnll = lpn @4, val =1

for every n € N, so p and v do not admit product with respect to ¢, because
a countably additive measure defined on a o-algebra has bounded semivariation.
This contradicts what we are supposing.

Next, we are going to prove that u is 1-summing. Consider a finite sequence
(xk)}p_y in X with sup{d", [z*zx| : [|2*|| < 1} < 1 and let € > 0 be any positive
number. We define a measure p : P({1,...,n}) = X by u({i}) =z; fori =1,...,n.
It is easy to see that ||u|| = sup{d>_, |z*zx| : [|z*|| < 1}. Choose yi,...,yn in the
unit ball of ¢g such that

D luml <Y wln) (k) + e
k=1 k=1

Because /7 is the dual space of ¢y there exists a constant Cs > 0 such that for every
finite subset H in the unit ball of ¢y, there is an ¢p-valued measure whose range
contains H and with semivariation less that Cy ([PR, Theorem 3.6]). From this
it follows that there exists a co-valued measure v such that {yi,...,yx} C rg (v)
and ||v|| < Cs. Let By, ..., B, be measurable sets for v such that v(By) = yi for
k=1,..,n.
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Then we have

ZHuka Z w(zr) (yk +6<Zu®¢ v({k} x By) +¢€
k=1

k=1 k=1
— o ok} % B +
< lu@g, vl + € < CallullIv]| + € < C1C3 + ¢,

and it follows that u is 1-summing with 7 (u) < CyCs. O

Now we can prove the main theorem of this Section.

Theorem 2. Let X be a Banach space. The following statements are equivalent:

(1) There exists a constant M’ such that for every finite dimensional range X -
valued measure p we can find a measure v with values in X satisfying rg(n) C
rg(v) and |v[ < M'[|pl].

(2) There exists a constant M such that for every finite range X -valued measure
pw we can find a measure v with values in X satisfying rg(p) C rg(v) and
v] < M.

(3) TI1 (X™*,61) = L(X™, 47).

(4) (X, 61) = L(X, b).

(5) Every measure with values in X and with relatively compact range admits
product with any measure and with respect to any bilinear map.

Proof. (5) = (4): It is clear that if (5) is true then, in particular, every pair of
measures with respective values in X and cy with relatively compact ranges admits
product with respect to the natural bilinear map ¢ : X x cg — X®cy. Then we
can use Proposition 1.

(4) = (3): We shall prove that if Cy is a constant such that m1(v) < Ci||v|| for
every v: X — {1, then m (u) < Cyllu| for every u € L(X*, £7).

Let u : X* — /1 be a bounded operator. There exists a sequence (z;*)p; in
the bidual space such that u(z*) = Y 7o | 25" (z*)ex for every z* € X*. We have
Jull = sup{352 o (a)] : "] < 1

Consider {z7,...,z}}, a finite sequence in X*. Clearly

n n oo
S luwsl =0 it ()]
j=1k=1

Let m € N and 0 < € . By the principle of local reflexivity [LT, Theorem I1.5.1]
we can find {z1,...,2n} C X such that

sup{ _ |zx(z")| : || < 1} < (14 ) sup{ D _ | (2")] : |]2"|| < 1},
k=1 k=1

and zy(2}) = 3" (x}) for every j = 1,...,n and k = 1,...,m. Thus we have

R IETTED N HEES 3 SETETED S

j=1k=1 j=1k=1

n



PRODUCTS OF VECTOR MEASURES 3463

where v : X — {7 is the bounded operator asociated to the finite sequence (z7)"

J=D
that is, v(z) = >°7_, z}(x)e;. We have

Y lloall < m()sup{d on(@®)| : [|l2"]| < 1}
k=1 k=1

< Culloll sup{)_ lzw(z™)| : [|l2*| < 1}

k=1
< Cysup{ Y _[a}(@)] : ||zl < 1}sup{D_ |2} (@")| : l2"|| < 1}(1+¢)
k=1
< Crsup{)_ [z} (2)] : [z < 1}]ull(1+ ).

As the above inequality holds for every € > 0 and every m € N we have
n
D luai] < Crsup{d |25 (@)« =]l < 1}Jul;
j=1

therefore u must be 1-summing and 7 (u) < Ch|ull.

(3) =(2): Let u : ¥ — X be a measure of finite range, that is, rg(u) =
{z1,...;xn} with (z;) C X. Consider A a control measure of u, that is, A(4) — 0
if and only if ||u||(A) — 0 (see [DU, Corollary 1.2.6] for the existence of such a
control measure) and let 7}, : Loo(A) — X be the integration map associated to p,
where T),(g) = [ gdu is the Bartle integral (see [DU, Theorem 1.1.13]. The adjoint
operator Ty : X* — L1(}) is 1-summing by hypothesis. It follows from the proof
of [P, Theorem 2.4] that there exists an absolute constant C' such that for every
finite subset H of the unit ball of Ly, (\) there exists an X-valued measure v such
that 7,,(H) C rg (v) and |v| < Cmi(T};).

We choose A, ..., A, € ¥ such that u(A;) = z;. Take H = {xa4, : i =1,...,n},
the set of characteristic functions of (A;). Observe that T, (x4,) = ;. Clearly H
is a subset of the unit ball of L. (A) and by the previous observation we can find
an X-valued measure v so that rg(u) C rg(v) and |[v| < Cmi(T};). Observe that
we can choose v of finite range. Indeed we can restrict v to a convenient finite
o-algebra of sets still satisfying rg(u) C rg(v) and [v| < Cmi(u};). By hypothesis
there exists a constant Cy such that m (v) < Ci||v|| for every v : X* — L1()), so
m1(T;) < C1||T,;]| = C1||pll- This proves the implication with M = C1C.

(2) = (1) : Let g : ¥ — X be a finite dimensional range measure. Let E
be a finite-dimensional subspace of X such that rg(u) C E and let d denote the
dimension of E. As the unit ball of ¢4 is the range of an ¢4-valued measure [R], we
can find a measure v/ : £ — FE such that the unit ball of E is contained in rg(v/).
For every € > 0 we can find an e-net {z1, ..., z, } in rg(u). We choose 41,...,4, € &
such that p(A4;) = a; for i = 1,...,n, and denote by p. the restriction of p to the
finite o-algebra generated by the measurable sets {Aq, ..., A,}. Then p. is a finite
range measure with ||ul|| < g

By (2) we can find v : ¥’ — X such that its range contains rg(u) and |v| <
M)
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Let v @& ev’ be the direct sum of v and ev’. Tt is easy to check that rg(v & V') =
rg(v)+ erg(V') and |v ® V'| = |v| + €|V/|. Therefore we get rg(u) C rg(v @ ev’) and

v @ ev'| = |v| + e[| < M|l + [/'].

If we take € < ||p||/]¢/], we get (1) with M’ = (1 + M).

(1) = (5) : Let Y be a Banach space. We consider for every pair of o-algebras X
and Y’ the bilinear map Ps; sy : fdca(E, X) x ca(Y,Y) = ca(E@ ¥/, X®Y) given
by Pis sy (i, v) = p @ v. This map is always well defined, as can be easily seen
directly or using the fact that finite dimensional range measures are of bounded
variation and applying [S, Corollary 1].

Let p € fdea(X, X) and v € ca(X',Y). By (1) there exists an X-valued measure
w' such that rg(u) C rg(p') and || < M'||p||. As p’ is of bounded variation,
it follows from [S, Corollary 1] that it admits projective tensor product with any
measure. It is easy to check that rg(u X v) Crg(p’ xa v), and consequentely we
can deduce from ([DU, Proposition I.1.11]) that ||u ®a v|| < 2|jp @A v|. A simple
calculation shows that ||u’ ®a v|| < 2|¢|||v||, so we finally obtain that ||u @a v|| <
alu ||| < 4|l ]

Then we have proved that || P 5| < 4M’. Since the space of finite dimensional
measures is dense in the space of the measures with relatively compact range ([L,
Theorem 3.1]) we can extend, by density, Pz sy to cca(X,X) x ca(¥,Y). It is
easy to see that P(s svy(p,v) = p ®a v for every p with relatively compact range
in X and v with values in Y. Then, by the observation at the beginning of this
Section, (5) holds. O

Following [Pi] we say that a Banach space satisfies Grothendieck’s theorem if
L(X,03) =T1I;(X, l2). In that case, X is said to be a G.T.-space.

Corollary 3. Let X be a Banach space. Every X -valued measure with relatively
compact range admits projective tensor product with any vector measure if and only
if X and X* are G.T.- spaces.

Proof. In [Pi, Proposition 6.2] it is proved that X is a G.T-space if and only if
L(X* Z) = Ia(X*, Z), for every Lyi-space Z. Then, if every X-valued measure
with relatively compact range admits projective tensor product with respect to any
measures, conditions (4) and (3) from Theorem 2 imply that both X and X* are
G.T.-spaces (observe that X is a G.T.-space if and only if X** is [Pi, Theorem
6.2]).

Conversely, suppose X and X* are G.T.-spaces and let v : X — ¢; be a bounded
operator. Since X* is a G.T.-space, © must be 2-summing, and thus u factors
through a Hilbert space H:

X —* .t

| K

>t . g
As X is a G.T-space too, it follows that ¢j is 1-summing. Hence, u is 1-summing.
This proves that II; (X, ¢1) = £(X, ¢1) and by Theorem 2, every X-valued measure

with relatively compact range admits projective tensor product with any measure.
|
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Remark. Tt is known that there exist infinite dimensional Banach spaces satisfying
the conditions of Theorem 2 or Corollary 3. For example, the Pisier space ([Pi,
Chapter 10]) is a Banach space such that itself and its dual are G.T spaces. We
don’t know, however, if the condition that every measure with values in X (not
only those with relatively compact range) admits projective tensor product with
any measure implies that X must be finite dimensional.

SEQUENCES IN THE RANGE OF A VECTOR MEASURE

If >z, is an unconditionally convergent series in X we can define the countable
sum of the segments [—xy, xx] by

> g,z = {Zam L (o) € Loo, [[(a) ]| < 1}.
k=1 k=1

This is the range of some measure with compact range [PR, Proposition 1.3]. It is
proved in [PR, Proposition 1.4] that for every X-valued measure p with relatively
compact range there exists a countable sum of segments > [—xy, xx] that contains
the range of p and sup {>";7 |2* (a)] : [|[=*|| < 1} < 4|p|. We denote by R.(X)
the Banach space of the sequences in X that lie inside the range of a vector measure
with relatively compact range, endowed with the norm

[(@n)|[re = infsup {Z % (yi)| = 27 < 1},

k=1

the infimum being taken over all unconditionally convergent series > yj such that
{zy : n € N} is contained in > [—yk, yx]-

Let Ry, denote the Banach space of all sequences (z,) in X such that there
exists an X-valued measure p with finite variation satisfying {z,, : n € N} C rg(u).
We put |[(@n)|lpy = inf{|p| : {zn : n € N} Crg(p)}. See [P] and [PR] for properties
of this space. Now we can prove the following theorem.

Theorem 4. Let X be a Banach space. FEvery X -valued measure with relatively
compact range admits projective tensor product with any vector measure if and only
if every sequence that lies inside the range of a measure with relatively compact
range indeed lies inside the range of a measure of bounded variation.

Proof. Let us suppose that every X-valued measure with relatively compact range
admits projective tensor product with any vector measure. Let p : ¥ — X be a mea-
sure with relatively compact range. As the measures with finite-dimensional range
are dense in the space of the measures with relatively compact range, we can find
a sequence (j,) of measures with finite-dimensional range such that >y |||l <
2lpll < oo and g = Y07, pn. By Theorem 2 we can find for every n € N
a measure v, such that rg(u,) C rg(v,) and |v,| < M'||pn||- Then we de-
note by v the direct sum of the sequence (v,). It can be checked that v has
bounded variation and satisfies rg(v) = > rg(vn) = {d o @n : xn € 1g(vn)}
V] = X5 val < MYl < 20 Tt s easy to see that rg(s) C rg(v);
then we have proved that condition (1) in Theorem 2 is equivalent to the existence
of a constant ¢ such that for every X-valued measure with relatively compact range
i, there exists a measure v with bounded variation such that rg(u) C rg(v) and
|v| < 2¢||p]|- This implies, in particular, that every sequence lying inside a range
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of a measure with relatively compact range, lies inside a range of a measure of
bounded variation.

Conversely, if every sequence that lies inside the range of a measure with rel-
atively compact range indeed lies inside the range of a measure of bounded vari-
ation, then the inclusion operator from R.(X) into Rp,(X) is well defined. By
the definition of the norms of R.(X) and Rp,(X) it follows that it has closed
graph, so there exists a constant C' > 0 such that |[(z,)|ee < C||(zn)]]re for ev-
ery sequence (z,) in R.(X). Consider now an X-valued measure p with finite
range, and put {z1,%2,...,2n} = rg(p). By the previous considerations we have
1@ oo < Cl@RNE s as well as )y e < Alall

Then, it is clear that there exists a measure v such that rg(u) C rg(v) and
|v] < 4C||p|]. By Theorem 2, this concludes the implication. |

Remark 1. We have obtained that a Banach space X has the property that every
X-valued measure with relatively compact range admits projective tensor product
with any measure if and only if every range of an X-valued measure with relatively
compact range lies inside the range of a measure of bounded variation.

Remark 2. If we put together Theorem 2 and [PR, Theorem 3.6] we get another
proof of the fact that if every norm null sequence (or equivalently every compact
subset) lies inside the range of an X-valued measure of bounded variation, then X
is finite-dimensional [PR, Theorem 2.1]. Indeed, if every norm null sequence lies
inside a range of bounded variation then in particular we can use [PR, Theorem 3.6]
to obtain that II;(X,¢;) = N(X,¢;1). But if every norm null sequence lies inside
a measure of bounded variation then every compact subset lies there too, thus
the previous theorem tell us that X satisfies the equality II1 (X, ¢;) = L£(X, ¢1).
In conclusion we have obtained that if every norm null sequence (or equivalently,
every compact subset) lies inside a measure of bounded variation, then N (X, /¢;) =
L(X,£41). But, as it is well known, this condition implies that X must be finite-
dimensional.

Remark 3. Using the same ideas as in the proof of Theorem 2 and 4 we can formu-
late the following theorem:

Theorem 5. Every X -valued measure with relatively compact range admits prod-
uct with any vector measure with respect to any bilinear map if and only if every
countable sum of segments > [—xk, zk] defined by an unconditionally convergent
series Y xy in X lies inside a countable sum of segments > [—yk, yr| defined by an
absolutely convergent series > yy in X.

We outline the proof of Theorem 5. Suppose that every X-valued measure
with relatively compact range admits projective tensor product with any measure.
Using the same ideas as in (2) = (1) of Theorem 2 it can be proved that for any
finite dimensional measure p we can find a countable sum of segments > [—yx, yx)
containing the range of p and such that > ||yx|| < M’||p||; then we can prove
that every countable sum of segments defined by an unconditionally convergent
series (which is the range of a measure with relatively compact range) lies inside
a countable sum of segments defined by an absolutely convergent series, just as in
the first implication of Theorem 4.

Conversely, as every range of a measure with relatively compact range lies inside
a countable sum of segments defined by an unconditionally convergent series and
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every countable sum of segments defined by an absolutely convergent series is the
range of a measure of bounded variation, we get by the remark following Theorem
2 that every X-valued measure with relatively compact range admits projective
tensor product with any measure.
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