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PROJECTIVE STRUCTURES ON MODULI SPACES

OF COMPACT COMPLEX HYPERSURFACES

SERGEY MERKULOV AND HENRIK PEDERSEN

(Communicated by Christopher Croke)

Abstract. It is shown that moduli spaces of complete families of compact
complex hypersurfaces in complex manifolds often come equipped canonically
with projective structures satisfying some natural integrability conditions.

1. Projective connections

Let M be a complex manifold. Consider the following equivalence relation on

the set of a�ne torsion-free connections on M : two connections Γ̂ and Γ are said
to be projectively equivalent if they have the same geodesics, considered as un-
parameterized paths. In a local coordinate chart {tα}, α = 1, . . . , dimM on M ,

where Γ̂ and Γ are represented by Christo�el symbols Γ̂γαβ and Γγαβ respectively,

this equivalence relation reads [H]

Γ̂ ∼ Γ

if

Γ̂γαβ = Γγαβbβδ
γ
α + bαδ

γ
β

for some 1-form b = bαdt
α. An equivalence class of torsion-free a�ne connections

under this relation is called a projective structure or a projective connection.
Let M be a complex manifold with a projective structure. A complex subman-

ifold P ⊂ M is called totally geodesic if for each point t ⊂ P and each direction
tangent to P at t the corresponding geodesic of the projective connection is con-
tained in P at least locally.

2. Moduli spaces of compact complex hypersurfaces

Let X be be a compact complex hypersurface in a complex manifold Y with
normal line bundle N such that H1(X,N) = 0. According to Kodaira [K-1], such
a hypersurface X belongs to the complete analytic family {Xt|t ∈ M} of compact
complex hypersurfaces Xt in Y with the moduli space M being a (dimCH

0(X,N))-
dimensional complex manifold. Moreover, there is a canonical isomorphism kt :
TtM → H0(Xt, Nt) which associates a global section of the normal bundle Nt of
Xt ↪→ Y to any tangent vector at the corresponding point t ∈M .
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Consider F = {(y, t) ∈ Y ×M |y ∈ Xt} and denote by µ : F → Y and ν : F →M
two natural projections,

Y
µ← F

ν→M.(1)

The space F is a submanifold in Y ×M . If NF is the normal bundle of F ↪→ Y ×M ,
then, for any point t ∈M , we have NF |ν−1(t) ' NXt|Y , where NXt|Y is the normal

bundle of the submanifold µ ◦ ν−1(t) = Xt ↪→ Y . By Kodaira’s theorem, there is
an isomorphism k : TM → ν0

∗(NF ), where ν0
∗(NF ) denotes the direct image.

Let us denote the point in the moduli space M corresponding to X by t0, i.e.
X = µ ◦ ν−1(t0). It is easy to show that, for each y ∈ Y ′ ≡

⋃
t∈M Xt the set

ν ◦ µ−1(y) is a complex analytic subspace of M . We denote by Py its manifold
content, i.e. Py = ν ◦ µ−1(y) \ {singular points}. If the natural evaluation map

H0(Xt, NXt|Y )→ Nz

φ→ φ(z),

where Nz is the �bre of N at a point z ∈ Xt and φ(z) is the value of the global
section φ ∈ H0(Xt, NXt|Y ) at z, is surjective at all points z ∈ Xt and for all t ∈M ,

then Py = ν ◦ µ−1(y).

3. The main theorem

The idea of studying di�erential geometry on the moduli space of compact
complex submanifolds of a given ambient complex manifold goes back to Pen-
rose [Pe] who discovered self-dual conformal structures automatically induced on
4-dimensional moduli spaces of rational curves with normal bundle N = C2⊗O(1).
In this section we show that moduli spaces of compact complex hypersurfaces of-
ten come equipped canonically with induced projective structures satisfying some
natural integrability conditions. Other manifestations of general and strong links
between complex analysis and di�erential geometry can be found in Merkulov’s
survey [M].

Theorem 1. Let X ↪→ Y be a compact complex submanifold of codimension 1 with
normal bundle N such that H1(X,N) = 0 and let M be the associated complete
moduli space of relative deformations of X inside Y . If H1(X,OX) = 0, then a
sufficiently small neighbourhood M0 ⊂M of the point t0 ∈M corresponding to X,
comes equipped canonically with a projective structure such that, for every point
y ∈ Y ′ ≡

⋃
t∈M Xt, the associated submanifold Py ⊆ ν ◦ µ−1(y) ∩M0 is totally

geodesic.

Proof. An open neighbourhood of the submanifold X ↪→ Y can always be cov-
ered by a �nite number of coordinate charts {Wi} with local coordinate functions
(wi, z

a
i ), a = 1, . . . , n = dimX , on each neighbourhood Wi such that X ∩ Wi

coincides with the subspace of Wi determined by the equation wi = 0. On the
intersection Wi ∩Wj the coordinates wi, z

a
i are holomorphic functions of wj and

zbj ,

wi = fij(wj , z
b
j), zai = gaij(wj , z

b
j),

with fij(0, z
b
j) = 0. Here zj = (z1

j , . . . , z
n
j ).

Let U ⊂ M be a coordinate neighbourhood of the point t0 with coordinate
functions tα, α = 1, . . . ,m = dimM . Then the coordinate domains U ×Wi with
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coordinate functions (wi, z
a
i , t

α) cover an open neighbourhood of X × U in the
manifold Y ×U . For a su�ciently small U , the submanifold FU ∼= ν−1(U) ↪→ Y ×U
is described in each coordinate chart Wi × U by an equation of the form [K-1]

wi = φi(zi, t),

where φi(zi, t) is a holomorphic function of zai and tα which satis�es the boundary
conditions φi(zi, t0) = 0. For each �xed t ∈ U this equation de�nes a submanifold
Xt ∩Wi ↪→Wi.

By construction, FU is covered by a �nite number of coordinate neighbourhoods
{Vi ≡Wi ×U |F } with local coordinate functions (zai , t

α) which are related to each
other on the intersections Vi ∩ Vj as

zai = gaij(φj(zj, t), zj).

Obviously we have φi(gij(φj(zj , t), zj), t) = fij(φj(zj , t), zj).
The Kodaira map k : TM |U → ν0

∗(NF |FU ) can be described in the following way:
take any vector �eld v on U and apply the corresponding 1st-order di�erential
operator V α∂α, where ∂α = ∂/∂tα, to each function φi(zi, t). The result is a
collection of holomorphic functions σi(zi, t) = V α∂αφi(zi, t) de�ned respectively on
Vi. On the intersection Vi ∩ Vj one has σi(zi, t)|zi=gij(φj ,zj) = Fij(zj , t)σj(zj , t),
where

Fij ≡
∂fij
∂wj

∣∣∣∣
wj=φj(zj ,t)

− ∂φi
∂zai

∣∣∣∣
zi=gij(φj,zj)

∂gaij
∂wj

∣∣∣∣
wj=φj(zj ,t)

is the transition matrix of the normal bundle NF |FU on the overlap FU ∩ Vi ∩ Vj .
Therefore the 0-cochain {σi(zi, t)} is a �Cech 0-cocycle representing a global section
k(v) of the normal bundle NF over FU .

Let us investigate how second partial derivatives of {φi(zi, t)} and {φj(zj , t)} are
related on the intersection Vi ∩ Vj . Since

∂φi(zi, t)

∂tα

∣∣∣∣
zi=gij(φj ,zj)

= Fij
∂φj(zj , t)

∂tα

we �nd

∂2φi
∂tα∂tβ

∣∣∣∣
zi=gij(φj ,zj)

= Fij
∂2φj
∂tα∂tβ

+Eij
∂φj
∂tα

∂φj
∂tβ
−Gijα

∂φj
∂tβ
−Gijβ

∂φj
∂tα

,(2)

where

Eij =
∂2fij
∂wj∂wj

∣∣∣∣
wj=φ(zj ,t)

− ∂φi
∂zai

∣∣∣∣
zi=gij(φj,zj)

∂2gaij
∂wj∂wj

∣∣∣∣∣
wj=φj(zj ,t)

− ∂2φi
∂zai ∂z

b
i

∣∣∣∣
zi=gij(φj ,zj)

(
∂gaij
∂wj

∂gbij
∂wj

)∣∣∣∣∣
wj=φj(zj,t)

,

and

Gijα =
∂2φi
∂zai ∂t

α

∣∣∣∣
zi=gij(φj ,zj)

∂gaij
∂wj

∣∣∣∣
wj=φj(zj ,t)

.

The collections {Eij} and {Gijα} form 1-cochains with coe�cients in N∗F and
ν∗(Ω1M), respectively. Straightforward calculations reveal the obstructions for
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these two 1-cochains to be 1-cocycles,

δ{Eik} = 2
∂Fij(zj , t)

∂zaj

∂gajk
∂wk

∣∣∣∣
wk=φk(zk,t)

,

δ{Gikα} =
∂Fij(zj , t)

∂zaj

∂gajk
∂wk

∣∣∣∣
wk=φk(zk,t)

∂φj(zj , t)

∂tα
.

From these equations we conclude that the 1-cochain {τikα}, where

τikα ≡
1

2
Eik

∂φk
∂tα
−Gikα,

is actually a 1-cocycle with values in ν∗(Ω1M). Since H1(X,OX) = 0, the semi-
continuity principle [K-2] implies H1(Xt,OXt) = 0 for all points in some Stein
neighbourhood M0 ⊆ U . Hence, by the Leray spectral sequence

H1(ν−1(M0), ν∗(Ω1M)) = 0.

Therefore, the 1-cocycle {τikα} is always a coboundary {τijα} = δ{θiα}, or more
explicitly,

τijα(zj, t) = Fij(zj , t)(−θiα(zi, t)|zi=gij(φj ,zj) + θjα(zj , t)),(3)

for some 0-cochain {θiα(zi, t)} on ν−1(M0) with values in ν∗(Ω1M). However, this
0-cochain is de�ned non-uniquely|for any global section ξ = ξαdt

α of ν∗(Ω1M)
over ν−1(M0) the 0-cochain

~θiα(zi, t) = θiα(zi, t) + ξα(t)|ν−1(M0)∩Vi(4)

splits the same 1-cocycle {τijα}. Note that, due to the compactness of the complex
submanifolds ν−1(t) ⊂ F for all t ∈ M0 the components ξα of the global section
ξ ∈ H0(ν−1(M0), ν∗(Ω1M)) are constant along the �bers, i.e. ξα ∈ ν−1(OM0).

If we rewrite equation (2) in the form

∂2φi(zi, t)

∂tα∂β

∣∣∣∣
zi=gij(φj ,zj)

= Fij(zj , t)
∂2φj(zj , t)

∂tα∂tβ

+ τijα(zj , t)
∂φj(zj , t)

∂tβ
+ τijβ(zj , t)

∂φj(zj , t)

∂tα

and take equation (3) into account, we obtain the equality(
∂2φi
∂tα∂tβ

+ θiα
∂φi
∂tβ

+ θiβ
∂φi
∂tα

)∣∣∣∣
zi=gij(φj,zj)

=
∂2φj
∂tα∂tβ

+ θjα
∂φj
∂tβ

+ θjβ
∂φj
∂tα

which implies that, for each value of α and β, the holomorphic functions,

�iαβ(zi, t) ≡
∂2φi(zi, t)

∂tα∂tβ
+ θiα(zi, t)

∂φi(zi, t)

∂tβ
+ θiβ(zi, t)

∂φi(zi, t)

∂tα
,

represent a global section of the normal bundle NF over ν−1(M0). Since the col-
lections of functions {∂αφi(zi, t)} form a �Cech representation of a basis for the free
OM0 -module ν0

∗(NF |ν−1(M0)), the equality

�iαβ(zi, t) = Γγαβ∂αφi(zi, t)(5)

must hold for some global holomorphic functions Γγαβ on ν−1(M0). Since all the

�bers ν−1(t), t ∈M0, are compact complex manifolds, these functions are actually
pull-backs of some holomorphic functions on M0. A coordinate system {tα} on M0

was used in the construction of Γγαβ(t). However from (5) it immediately follows
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that under general coordinate transformations tα → tα
′

= tα
′
(tβ) these functions

transform according to

Γγ
′

α′β′ =
∂tγ

′

∂tδ

(
Γδµν

∂tµ

∂tα′
∂tν

∂tβ′
+

∂2tδ

∂tα′∂tβ′

)
.

Thus from any given splitting {τijα} = δ{θiα} of the 1-cocycle {τijα} we extract
a symmetric a�ne connection Γγαβ(t). It is straightforward to check that this con-

nection is independent of the choice of the (wi, z
a
i )-coordinate system used in the

construction and thus is well-de�ned except for the arbitrariness in its construction
described by the transformations (4) which, as one can easily check, change the
connection as follows:

θiα(zi, t)→ θiα(zi, t) + ξα(t)

Γγαβ(t)→ Γγαβ(t) + ξα(t)δγβ + ξβ(t)δγα.

Therefore we conclude that the neighbourhood M0 of the point t0 in the moduli
space comes equipped canonically with a projective structure.

Let us now prove that for each point y0 ∈ Y ′ =
⋃
t∈M0

Xt, the associated

submanifold Py ⊆ ν ◦ µ−1(y) ⊂ M0 is totally geodesic relative to the canonical
projective connection in M0. Suppose that y0 ∈Wi for some i. Then y0 = (wi0, z

a
i0)

and the submanifold Py0 is given locally by the equations wi0−φi(zi0, t) = 0, where
t ∈ ν ◦ µ−1(y0) \ {singular points}. Then a vector �eld v(t) = V α∂α|Py0 is tangent
to Py0 if and only if it satis�es the simultaneous equations

V α∂αφi(zi0, t) = 0.(6)

In order to prove that the submanifold Py0 for arbitrary y0 ∈ Y ′ is totally geodesic
relative to the canonical projective connection, we have to show that, for any vector
�elds v(t) = V α∂α and w(t) = Wα∂α on Py0 , the equation

(W β∂βV
α + ΓαβγV

γW β) modTPy0 = 0(7)

holds. Since v(t) and w(t) are tangent to Py0 ⊂M , we have the equation

W β(t)
∂

∂tβ
(V α∂αφi(zi0, t)) = 0,(8)

V αW β ∂
2φi(zi0, t)

∂tα∂tβ
= V αW βΓγαβ

∂φi(zi0, t)

∂tγ
.

From the latter equation and equation (8) it follows that

(W β∂βV
α + ΓαβγV

γW β)
∂φi(zi0, t)

∂tα
= 0.

By (6) this means that (W β∂βV
α + ΓαβγV

γW β)∂α ∈ TPy0 , and thus equation (7)
holds. The proof is completed.

We may have a moduli space even if the condition H1(X,N) = 0 is not satis�ed.
Given a moduli space, the proof above provides a projective structure so we have
the following global result.

Corollary 2. Let {Xt ↪→ Y |t ∈ M} be a complete analytic family of compact
complex hypersurfaces such that H1(Xt,OXt) = 0 for all t ∈ M . Then the moduli
space M comes equipped canonically with a projective structure such that, for every
point y ∈ Y ′, the associated submanifold Py = ν ◦ µ−1(y) ⊂M is totally geodesic.
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We conclude this section with a brief geometric interpretation of geodesics canon-
ically induced on moduli spaces of compact complex hypersurfaces. Any complex
curve (immersed connected complex 1-manifold) in a complex manifold M has a
canonical lift to a complex curve in the projectivized tangent bundle PM (TM)|one
simply associates to each point of the curve its tangent direction. Then a projec-
tive structure on M de�nes a family of lifted curves in PM (TM) which foliates
the projectivized bundle holomorphically [H, L]. Then, for geodesically convex M ,
the quotient space of this foliation, Z, is a (2n − 2)-dimensional manifold, where
n = dimM . There is a double �bration

Z
τ← PM (TM)

σ→M(9)

such that, for each z ∈ Z, σ◦τ−1(z) ⊂M is a geodesic from the projective structure;
for each t ∈ M , τ ◦ σ−1(t) ⊂ Z is projective space CPn−1 embedded into Z with
normal bundle TCPn−1(−1) [L].

Let X0 ↪→ Y be a compact complex submanifold of codimension 1 such that
H1(X0, N) = H1(X0,OX0) = 0 and let M be a geodesically convex domain in the
associated complete moduli space of relative deformations of X0 inside Y . The
space of geodesics Z can be identi�ed in this case with the family of intersections
Xs ∩Xt ⊂ Y , s, t ∈ M . From the explicit coordinate description of submanifolds
Xt ⊂ Y given in the proof of Theorem 1 one can easily see that, for each t ∈ M ,
the intersection Xt ∩X0 is a divisor of the holomorphic line bundle on X0 which is
a holomorphic deformation of the normal bundle N . Since H1(X0,OX) = 0, any
holomorphic deformation of N must be isomorphic to N [K-3]. Therefore, each
intersection Xt ∩X0 is a divisor of the normal bundle on X0, and, by completeness
of the family {Xt ↪→ Y |t ∈ M}, all divisors of N arise in this way. If t0 ∈ M is
the point associated to X0 ⊂ Y via the double �bration (1), then the set of all

intersections X0 ∩Xt is a projective space CPdimM−1 ⊂ Z associated to t0 via the
double �bration (9). Then a geodesic through the point t0 ∈ M is a family of Xt

which have the same intersection with X0.

4. Applications and examples

One of the immediate applications of the theorem on projective connections is
in the theory of 3-dimensional Einstein-Weyl manifolds. Hitchin [H] proved that
there is a one-to-one correspondence between local solutions of Einstein-Weyl equa-
tions in 3 dimensions and pairs (X,Y ), where Y is a complex 2-fold and X is the
projective line CP1 embedded into Y with normal bundle N ' O(2). However the
corresponding twistor techniques allowed one to compute only part of the canon-
ical Einstein-Weyl structure induced on the complete moduli space M of relative
deformations of X in Y , namely the conformal structure on M . Although the
geodesics were formally described and the existence of a connection with special
curvature was proved, no explicit formula for the connection was obtained. The
theorem on projective connections �lls this gap and provides one with a technique
which is capable of decoding the full Einstein-Weyl structure from the holomor-
phic data of the embedding X ↪→ Y . We shall use Theorem 1 in some examples
to compute explicitly the canonical projective connection and then the canonical
Einstein-Weyl structure on the complete moduli space of rational curves embedded
into a 2-dimensional complex manifold with normal bundle N ' O(2).
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Consider a non-singular curve X of bidegree (1, n) in the quadric CP1 × CP1.
Then X is rational and has normal bundle O(2n) [P]. The space M of such curves
can be described as follows: Let (ζ, η) be a�ne coordinates on CP1 × CP1 and
consider the graph of a rational function of degree n:

η =
P (ζ)

Q(ζ)
,

P (ζ) = anζ
n + an−1ζ

n−1 + · · ·+ a0,

Q(ζ) = bnζ
n + bn−1ζ

n−1 + · · ·+ b0.

(10)

The family of such (1, n)-curves is parameterized by CP2n+1 and the space M of
non-singular curves is CP2n+1 \ R where R is the manifold of codimension 1 and
degree 2n given by the resultant of P and Q. The geodesics of the projective
connection are again given by projective lines in CP2n+1 \ R. We may of course
choose to describe the induced structure on the hypersurface given by R = 1, and
for n = 1 this corresponds to the standard projective structure on SL(2,C) or on
one of its real slices H3, S3.

In order to obtain less trivial examples we consider branched coverings. Consider
a complex curve C contained in a complex surface S. We want to construct a
branched covering of a neighbourhood of C branched along C. Choose coordinates
(xi, yi) on neighbourhoods Oi along C such that Oi ∩ C is given by xi = 0. Then
on overlaps we have xi = xjHij(xj , yj) and yi = Kij(xj , yj). Now, we look for
an n-fold cover branched along C: take patches Wi with coordinates (wi, zi) and
de�ne the covering map (wi, zi) → (xi, yi) = (wni , zi). This is a branched cover of
Oi branched along Oi ∩ C. We want to identify the neighbourhoods Wi along the
curve C to obtain a surface Y with a map π : Y → S which locally has the form
above. We get

wni = xi = xjHij(zj , yj) = wnjHij(w
n
j , zj).

If we make a choice of the n-th root and put H̃ij = H
1/n
ij we get

wi = wjH̃ij(w
n
j , zj) = fij(wj , zj).

The obstruction for this to work along the curve is the class H̃ijH̃jkH̃ki ∈
H2(C,Z/n). We can identify this obstruction to be the self-intersection number
of C modulo n: since dxi = Hij(0, yj)dxj we see that Hij(0, yj) represents the
normal bundle N in H1(C,O∗). From the long exact sequence associated with

0→ Z→ O exp→ O∗ → 0

we see that the degree of N is equal to logHij + logHjk + logHki. Thus, the
obstruction to obtain Y is equal to the self-intersection of C, modulo n. Each

choice of H
1/n
ij corresponds to an element in H1(C,Z/n). Unless the homology

class of C in H2(S,Z) is divisible by n this local construction along the curve
cannot be extended to work globally on S [A].

Now, let us return to the case where C is a (1, n)-curve in CP1 × CP1. In this
case C ∼= CP1, so there is a unique n-fold covering Y branched along C which we
cannot extend to all of CP1 × CP1. The branch locus X ⊆ Y is a copy of C but
degNX = 1

n degNC = 2 so we may describe an Einstein-Weyl structure on the
moduli space of curves in Y [H] and contrary to earlier attempts we are now able to
get the connection Γγαβ explicitly. Let us concentrate on (1, 2) curves and let C be
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the curve η = ζ2. The projection π maps the curves in Y onto those (1, 2)-curves
which meet C in two points to second order. These curves may be given as in (10)
with

P (ζ) = ζ2 − 2t0t1ζ − t20,
Q(ζ) = t22ζ

2 + 2t1t2ζ + 1 + 2t0t2 + t21

(see [P]). In order to describe the lifted curves we introduce the coordinates

x1 = η − ζ2, x2 = ~η − ~ζ2,

y1 = ζ, y2 = ~ζ,

where (~ζ, ~η) = (1
ζ ,

1
η ). Then C is given by xi = 0. Making the coordinate transfor-

mation

(x1, y1)→ (w, z) = (
√
x1, y1),

(x2, y2)→ (ŵ, ẑ) = (
√
x1, y1)

we arrive at a covering of Y by two coordinate charts W and Ŵ which is exactly
of the type used in the proof of Theorem 1 and has the transition functions

ŵ = f(w, z), ẑ = g(z),

given by

f(w, z) =
w

z
√
w2 + z2

, g(z) = z−1.

The complete maximal family of relative deformations of C is described in this
chart by the equations (in the notation of the proof of Theorem 1) w = φ(z, t) and

ŵ = φ̂(ẑ, t), with

φ(z, t) = iR(z)Q(z)−1/2, φ̂(z, t) = iR(z)P (z)−1/2,

where R(z) = t2z
2 + t1z + t0. Note that a useful identity P = z2Q−R2 holds [P].

Now we have all the data to apply the machinery developed in the proof of
Theorem 1. Following that scenario one �nds that the canonical projective structure
on M can be represented by the following torsion-free a�ne connection

Γ0
01 = t1(1 + 3t0t2)(2�)−1, Γ1

01 = t2(2 + t21 + 2t0t2)(2�)−1,

Γ0
00 = t2(1 + t0t2)�−1, Γ1

00 = −t1t22�−1,

Γ0
02 = t0(1 + t0t2 + t21)(2�)−1, Γ1

02 = −t1(1 + t21)(2�)−1,

Γ0
11 = −t0(1 + t0t2)�−1, Γ1

11 = t0t1t2�−1,

Γ0
12 = −t20t1(2�)−1, Γ2

12 = −t0(1 + t0t2 + t21)(2�)−1

and all other Christo�el symbols being zero. Here

� = (1 + t0t2)2 + t21(1 + 2t0t2).

Note that �2 = R where R is the resultant of the polynomials in (10).
The conformal structure [g] on M is given by the condition for the curves to

meet to second order. Thus we may choose the following metric in the conformal
structure [P]

g = t21t
2
2dt

2
0 + (1 + t0t2)2dt21 + 4t20(1 + t21)dt22 + 2t1t2(1 + t0t2)dt0dt1

− 4(1 + t21)(1 + t0t2)dt0dt2 − 4t20t1t2dt1dt2.
(11)
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Since our connection ∇ is projectively equivalent to the Weyl connection D it
satis�es

(∇g)αβγ = aαgβγ + bβgαγ + bγgαβ

for some 1-forms a =
∑2
i=0 aαdt

α and b =
∑2
i=0 bαdt

α. We may solve these equa-
tions and present the Weyl connection D in terms of the Levi-Civita connection ∇g
and the 1-form ω = a− 2b =

∑
α ωαdtα,

D = ∇g +
1

2
ω#g − ω � I;

see [PT]. We get

a0 = 3t21t2(2�)−1, b0 = −3t21t2(4�)−1,

a1 = −3t1(1 + t0t2)(4�)−1, b1 = −3t1(1 + t0t1)(4�)−1,

a2 = −3t0(1 + t0t2 + t21)(2�)−1, b2 = −3t0(1 + t0t2 + t21)(2�)−1.

Thus using only the methods of the relative deformation theory of compact hyper-
surfaces we computed the full Einstein-Weyl structure on the moduli space.

Suppose we blow up a point s on the quadric and take a (1, n)-curve passing
through the point. Then in the blown up surface the curve will have self-intersection
number 2n − 1 and this corresponds to considering all the (1, n)-curves passing
through s. We may combine this with the branched covering construction. In [PT]
we considered the Einstein-Weyl structure associated to the (1, 3)-curves: �rst we
considered the 2-fold branched cover which reduced the degree of the normal bundle
from 6 to 3 and then we blew up a point on the branch locus to get self-intersection
equal to 2. Again we may compute the Weyl connection or compute the connection
associated to any combination of blow up and branched cover. This will give non
trivial examples with normal bundle O(n) for any n.

Acknowledgments

It is a pleasure to thank Paul Tod for many valuable discussions and comments.
Thanks are also due to Stephen Huggett, Yat Sun Poon and the anonymous ref-
erees for helpful remarks. One of the authors (SM) is grateful to the Department
of Mathematics and Computer Science of Odense University for hospitality and
�nancial support.

References

[A] M. F. Atiyah, The signature of fibre bundles, in Global Analysis, Papers in honor of K.
Kodaira (D. C. Spencer and S. Yanaga, eds.), Princeton Univ. Press, Princeton, 1969, 73–
84. MR 40:8071

[H] N. Hitchin, Complex manifolds and Einstein’s equations, In: H. D. Doebner, et al. (eds.)
Twistor geometry and non-linear systems, Lect. Notes Math., vol. 970, Springer-Verlag,
Berlin, Heidelberg, New York, 1982, pp. 73–99. MR 84i:32041

[K-1] K. Kodaira, A theorem of completeness of characteristic systems for analytic families
of compact submanifolds of complex manifolds, Ann. of Math. 75 (1962), 146–162. MR
24:A3665b

[K-2] , Complex manifolds and deformations of complex structures, Springer-Verlag, New
York, Berlin, Heidelberg, and Tokyo, 1986. MR 87d:32040

[K-3] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures, I, Ann. of
Math. 67 (1958), 328–401. MR 22:3009

[L] C. LeBrun, Spaces of complex geodesics and related structures, D. Phil. Thesis, Oxford
University, 1980.



416 SERGEY MERKULOV AND HENRIK PEDERSEN

[M] S. A. Merkulov, Relative deformation theory and differential geometry, In: S. A. Huggett,
ed., Twistor Theory, Marcel Dekker, New York, 1995, pp. 107–132. MR 96b:32025

[P] H. Pedersen, Einstein-Weyl Spaces and (1, n)-Curves in the Quadric Surface, Ann. Global
Anal. Geom. 4 (1986), 89–120. MR 88j:53045

[PT] H. Pedersen and K. P. Tod, Three-dimensional Einstein-Weyl Geometry, Adv. Math. 97
(1992), 74–109. MR 93m:53042

[Pe] R. Penrose, Non-linear gravitons and curved twistor theory, Gen. Rel. Grav. 7 (1976), 31–52.
MR 55:11905

School of Mathematics and Statistics, University of Plymouth, Plymouth, Devon

PL4 8AA, United Kingdom

Current address: Department of Pure Mathematics, University of Glasgow, 15 University
Gardens, Glasgow G12 8QW, United Kingdom

Department of Mathematics and Computer Science, Odense University, Campusvej

55, 5230 Odense M, Denmark


